1
|
Fu B, Lin Z, Yan L, Zhang Q, Liu C, Cai J, Guo W, Liu Y, Zhai W, Gong S, Xu F, Wu J. Fine-mapping of PmHHM, a broad-spectrum allele from a wheat landrace conferring both seedling and adult resistance to powdery mildew. FRONTIERS IN PLANT SCIENCE 2025; 15:1489013. [PMID: 39980756 PMCID: PMC11839664 DOI: 10.3389/fpls.2024.1489013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/28/2024] [Indexed: 02/22/2025]
Abstract
Introduction Common wheat is a leading global food crop that impacts food security. Wheat powdery mildew (PM), caused by Blumeria graminis f. sp. tritici (Bgt), poses a significant threat to grain yield and flour quality. The identification and utilization of broad-spectrum resistance genes against PM are essential for effective disease control. Methods The resistance spectrum test during the seedling stage and the identification of resistance during the adult stage were conducted to evaluate the wheat landrace Honghuamai (HHM). Five segregating populations were investigated to assess the inheritance of PM resistance in HHM. To map its PM resitance gene, bulked segregant analysis, molecular mapping and comparative genomic analysis were also used in the present study. Results HHM shows remarkable adult resistance in the field and is nearly immune to all 25 Bgt isolates used in seedling tests, making it an excellent source of PM resistance. PM resistance in HHM was determined by a single dominant gene, temporarily named PmHHM. It was then fine-mapped to an interval with a genetic distance of 0.0031 cM and a physical distance of 187.4 kb on chromosome 4AL of the Chinese Spring reference sequence v.2.1. Four genes were identified in the target region, three of which encode nucleotide-binding leucine-rich repeat (NLR) proteins. Comparative genomic analysis revealed presence/absence variations (PAVs) of the PmHHM locus among common wheat varieties. Discussion These closely linked molecular markers will not only benefit the cloning of the gene underlying PmHHM but also facilitate the efficient utilization of the gene in breeding programs.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Zhixin Lin
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lijuan Yan
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Feng Xu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Fu B, Zhang Q, Cai J, Guo W, Liu C, Liu Y, Zhai W, Gong S, Wu J. Identification and Precise Mapping of PmHSM, a Novel Recessive Powdery Mildew Resistance Allele from Wheat Landrace Heshangmai. PLANT DISEASE 2024; 108:3623-3630. [PMID: 39172492 DOI: 10.1094/pdis-12-23-2754-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Common wheat (Triticum aestivum L.) is the world's primary food crop, and ensuring its safe production is of utmost importance for global peace and human development. However, the continuous threat of fungal diseases, including Fusarium head scab, rusts, sharp eyespot, and powdery mildew (PM), poses a significant challenge to production. PM caused by Blumeria graminis f. sp. tritici causes substantial yield losses. Heshangmai (HSM), a wheat landrace originating from Sichuan Province, possesses high levels of resistance to PM. A comprehensive study using a large segregating population of a cross between HSM and Ningmaizi119 (NMZ119) revealed a single recessive allele conferring resistance. The gene, provisionally designated PmHSM, was located on the long arm of chromosome 4A (4AL). Molecular marker analysis, a PM response array, and an allelism test indicated that PmHSM is a novel recessive resistance gene that shares an allelic relationship with PmHHXM. Thirteen simple sequence repeat markers were developed using the sequence information of the 4AL region in the Chinese spring reference sequence version 2.1. PmHSM was flanked by the markers Xmp1567 and Xmp1444 at genetic distances of 0.11 and 0.18 cM, respectively, and cosegregated with the markers Xmp1439/Xmp1440/Xmp1442.
