1
|
Huff M, Hulse-Kemp AM, Scheffler BE, Youngblood RC, Simpson SA, Babiker E, Staton M. Long-read, chromosome-scale assembly of Vitis rotundifolia cv. Carlos and its unique resistance to Xylella fastidiosa subsp. fastidiosa. BMC Genomics 2023; 24:409. [PMID: 37474911 PMCID: PMC10357881 DOI: 10.1186/s12864-023-09514-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Muscadine grape (Vitis rotundifolia) is resistant to many of the pathogens that negatively impact the production of common grape (V. vinifera), including the bacterial pathogen Xylella fastidiosa subsp. fastidiosa (Xfsf), which causes Pierce's Disease (PD). Previous studies in common grape have indicated Xfsf delays host immune response with a complex O-chain antigen produced by the wzy gene. Muscadine cultivars range from tolerant to completely resistant to Xfsf, but the mechanism is unknown. RESULTS We assembled and annotated a new, long-read genome assembly for 'Carlos', a cultivar of muscadine that exhibits tolerance, to build upon the existing genetic resources available for muscadine. We used these resources to construct an initial pan-genome for three cultivars of muscadine and one cultivar of common grape. This pan-genome contains a total of 34,970 synteny-constrained entries containing genes of similar structure. Comparison of resistance gene content between the 'Carlos' and common grape genomes indicates an expansion of resistance (R) genes in 'Carlos.' We further identified genes involved in Xfsf response by transcriptome sequencing 'Carlos' plants inoculated with Xfsf. We observed 234 differentially expressed genes with functions related to lipid catabolism, oxidation-reduction signaling, and abscisic acid (ABA) signaling as well as seven R genes. Leveraging public data from previous experiments of common grape inoculated with Xfsf, we determined that most differentially expressed genes in the muscadine response were not found in common grape, and three of the R genes identified as differentially expressed in muscadine do not have an ortholog in the common grape genome. CONCLUSIONS Our results support the utility of a pan-genome approach to identify candidate genes for traits of interest, particularly disease resistance to Xfsf, within and between muscadine and common grape.
Collapse
Affiliation(s)
- Matthew Huff
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA-ARS, Raleigh, NC, 27606, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS, 39762, USA
| | - Sheron A Simpson
- Genomics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ebrahiem Babiker
- USDA-ARS Thad Cochran Southern Horticultural Laboratory, Poplarville, MS, 39470, USA.
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Vervalle JA, Costantini L, Lorenzi S, Pindo M, Mora R, Bolognesi G, Marini M, Lashbrooke JG, Tobutt KR, Vivier MA, Roodt-Wilding R, Grando MS, Bellin D. A high-density integrated map for grapevine based on three mapping populations genotyped by the Vitis18K SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4371-4390. [PMID: 36271055 PMCID: PMC9734222 DOI: 10.1007/s00122-022-04225-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We present a high-density integrated map for grapevine, allowing refinement and improved understanding of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping. The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the well-known wine cultivars 'Cabernet Sauvignon', 'Corvina' and 'Rhine Riesling', the lesser-known wine variety 'Deckrot', and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 0.74 to 0.99 cM were developed. These maps show high correlations (0.9965-0.9971) with the reference assembly, containing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization and the dissection of complex traits.
