1
|
Chen X, Shao Y, Jiang Y, Seung D, Guzmán C, Xu Q, Zhang Y, Chen Q, Tang H, Qi P, Deng M, Ma J, Chen G, Wang J, Wei Y, Zheng Y, Jiang Q. Reducing amylose content in wheat (Triticum aestivum L.) using a novel Wx-D1 null allele generated by chemical mutagenesis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2332-2341. [PMID: 39503064 DOI: 10.1002/jsfa.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND Amylose has a major influence over starch properties and end-use quality in wheat. The granule-bound starch synthase I, encoded by Wx-1, is the single enzyme responsible for amylose synthesis. Natural null mutants of Wx-1 appear at extremely low frequencies, particularly in the Wx-D1 locus, where only four spontaneous null variants have been identified, with different geographic origins. The current study identified an induced Wx-D1 null mutant (M4-9484) from the M4 generation of an ethyl methanesulfonate-mutagenized population of wheat cv. 'SM126'. RESULTS The sequencing showed that the complete Wx-D1 ORF sequences of 'SM126' and M4-9484 were 2862 bp long and that there was one SNP mutation between them. The mutation was located at the RNA splice site within the junction of exon 8 and intron 8, which led to abnormal transcription of Wx-D1, with five different aberrant transcripts being identified in the mutant. The Wx-D1 null allele resulted in amylose and total starch content being decreased in M4-9484 in comparison with the wild-type 'SM126', with higher swelling capacity and being fully pasted at higher temperatures than the wild-type parent. CONCLUSION The mutation of the Wx-D1 null gene affects the formation of amylose directly, resulting in significantly altered starch properties. This discovery offers valuable insights for enhancing wheat starch quality and contributes to the diversification of starch characteristics. It also deepens our understanding of the genetic and molecular mechanisms underlying amylose synthesis, thereby supporting breeding programs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yongchun Shao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
3
|
Cheng W, Hong C, Zeng F, Liu N, Gao H. Sequence variations affect the 5' splice site selection of plant introns. PLANT PHYSIOLOGY 2023; 193:1281-1296. [PMID: 37394939 DOI: 10.1093/plphys/kiad375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/04/2023]
Abstract
Introns are noncoding sequences spliced out of pre-mRNAs by the spliceosome to produce mature mRNAs. The 5' ends of introns mostly begin with GU and have a conserved sequence motif of AG/GUAAGU that could base-pair with the core sequence of U1 snRNA of the spliceosome. Intriguingly, ∼ 1% of introns in various eukaryotic species begin with GC. This occurrence could cause misannotation of genes; however, the underlying splicing mechanism is unclear. We analyzed the sequences around the intron 5' splice site (ss) in Arabidopsis (Arabidopsis thaliana) and found sequences at the GC intron ss are much more stringent than those of GT introns. Mutational analysis at various positions of the intron 5' ss revealed that although mutations impair base pairing, different mutations at the same site can have different effects, suggesting that steric hindrance also affects splicing. Moreover, mutations of 5' ss often activate a hidden ss nearby. Our data suggest that the 5' ss is selected via a competition between the major ss and the nearby minor ss. This work not only provides insights into the splicing mechanism of intron 5' ss but also improves the accuracy of gene annotation and the study of the evolution of intron 5' ss.
Collapse
Affiliation(s)
- Wenzhen Cheng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Nan Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Chen R, Yang C, Gao H, Shi C, Zhang Z, Lu G, Shen X, Tang Y, Li F, Lu Y, Ouyang B. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3455-3468. [PMID: 35963933 DOI: 10.1007/s00122-022-04192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.
Collapse
Affiliation(s)
- Rong Chen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunmei Shi
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiying Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangyu Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Shen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Tang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Feng X, Rahman MM, Hu Q, Wang B, Karim H, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1003333. [PMID: 36212333 PMCID: PMC9538149 DOI: 10.3389/fpls.2022.1003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Granule-bound starch synthase I (HvGBSSI) is encoded by the barley waxy (Wx-1) gene and is the sole enzyme in the synthesis of amylose. Here, a Wx-1 mutant was identified from an ethyl methane sulfonate (EMS)-mutagenized barley population. There were two single-base mutations G1086A and A2424G in Wx-1 in the mutant (M2-1105). The G1086A mutation is located at the 3' splicing receptor (AG) site of the fourth intron, resulting in an abnormal RNA splicing. The A2424G mutation was a synonymous mutation in the ninth intron. The pre-mRNA of Wx-1 was incorrectly spliced and transcribed into two abnormal transcripts. The type I transcript had a 6 bp deletion in the 5' of fifth exon, leading to a translated HvGBSSI protein lacking two amino acids with a decreased starch-binding capacity. In the type II transcript, the fourth intron was incorrectly cleaved and retained, resulting in the premature termination of the barley Wx-1 gene. The mutations in the Wx-1 decreased the enzymatic activity of the HvGBSSI enzyme and resulted in a decreased level in amylose content. This work sheds light on a new Wx-1 gene inaction mechanism.