Collapse
Affiliation(s)
- Bisheng Fu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| | - Qiaofeng Zhang
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Jin Cai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Wei Guo
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Caiyun Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
| | - Ying Liu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wenling Zhai
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Jizhong Wu
- Institute of Crop Germplasm and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, Jiangsu, P.R. China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu, P.R. China
| |
Collapse
|
3
|
Liu X, Zhang X, Meng X, Liu P, Lei M, Jin H, Wang Y, Jin Y, Cui G, Mu Z, Liu J, Jia X. Identification of genetic loci for powdery mildew resistance in common wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1443239. [PMID: 39445142 PMCID: PMC11496114 DOI: 10.3389/fpls.2024.1443239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024]
Abstract
Powdery mildew (PM) poses an extreme threat to wheat yields and quality. In this study, 262 recombinant inbred lines (RILs) of Doumai and Shi 4185 cross were used to map PM resistance genes across four environments. High-density genetic linkage map of the Doumai/Shi 4185 RIL population was constructed using the wheat Illumina iSelect 90K single-nucleotide polymorphism (SNP) array. In total, four stable quantitative trait loci (QTLs) for PM resistance, QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS, were detected and explained 5.6%-15.6% of the phenotypic variances. Doumai contributed all the resistance alleles of QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS. Among these, QPm.caas-4AS and QPm.caas-6BS overlapped with the previously reported loci, whereas QPm.caas-2AS and QPm.caas-4BL are potentially novel. In addition, six high-confidence genes encoding the NBS-LRR-like resistance protein, disease resistance protein family, and calcium/calmodulin-dependent serine/threonine-kinase were selected as the candidate genes for PM resistance. Three kompetitive allele-specific PCR (KASP) markers, Kasp_PMR_2AS for QPm.caas-2AS, Kasp_PMR_4BL for QPm.caas-4BL, and Kasp_PMR_6BS for QPm.caas-6BS, were developed, and their genetic effects were validated in a natural population including 100 cultivars. These findings will offer valuable QTLs and available KASP markers to enhance wheat marker-assisted breeding for PM resistance.
Collapse
Affiliation(s)
- Xia Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, China
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Xiaoqing Zhang
- National Agricultural Technology Extension Service Center of the Ministry, Agriculture and Rural Affairs, Beijing, China
| | - Xianghai Meng
- Dryland Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Menglin Lei
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanzhen Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Guoqing Cui
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Zhixin Mu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University/Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Genetics and Molecular Improvement of Shanxi Province, Taiyuan, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyun Jia
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
4
|
Xue S, Wang H, Ma Y, Sun T, Wang Y, Meng F, Wang X, Yang Z, Zhang J, Du J, Li S, Li Z. Fine mapping of powdery mildew resistance gene PmXNM in a Chinese wheat landrace Xiaonanmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:35. [PMID: 38286845 DOI: 10.1007/s00122-024-04544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
KEY MESSAGE Powdery mildew resistance gene PmXNM, originated from the Chinese wheat landrace Xiaonanmai, was delimited to a 300.7-kb interval enriched with resistance genes. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease threatening the yield and quality of wheat worldwide. The use of broad-spectrum disease resistance genes from wheat landraces is an effective strategy to prevent this pathogen. Chinese wheat landrace Xiaonanmai (XNM) was immune to 23 tested Bgt isolates at the seedling stage. The F1, F2, and F2:4 progenies derived from the cross between XNM and Chinese Spring (CS) were used in this study. Genetic analysis revealed that powdery mildew resistance in XNM was controlled by a single dominant gene, temporarily designated PmXNM. Bulked segregant analysis and molecular mapping delimited PmXNM to the distal terminal region of chromosome 4AL flanked by markers caps213923 and kasp511718. The region carrying the PmXNM locus was approximately 300.7 kb and contained nine high-confidence genes according to the reference genome sequence of CS. Five of these genes, annotated as disease resistance RPP13-like proteins 1, were clustered in the target region. Haplotype analysis using the candidate gene-specific markers indicated that the majority of 267 common wheat accessions (75.3%) exhibited extensive gene losses at the PmXNM locus, as confirmed by aligning the targeted genome sequences of CS with those of other sequenced wheat cultivars. Seven candidate gene-specific markers have proven effective for marker-assisted introgression of PmXNM into modern elite cultivars.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Huan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Tiepeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yingxue Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Fan Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xintian Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zihan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jieli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jinxuan Du