Collapse
Affiliation(s)
- Jessica A Vervalle
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Riccardo Mora
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giada Bolognesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Justin G Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ken R Tobutt
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
3
|
Lytkin K, Nosulchak V, Agakhanov M, Matveikina E, Lushchay E, Karzhaev D, Raines E, Vasylyk I, Rybachenko N, Grigoreva E, Volkov V, Volynkin V, Gentzbittel L, Potokina E. Development of a High-Density Genetic Map for Muscadine Grape Using a Mapping Population from Selfing of the Perfect-Flowered Vine 'Dixie'. PLANTS (BASEL, SWITZERLAND) 2022; 11:3231. [PMID: 36501271 PMCID: PMC9738875 DOI: 10.3390/plants11233231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Intraspecific diversity of the immune grape Muscadinia rotundifolia Michaux. can serve as a rich source of valuable resistance loci to the most widespread pathogens and pests of grapevine. While only one Run1/Rpg1 resistance locus has been introgressed from M. rotundifolia to the Vitis vinifera gene pool, a number of other genes conferring resistance to powdery mildew and downy mildew have been identified in various Muscadinia cultivars. A larger introduction of Muscadinia varieties to the European continent would greatly facilitate experiments of interspecific crosses as well as stimulate biotechnological efforts to overcome the main barrier to F1 fertility caused by the differences in chromosome number. For the successful introduction of Muscadinia into the new European environment, it is necessary to overcome the difficulties associated with the physiological characteristics of the species, such as insufficient cold tolerance and very late fruit ripening. To facilitate the further discovery of valuable loci in Muscadinia and their transfer to grapevine breeding programs, we constructed a high-density linkage map using an S1 mapping population obtained from the self-pollination of M. rotundifolia cv. Dixie maintained on the southern coast of Crimea. Using ddRADseq, 3730 SNPs were ordered across 20 linkage groups spanning 2753.6 cM of the total map length. No segregation in resistance to diseases and pests was observed among the 'Dixie' S1 population, suggesting the presence of homozygous non-segregating resistant loci in the genetic background of 'Dixie'. Markers with high segregation distortion showed a bias towards chromosomal intervals on linkage groups 10 and 20, where loci affecting the survival of 'Dixie' S1 progeny may be localized. QTLs with significant additive and dominance effects were discovered on LG14 and LG18, affecting the morphological traits associated with the vigor of growth and adaptability of young Muscadinia vines in the conditions of Crimea.
Collapse
Affiliation(s)
- Kirill Lytkin
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Vasily Nosulchak
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190031, Russia
| | - Magamedgusein Agakhanov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg 190031, Russia
| | - Elena Matveikina
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Ekaterina Lushchay
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Dmitry Karzhaev
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Evgenii Raines
- Information Technologies and Programming Faculty, ITMO University, St. Petersburg 197101, Russia
| | - Irina Vasylyk
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Nataliya Rybachenko
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Elizaveta Grigoreva
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | - Vladimir Volkov
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| | - Vladimir Volynkin
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
| | | | - Elena Potokina
- All-Russian National Research Institute of Viticulture and Winemaking ‘Magarach’ RAS, Yalta 298600, Russia
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg 194021, Russia
| |
Collapse
|
4
|
Ismail A, Gajjar P, Park M, Mahboob A, Tsolova V, Subramanian J, Darwish AG, El-Sharkawy I. A recessive mutation in muscadine grapes causes berry color-loss without influencing anthocyanin pathway. Commun Biol 2022; 5:1012. [PMID: 36153380 PMCID: PMC9509324 DOI: 10.1038/s42003-022-04001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Anthocyanins, a major class of flavonoids, are important pigments of grape berries. Despite the recent discovery of the genetic cause underlying the loss of color, the metabolomic and molecular responses are unknown. Anthocyanin quantification among diverse berry color muscadines suggests that all genotypes could produce adequate anthocyanin quantities, irrespective of berry color. Transcriptome profiling of contrasting color muscadine genotypes proposes a potential deficiency that occurs within the anthocyanin transport and/or degradation mechanisms and might cause unpigmented berries. Genome-wide association studies highlighted a region on chromosome-4, comprising several genes encoding glutathione S-transferases involved in anthocyanin transport. Sequence comparison among genotypes reveals the presence of two GST4b alleles that differ by substituting the conserved amino acid residue Pro171-to-Leu. Molecular dynamics simulations demonstrate that GST4b2–Leu171 encodes an inactive protein due to modifications within the H-binding site. Population genotyping suggests the recessive inheritance of the unpigmented trait with a GST4b2/2 homozygous. A model defining colorless muscadines’ response to the mutation stimulus, avoiding the impact of trapped anthocyanins within the cytoplasm is established. Transcriptome profiling and mutational analysis suggest a potential deficiency in anthocyanin transport by glutathione S-transferases and/or degradation mechanisms that might cause unpigmented berries.