Collapse
Affiliation(s)
- Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Md. Mostafijur Rahman
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Cordoba, Spain
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li Y, Karim H, Wang B, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. Regulation of Amylose Content by Single Mutations at an Active Site in the Wx-B1 Gene in a Tetraploid Wheat Mutant. Int J Mol Sci 2022; 23:ijms23158432. [PMID: 35955567 PMCID: PMC9368913 DOI: 10.3390/ijms23158432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/15/2023] Open
Abstract
The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.
Collapse
Affiliation(s)
- Yulong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071 Cordoba, Spain;
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK;
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (H.K.); (B.W.); (Q.X.); (Y.Z.); (H.T.); (Y.J.); (P.Q.); (M.D.); (J.M.); (J.L.); (J.W.); (G.C.); (X.L.); (Y.W.); (Y.Z.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-0958; Fax: +86-28-8265-0350
| |
Collapse
|
7
|
Zhang X, Karim H, Feng X, Lan J, Tang H, Guzmán C, Xu Q, Zhang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. A single base change at exon of Wx-A1 caused gene inactivation and starch properties modified in a wheat EMS mutant line. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2012-2022. [PMID: 34558070 DOI: 10.1002/jsfa.11540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuteng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Identification and molecular characterization of mutant line deficiency in three waxy proteins of common wheat (Triticum aestivum L.). Sci Rep 2021; 11:3510. [PMID: 33568721 PMCID: PMC7876011 DOI: 10.1038/s41598-021-82865-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Starch is the main component of wheat (Triticum aestivum L.) grain and a key factor in determining wheat processing quality. The Wx gene is the gene responsible for amylose synthesis. An ethyl methanesulfonate (EMS) mutagenized population was generated using common wheat cv. Gao 8901, a popular and high-quality cultivar in China. A waxy mutant (Wx-null) was isolated by screening M3 seeds with KI-I2 staining of endosperm starch. No obvious waxy proteins in Wx-null line were detected using Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). DNA sequencing revealed three SNPs and a 3-bp InDel in the first exon, and a 16-bp InDel at the junction region of the first Wx-A1 intron from the Wx-null line. Six SNPs were identified in Wx-B1 gene of Wx-null line compared to the wild-type Gao 8901, including four missense mutations. One nonsense mutation was found at position 857 in the fourth exon, which resulted in a premature stop codon. Expression levels of Wx genes were dramatically reduced in the Wx-null line. There were no detectable differences in granule size and morphology between Wx-null and wild-type, but the Wx-null line contained more B-type starch granules. The amylose content of the Wx-null line (0.22%) was remarkably lower compared to the wild-type Gao 8901 (24.71%). Total starch is also lower in the Wx-null line. The Wx-null line may provide a potential waxy material with high agronomic performance in wheat breeding programs.
Collapse
|
9
|
Lian X, Liu Y, Guo H, Fan Y, Wu J, Guo H, Jiao C, Tang Z, Zhang L, Fan Y, Gou Z, Zhang C, Li T, Zeng F. Ethyl methanesulfonate mutant library construction in Gossypium hirsutum L. for allotetraploid functional genomics and germplasm innovation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:858-868. [PMID: 32239588 DOI: 10.1111/tpj.14755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
As the gene pool is exposed to both strain on land resources and a lack of diversity in elite allotetraploid cotton, the acquisition and identification of novel alleles has taken on epic importance in facilitating cotton genetic improvement and functional genomics research. Ethyl methanesulfonate (EMS) is an excellent mutagen that induces genome-wide efficient mutations to activate the mutagenic potential of plants with many advantages. The present study established, determined and verified the experimental procedure suitable for EMS-based mutant library construction as the general reference guide in allotetraploid upland cotton. This optimized method and procedure are efficient, and abundant EMS mutant libraries (approximately 12 000) in allotetraploid cotton were successfully obtained. More than 20 mutant phenotypes were observed and screened, including phenotypes of the leaf, flower, fruit, fiber and plant architecture. Through the plants mutant library, high-throughput and high-resolution melting technology-based variation evaluation detected the EMS-induced site mutation. Additionally, based on overall genome-wide mutation analyses by re-sequencing and mutant library assessment, the examination results demonstrated the ideal quality of the cotton EMS-treated mutant library constructed in this study with appropriate high mutation density and saturated genome. What is more, the collection is composed of a broad repertoire of mutants, which is the valuable resource for basic genetic research and functional genomics underlying complex allotetraploid traits, as well as cotton breeding.
Collapse
Affiliation(s)
- Xin Lian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengzhi Jiao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhengmin Tang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Changyu Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|