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhifang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
5
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
6
|
Korchanová Z, Švec M, Janáková E, Lampar A, Majka M, Holušová K, Bonchev G, Juračka J, Cápal P, Valárik M. Identification, High-Density Mapping, and Characterization of New Major Powdery Mildew Resistance Loci From the Emmer Wheat Landrace GZ1. FRONTIERS IN PLANT SCIENCE 2022; 13:897697. [PMID: 35646009 PMCID: PMC9141293 DOI: 10.3389/fpls.2022.897697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Powdery mildew is one of the most devastating diseases of wheat which significantly decreases yield and quality. Identification of new sources of resistance and their implementation in breeding programs is the most effective way of disease control. Two major powdery mildew resistance loci conferring resistance to all races in seedling and adult plant stages were identified in the emmer wheat landrace GZ1. Their positions, effects, and transferability were verified using two linkage maps (1,510 codominant SNP markers) constructed from two mapping populations (276 lines in total) based on the resistant GZ1 line. The dominant resistance locus QPm.GZ1-7A was located in a 90 cM interval of chromosome 7AL and explains up to 20% of the trait variation. The recessive locus QPm.GZ1-2A, which provides total resistance, explains up to 40% of the trait variation and was located in the distal part of chromosome 2AL. The locus was saturated with 14 PCR-based markers and delimited to a 0.99 cM region which corresponds to 4.3 Mb of the cv. Zavitan reference genome and comprises 55 predicted genes with no apparent candidate for the QPm.GZ1-2A resistance gene. No recessive resistance gene or allele was located at the locus before, suggesting the presence of a new powdery mildew resistance gene in the GZ1. The mapping data and markers could be used for the implementation of the locus in breeding. Moreover, they are an ideal base for cloning and study of host-pathogen interaction pathways determined by the resistance genes.
Collapse
Affiliation(s)
- Zuzana Korchanová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Švec
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Janáková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Adam Lampar
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Maciej Majka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Georgi Bonchev
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jakub Juračka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Computer Science, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Petr Cápal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miroslav Valárik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| |
Collapse
|
7
|
Dreiseitl A. Powdery Mildew Resistance Phenotypes of Wheat Gene Bank Accessions. BIOLOGY 2021; 10:biology10090846. [PMID: 34571722 PMCID: PMC8470289 DOI: 10.3390/biology10090846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Powdery mildew (Blumeria graminis f. sp. tritici) is a common pathogen of bread wheat (Triticum aestivum L.), and genetic resistance is an effective and environmentally friendly method to reduce its adverse impact. The introgression of novel genes from wheat progenitors and related species can increase the diversity of disease resistance and accumulation of minor genes to improve the crop's resistance durability. To accomplish these two actions, host genotypes without major resistances should be preferably used. Therefore, the main aim of this study was to carry out seedling tests to detect such resistances in a set of wheat accessions from the Czech gene bank and to group the cultivars according to their phenotype. Ear progenies of 448 selected cultivars originating from 33 countries were inoculated with three isolates of the pathogen. Twenty-eight cultivars were heterogeneous, and 110 cultivars showed resistance to at least one isolate. Fifty-nine cultivars, mostly from Northwest Europe, were resistant to all three isolates were more than three times more frequently recorded in spring than in winter cultivars. Results will facilitate a rational and practical approach preferably using the set of cultivars without major resistances for both mentioned methods of breeding wheat cultivars resistant to powdery mildew.