Collapse
|
5
|
Chang Y, Ahlawat YK, Gu T, Sarkhosh A, Liu T. Transcriptional profiling of two muscadine grape cultivars "Carlos" and "Noble" to reveal new genes, gene regulatory networks, and pathways that involved in grape berry ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:949383. [PMID: 36061784 PMCID: PMC9435441 DOI: 10.3389/fpls.2022.949383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In commercial fruit production, synchronized ripening and stable shelf life are important properties. The loosely clustered or non-bunching muscadine grape has unrealized potential as a disease-resistant cash crop, but requires repeated hand harvesting due to its unsynchronized or long or heterogeneous maturation period. Genomic research can be used to identify the developmental and environmental factors that control fruit ripening and postharvest quality. This study coupled the morphological, biochemical, and genetic variations between "Carlos" and "Noble" muscadine grape cultivars with RNA-sequencing analysis during berry maturation. The levels of antioxidants, anthocyanins, and titratable acids varied between the two cultivars during the ripening process. We also identified new genes, pathways, and regulatory networks that modulated berry ripening in muscadine grape. These findings may help develop a large-scale database of the genetic factors of muscadine grape ripening and postharvest profiles and allow the discovery of the factors underlying the ripeness heterogeneity at harvest. These genetic resources may allow us to combine applied and basic research methods in breeding to improve table and wine grape ripening uniformity, quality, stress tolerance, and postharvest handling and storage.
Collapse
Affiliation(s)
- Yuru Chang
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Yogesh Kumar Ahlawat
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Ali Sarkhosh
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Tie Liu
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Varanasi A, Worthington M, Nelson L, Brown A, Chizk TM, Threlfall R, Howard L, Conner P, Figueroa-Balderas R, Massonnet M, Cantu D, Clark JR. Glutathione S-transferase: a candidate gene for berry color in muscadine grapes (Vitis rotundifolia). G3 (BETHESDA, MD.) 2022; 12:6550507. [PMID: 35302606 PMCID: PMC9073687 DOI: 10.1093/g3journal/jkac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Muscadine grapes (Vitis rotundifolia Michx.) are a specialty crop cultivated in the southern United States. Muscadines (2n = 40) belong to the Muscadinia subgenus of Vitis, while other cultivated grape species belong to the subgenus Euvitis (2n = 38). The muscadine berry color locus was mapped to a 0.8 Mbp region syntenic with chromosome 4 of Vitis vinifera. In this study, we identified glutathione S-transferase4 as a likely candidate gene for anthocyanin transport within the berry color locus. PCR and Kompetitive allele-specific PCR genotyping identified a single intragenic SNP (C/T) marker corresponding to a proline to leucine mutation within the muscadine glutathione S-transferase4 (VrGST4) that differentiated black (CC and CT) from bronze (TT) muscadines in 126 breeding selections, 76 cultivars, and 359 progeny from 3 mapping populations. Anthocyanin profiling on a subset of the progeny indicated a dominant VrGST4 action. VrGST4 was expressed in skins of both black and bronze muscadines at similar levels. While nonsynonymous polymorphisms between black and bronze muscadines were discovered in VrGSTF12, another Type I GST-coding gene in the muscadine color locus, this gene was ruled out as a possible candidate for berry color because RNA sequencing indicated it is not expressed in berry skins at véraison from black or bronze genotypes. These results suggest that the bronze phenotype in muscadines is regulated by a mechanism distinct from the MybA gene cluster responsible for berry color variation in Vitis vinifera.
Collapse
Affiliation(s)
- Aruna Varanasi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Lacy Nelson
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Autumn Brown
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Thomas Mason Chizk
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Renee Threlfall
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Patrick Conner
- Department of Horticulture, University of Georgia, Tifton, GA 31793, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - Mélanie Massonnet
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture & Enology, University of California, Davis, Davis, CA 95616, USA
| | - John R Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Buck K, Worthington M. Genetic Diversity of Wild and Cultivated Muscadine Grapes ( Vitis rotundifolia Michx.). FRONTIERS IN PLANT SCIENCE 2022; 13:852130. [PMID: 35419015 PMCID: PMC8996184 DOI: 10.3389/fpls.2022.852130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The muscadine (Vitis rotundifolia syn. Muscadinia rotundifolia) is an American grape species native to the southeastern United States that has been cultivated for centuries. Muscadines are one of three grape species in subgenus Muscadinia with a chromosome number of 2n = 40 (V. rotundifolia, Vitis munsoniana, and Vitis popenoei), making them genetically distinct from the European wine and table grape (Vitis vinifera) and other species in subgenus Euvitis. Crop improvement efforts have been continuous since the late 19th century, yet the germplasm that served as the foundation for early muscadine breeding efforts was sourced from a relatively small portion of their native range, mostly in the coastal plains of North Carolina. This study used the rhAmpSeq Vitis core panel haplotype markers to genotype 194 Muscadinia accessions from five cultivated populations and 15 wild populations collected across their native range. Wild populations from the western half of the native range were generally less genetically differentiated than hypothesized, but were genetically distinct from the material used in both past and present breeding efforts. One population collected from coastal North Carolina grouped closely with V. munsoniana accessions despite being well outside the reported range for that species. Principal coordinate and structure analyses revealed three main groups within the 194 accessions: one for cultivated material, one for wild V. rotundifolia, and one for V. munsoniana and V. popenoei. At K = 5, structure results showed that more recent muscadine cultivars are further differentiated from wild accessions and varieties. These analyses confirmed our hypothesis that muscadine cultivars are genetically differentiated from their wild counterparts. This study also showed that genetic diversity in V. rotundifolia is not equally distributed across its native range and that the limited number of genotypes used in crop improvement efforts has not fully utilized the genetic diversity within the species.
Collapse
Affiliation(s)
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Alahakoon D, Fennell A, Helget Z, Bates T, Karn A, Manns D, Mansfield AK, Reisch BI, Sacks G, Sun Q, Zou C, Cadle-Davidson L, Londo JP. Berry Anthocyanin, Acid, and Volatile Trait Analyses in a Grapevine-Interspecific F2 Population Using an Integrated GBS and rhAmpSeq Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:696. [PMID: 35270166 PMCID: PMC8912348 DOI: 10.3390/plants11050696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Increased map density and transferability of markers are essential for the genetic analysis of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2) that was derived by selfing a single F1 from a Vitis riparia x 'Seyval blanc' cross. The resultant map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera 'PN40024' genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7% accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6 with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak markers.
Collapse
Affiliation(s)
- Dilmini Alahakoon
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Anne Fennell
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Zachary Helget
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (D.A.); (Z.H.)
| | - Terry Bates
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - David Manns
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Anna Katharine Mansfield
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (D.M.); (A.K.M.)
| | - Bruce I. Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| | - Gavin Sacks
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (T.B.); (G.S.)
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | - Cheng Zou
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, NY 14853, USA; (Q.S.); (C.Z.)
| | | | - Jason P. Londo
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY 14456, USA; (A.K.); (B.I.R.); (J.P.L.)
| |
Collapse
|
9
|
Cui Y, Fan B, Xu X, Sheng S, Xu Y, Wang X. A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia. Front Genet 2022; 12:802738. [PMID: 35132310 PMCID: PMC8817757 DOI: 10.3389/fgene.2021.802738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Baolian Fan
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Xu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
10
|
Park M, Vera D, Kambrianda D, Gajjar P, Cadle-Davidson L, Tsolova V, El-Sharkawy I. Chromosome-level genome sequence assembly and genome-wide association study of Muscadinia rotundifolia reveal the genetics of 12 berry-related traits. HORTICULTURE RESEARCH 2022; 9:uhab011. [PMID: 35040982 PMCID: PMC8769032 DOI: 10.1093/hr/uhab011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 05/29/2023]
Abstract
Vitis has two subgenera: Euvitis, which includes commercially important Vitis vinifera and interspecific hybrid cultivars, and Muscadinia. Of note, the market for Muscadinia grapes remains small, and only Muscadinia rotundifolia is cultivated as a commercial crop. To establish a basis for the study of Muscadinia species, we generated chromosome-level whole-genome sequences of Muscadinia rotundifolia cv. Noble. A total of 393.8 Mb of sequences were assembled from 20 haploid chromosomes, and 26 394 coding genes were identified from the sequences. Comparative analysis with the genome sequence of V. vinifera revealed a smaller size of the M. rotundifolia genome but highly conserved gene synteny. A genome-wide association study of 12 Muscadinia berry-related traits was performed among 356 individuals from breeding populations of M. rotundifolia. For the transferability of markers between Euvitis and Muscadinia, we used 2000 core genome rhAmpSeq markers developed to allow marker transferability across Euvitis species. A total of 1599 (80%) rhAmpSeq markers returned data in Muscadinia. From the GWAS analyses, we identified a total of 52 quantitative trait nucleotides (QTNs) associated with the 12 berry-related traits. The transferable markers enabled the direct comparison of the QTNs with previously reported results. The whole-genome sequences along with the GWAS results provide a new basis for the extensive study of Muscadinia species.