Collapse
Affiliation(s)
- Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic
| |
Collapse
|
8
|
Xue S, Lu M, Hu S, Xu H, Ma Y, Lu N, Bai S, Gu A, Wan H, Li S. Characterization of PmHHXM, a New Broad-Spectrum Powdery Mildew Resistance Gene in Chinese Wheat Landrace Honghuaxiaomai. PLANT DISEASE 2021; 105:2089-2096. [PMID: 33417497 DOI: 10.1094/pdis-10-20-2296-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Powdery mildew, caused by fungal pathogen Blumeria graminis f. sp. tritici, is an agronomically important and widespread wheat disease causing severe yield losses. Deployment of broad-spectrum disease resistance genes is the preferred strategy to prevent this pathogen. Chinese wheat landrace Honghuaxiaomai (HHXM) was resistant to all 23 tested B. graminis f. sp. tritici isolates at the seedling stage. The F1, F2, and F2:3 progenies derived from the cross HHXM × Yangmai 158 were used in this study, and genetic analysis revealed that a single dominant gene, designated PmHHXM, conferred resistance to B. graminis f. sp. tritici isolate E09. Bulked segregant analysis and molecular mapping initially located PmHHXM to the distal region of chromosome 4AL. To fine map PmHHXM, we identified two critical recombinants from 592 F2 plants and delimited PmHHXM to a 0.18-cM Xkasp475200 to Xhnu552 interval covering 1.77 Mb, in which a number of disease resistance-related gene clusters were annotated. Comparative mapping of this interval revealed a perturbed synteny among Triticeae species. This study reports the new powdery mildew resistance gene PmHHXM, which seems different from three known quantitative trait loci/genes identified on chromosome 4AL and has significant values for further genetic improvement. Analysis of the polymorphisms of 13 cosegregating markers between HHXM and 170 modern wheat cultivars indicates that Xhnu227 and Xsts478700 developed here are ideal for marker-assisted introgression of this locus in wheat breeding.
Collapse
Affiliation(s)
- Shulin Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mingxue Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shanshan Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Yuyu Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Nan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Aoyang Gu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu 610066, Sichuan, China
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
9
|
Poretti M, Praz CR, Meile L, Kälin C, Schaefer LK, Schläfli M, Widrig V, Sanchez-Vallet A, Wicker T, Bourras S. Domestication of High-Copy Transposons Underlays the Wheat Small RNA Response to an Obligate Pathogen. Mol Biol Evol 2020; 37:839-848. [PMID: 31730193 PMCID: PMC7038664 DOI: 10.1093/molbev/msz272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant genomes have evolved several evolutionary mechanisms to tolerate and make use of transposable elements (TEs). Of these, transposon domestication into cis-regulatory and microRNA (miRNA) sequences is proposed to contribute to abiotic/biotic stress adaptation in plants. The wheat genome is derived at 85% from TEs, and contains thousands of miniature inverted-repeat transposable elements (MITEs), whose sequences are particularly prone for domestication into miRNA precursors. In this study, we investigate the contribution of TEs to the wheat small RNA immune response to the lineage-specific, obligate powdery mildew pathogen. We show that MITEs of the Mariner superfamily contribute the largest diversity of miRNAs to the wheat immune response. In particular, MITE precursors of miRNAs are wide-spread over the wheat genome, and highly conserved copies are found in the Lr34 and QPm.tut-4A mildew resistance loci. Our work suggests that transposon domestication is an important evolutionary force driving miRNA functional innovation in wheat immunity.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Coraline Rosalie Praz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Carol Kälin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Michael Schläfli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Salim Bourras
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Development of SNP, KASP, and SSR Markers by BSR-Seq Technology for Saturation of Genetic Linkage Map and Efficient Detection of Wheat Powdery Mildew Resistance Gene Pm61. Int J Mol Sci 2019; 20:ijms20030750. [PMID: 30754626 PMCID: PMC6387370 DOI: 10.3390/ijms20030750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
The gene Pm61 that confers powdery mildew resistance has been previously identified on chromosome arm 4AL in Chinese wheat landrace Xuxusanyuehuang (XXSYH). To facilitate the use of Pm61 in breeding practices, the bulked segregant analysis-RNA-Seq (BSR-Seq) analysis, in combination with the information on the Chinese Spring reference genome sequence, was performed in the F2:3 mapping population of XXSYH × Zhongzuo 9504. Two single nucleotide polymorphism (SNP), two Kompetitive Allele Specific PCR (KASP), and six simple sequence repeat (SSR) markers, together with previously identified polymorphic markers, saturated the genetic linkage map for Pm61, especially in the proximal side of the target gene that was short of gene-linked markers. In the newly established genetic linkage map, Pm61 was located in a 0.71 cM genetic interval and can be detected in a high throughput scale by the KASP markers Xicsk8 and Xicsk13 or by the standard PCR-based markers Xicscx497 and Xicsx538. The newly saturated genetic linkage map will be useful in molecular marker assisted-selection of Pm61 in breeding for disease resistant cultivar and in its map-based cloning.
Collapse
|