Collapse
Affiliation(s)
- Minkyu Park
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Daniel Vera
- Silico LLC, 23 Essex Street #761119, Melrose, MA 02176, USA
| | - Devaiah Kambrianda
- Plant and Soil Sciences, Southern University Agricultural Research and Extension Center, 181 B. A. Little Dr., Baton Rouge, LA 70813, USA
| | - Pranavkumar Gajjar
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Lance Cadle-Davidson
- USDA-ARS, Grape Genetics Research Unit, 630 West W North St., Geneva, NY, 14456, USA
| | - Violeta Tsolova
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, 6361 Mahan Dr., Tallahassee, FL 32308, USA
| |
Collapse
|
11
|
Men Y, Li JR, Shen HL, Yang YM, Fan ST, Li K, Guo YS, Lin H, Liu ZD, Guo XW. VaAPRT3 Gene is Associated With Sex Determination in Vitis amurensis. Front Genet 2022; 12:727260. [PMID: 35003203 PMCID: PMC8733387 DOI: 10.3389/fgene.2021.727260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
In the past decade, progress has been made in sex determination mechanism in Vitis. However, genes responsible for sexual differentiation and its mechanism in V. amurensis remain unknown. Here, we identify a sex determination candidate gene coding adenine phosphoribosyl transferase 3 (VaAPRT3) in V. amurensis. Cloning and sequencing of the VaAPRT3 gene allowed us to develop a molecular marker able to discriminate female individuals from males or hermaphrodites based on a 22-bp InDel. Gene expression and endogenous cytokinin content analysis revealed that the VaAPRT3 gene is involved in sex determination or, to be precise, in female organ differentiation, through regulating cytokinin metabolism in V. amurensis. This study enlarged the understanding of sex determination mechanism in the genus Vitis, and the sex marker could be used as a helpful tool for sexual identification in breeding programs as well as in investigation and collection of V. amurensis germplasms.
Collapse
Affiliation(s)
- Yan Men
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ji-Rui Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hai-Lin Shen
- Institute of Pomology, Jilin Academy of Agricultural Science, Gongzhuling, China
| | - Yi-Ming Yang
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shu-Tian Fan
- Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yin-Shan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhen-Dong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiu-Wu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Cochetel N, Minio A, Massonnet M, Vondras AM, Figueroa-Balderas R, Cantu D. Diploid chromosome-scale assembly of the Muscadinia rotundifolia genome supports chromosome fusion and disease resistance gene expansion during Vitis and Muscadinia divergence. G3-GENES GENOMES GENETICS 2021; 11:6129119. [PMID: 33824960 PMCID: PMC8049426 DOI: 10.1093/g3journal/jkab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Muscadinia rotundifolia, the muscadine grape, has been cultivated for centuries in the southeastern United States. M. rotundifolia is resistant to many of the pathogens that detrimentally affect Vitis vinifera, the grape species commonly used for winemaking. For this reason, M. rotundifolia is a valuable genetic resource for breeding. Single-molecule real-time reads were combined with optical maps to reconstruct the two haplotypes of each of the 20 M. rotundifolia cv. Trayshed chromosomes. The completeness and accuracy of the assembly were confirmed using a high-density linkage map. Protein-coding genes were annotated using an integrated and comprehensive approach. This included using full-length cDNA sequencing (Iso-Seq) to improve gene structure and hypothetical spliced variant predictions. Our data strongly support that Muscadinia chromosomes 7 and 20 are fused in Vitis and pinpoint the location of the fusion in Cabernet Sauvignon and PN40024 chromosome 7. Disease-related gene numbers in Trayshed and Cabernet Sauvignon were similar, but their clustering locations were different. A dramatic expansion of the Toll/Interleukin-1 Receptor-like Nucleotide-Binding Site Leucine-Rich Repeat (TIR-NBS-LRR) class was detected on Trayshed chromosome 12 at the Resistance to Uncinula necator 1 (RUN1)/Resistance to Plasmopara viticola 1 (RPV1) locus, which confers strong dominant resistance to powdery and downy mildews. A genome browser, annotation, and Blast tool for Trayshed are available at www.grapegenomics.com.
Collapse
Affiliation(s)
- Noé Cochetel
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Wang H, Yan A, Sun L, Zhang G, Wang X, Ren J, Xu H. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC PLANT BIOLOGY 2020; 20:411. [PMID: 32883214 PMCID: PMC7470616 DOI: 10.1186/s12870-020-02630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroma, berry firmness and berry shape are three main quality traits in table grape production, and also the important target traits in grapevine breeding. However, the information about their genetic mechanisms is limited, which results in low accuracy and efficiency of quality breeding in grapevine. Mapping and isolation of quantitative trait locus (QTLs) based on the construction of genetic linkage map is a powerful approach to decipher the genetic determinants of complex quantitative traits. RESULTS In the present work, a final integrated map consisting of 3411 SLAF markers on 19 linkage groups (LGs) with an average distance of 0.98 cM between adjacent markers was generated using the specific length amplified fragment sequencing (SLAF-seq) technique. A total of 9 significant stable QTLs for Muscat flavor, berry firmness and berry shape were identified on two linkage groups among the hybrids analyzed over three consecutive years from 2016 to 2018. Notably, new stable QTLs for berry firmness and berry shape were found on LG 8 respectively for the first time. Based on biological function and expression profiles of candidate genes in the major QTL regions, 3 genes (VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350) related to berry firmness and 3 genes (VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200) linked to berry shape were highlighted. Overexpression of VIT_08s0032g01110 in transgenic Arabidopsis plants caused the change of pod shape. CONCLUSIONS A new high-density genetic map with total 3411 markers was constructed with SLAF-seq technique, and thus enabled the detection of narrow interval QTLs for relevant traits in grapevine. VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350 were found to be related to berry firmness, while VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200 were linked to berry shape.
Collapse
Affiliation(s)
- Huiling Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ailing Yan
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P.R. China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Guojun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Xiaoyue Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiancheng Ren
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Haiying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China.
| |
Collapse
|
14
|
Genetic Structure and Relationships among Wild and Cultivated Grapevines from Central Europe and Part of the Western Balkan Peninsula. Genes (Basel) 2020; 11:genes11090962. [PMID: 32825336 PMCID: PMC7563143 DOI: 10.3390/genes11090962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
The genetic diversity and relationship between wild (Vitis vinifera L. subsp. sylvestris (Gmel.) Hegi and cultivated (V. vinifera L. subsp. vinifera) grapevine in the western Balkan region and Central Europe have not been studied together previously, although this area has a rich viticultural past. Here, we studied wild grapevine populations sampled from their natural habitats in several countries of the western Balkan region and Central Europe. Their genetic diversity and structure were compared to cultivars that are traditionally in use in this region. A sample set of 243 accessions was genotyped at 20 nuclear microsatellite loci, including 167 sylvestris and 76 diverse vinifera cultivars. The genetic diversity of the wild grapevines was lower than that of cultivars by all genetic parameters. Both hierarchical and nonhierarchical clustering methods differentiated two main groups, indicating clear separation between wild and cultivated vines but also revealed clear gene flow between the cultivated and wild gene pools through overlaps and admixed ancestry values in the graphs. There was greater affinity to the wild grapes in Central European cultivars than in Balkan cultivars. Fine arrangement of the structure among cultivated grapevines showed differentiation among Central European and Balkan cultivars. These results confirm the divergence of wild grapes from vinifera and highlight the "crossroad" role of the western Balkan peninsula in the broader context of European viticulture.
Collapse
|
15
|
Zecca G, Labra M, Grassi F. Untangling the Evolution of American Wild Grapes: Admixed Species and How to Find Them. FRONTIERS IN PLANT SCIENCE 2020; 10:1814. [PMID: 32117355 PMCID: PMC7025467 DOI: 10.3389/fpls.2019.01814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 05/26/2023]
Abstract
Natural hybridization and introgression are central evolutionary processes in grape genus (Vitis). On the other hand, the interspecific relationships among grapes, the directionality of the inferred admixture events and the parents of hybrids are not yet completely clarified. The grapes are economically important crops characterized by tendrils used to climb on the trees and the fruits harvested by humans especially for the consumption or to produce wines and liquors. The American grapes (ca. 30 species) are recognized as an important resource because they show biotic and abiotic resistances. We analyzed 3,885 genome-wide SNPs from 31 American Vitis species using the TreeMix software combined with the f3 and f4 tests. This approach allowed us to infer phylogenetic relationships and to explore the natural admixture among taxa. Our results confirmed the existence of all hybrid species recognized in literature (V. x champinii, V. x doaniana, V. x novae-angliae, and V. x slavinii), identifying their most likely parent species and provided evidence of additional gene flows between distantly related species. We discuss our results to elucidate the origin of American wild grapes, demonstrating that admixture events have ancient origins. We observe that gene flows have involved taxa currently spread through the southern regions of North America. Consequently, we propose that glacial cycles could have triggered the contact between interfertile taxa promoting local hybridization events. We conclude by discussing the phylogenetic implications of our findings and showing that TreeMix can provide novel insights into the evolutionary history of grapes.
Collapse
Affiliation(s)
- Giovanni Zecca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | | |
Collapse
|
16
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
17
|
Zou C, Karn A, Reisch B, Nguyen A, Sun Y, Bao Y, Campbell MS, Church D, Williams S, Xu X, Ledbetter CA, Patel S, Fennell A, Glaubitz JC, Clark M, Ware D, Londo JP, Sun Q, Cadle-Davidson L. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nat Commun 2020; 11:413. [PMID: 31964885 PMCID: PMC6972940 DOI: 10.1038/s41467-019-14280-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Transferable DNA markers are essential for breeding and genetics. Grapevine (Vitis) breeders utilize disease resistance alleles from congeneric species ~20 million years divergent, but existing Vitis marker platforms have cross-species transfer rates as low as 2%. Here, we apply a marker strategy targeting the inferred Vitis core genome. Incorporating seven linked-read de novo assemblies and three existing assemblies, the Vitis collinear core genome is estimated to converge at 39.8 Mb (8.67% of the genome). Adding shotgun genome sequences from 40 accessions enables identification of conserved core PCR primer binding sites flanking polymorphic haplotypes with high information content. From these target regions, we develop 2,000 rhAmpSeq markers as a PCR multiplex and validate the panel in four biparental populations spanning the diversity of the Vitis genus, showing transferability increases to 91.9%. This marker development strategy should be widely applicable for genetic studies in many taxa, particularly those ~20 million years divergent.
Collapse
Affiliation(s)
- Cheng Zou
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Avinash Karn
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Bruce Reisch
- School of Integrative Plant Science, Cornell AgriTech, Cornell University, Geneva, NY, 14456, USA
| | - Allen Nguyen
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | - Yongming Sun
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | - Yun Bao
- Integrated DNA Technologies, Redwood City, CA, 94063, USA
| | | | | | | | - Xia Xu
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Craig A Ledbetter
- USDA-ARS, Crop Diseases, Pests and Genetics Research, Parlier, CA, 93648, USA
| | - Sagar Patel
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Anne Fennell
- Agronomy, Horticulture and Plant Science Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Jeffrey C Glaubitz
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew Clark
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jason P Londo
- USDA-ARS, Grape Genetics Research Unit, Geneva, NY, 14456, USA
| | - Qi Sun
- BRC Bioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
18
|
Coito JL, Silva HG, Ramos MJ, Cunha J, Eiras-Dias J, Amâncio S, Costa MM, Rocheta M. Vitis flower types: from the wild to crop plants. PeerJ 2019; 7:e7879. [PMID: 31737441 PMCID: PMC6855205 DOI: 10.7717/peerj.7879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/12/2019] [Indexed: 01/27/2023] Open
Abstract
Vitis vinifera can be divided into two subspecies, V. vinifera subsp. vinifera, one of the most important agricultural crops in the world, and its wild ancestor, V. vinifera subsp. sylvestris. Three flower types can be observed: hermaphrodite and female (on some varieties) in vinifera, and male or female flowers in sylvestris. It is assumed that the different flower types in the wild ancestor arose through specific floral patterns of organ abortion. A considerable amount of data about the diversity of sexual systems in grapevines has been collected over the past century. Several grapevine breeding studies led to the hypothesis that dioecy in vinifera is derived from a hermaphrodite ancestor and could be controlled by either, one or two linked genetic determinants following Mendelian inherence. More recently, experiments using molecular approaches suggested that these loci were located in a specific region of the chromosome 2 of vinifera. Based on the works published so far, its seems evident that a putative sex locus is present in chromosome 2. However, it is still not fully elucidated whether flower types are regulated by two linked loci or by one locus with three alleles. Nevertheless, several genes could contribute to sex determination in grapevine. This review presents the results from early studies, combined with the recent molecular approaches, which may contribute to the design of new experiments towards a better understanding of the sex inheritance in grapevine.
Collapse
Affiliation(s)
- João L. Coito
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Helena G. Silva
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Miguel J.N. Ramos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta d’Almoinha, Dois Portos, Portugal
| | - José Eiras-Dias
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta d’Almoinha, Dois Portos, Portugal
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M.R. Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Margarida Rocheta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|