1
|
Shi H, Qanmber G, Yang Z, Guo Y, Ma S, Shu S, Li Y, Lin Z, Li F, Liu Z. An AP2/ERF transcription factor GhERF109 negatively regulates plant growth and development in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112365. [PMID: 39710152 DOI: 10.1016/j.plantsci.2024.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear. In this study, we identified GhERF109, a nuclear-localized ERF, which showed significant expression differences between ZM24 and pag1 cotton. Heterologous overexpression of GhERF109 in Arabidopsis resulted in reduced plant height, shortened root length, and reduced silique lengths compared to wild-type (WT) plants. In contrast, silencing GhERF109 in cotton led to a significant increase in plant height due to the elongation of stem cells. Overexpression of GhERF109 in cotton also produced a compact plant type with a notable reduction in height. RNA-seq analysis of GhERF109-silenced plants revealed 4123 differentially expressed genes (DEGs), with many upregulated genes involved in auxin response, polar transport, cell expansion, cell cycle regulation, brassinolide (BL) biosynthesis, and very long-chain fatty acid (VLCFA) pathways. These findings suggest that GhERF109 integrates auxin and other signaling pathways to suppress plant growth, providing valuable genetic material for breeding programs to improve mechanized cotton harvesting.
Collapse
Affiliation(s)
- Huiyun Shi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Yuling Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Shuya Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Sheng Shu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yujun Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| | - Zhao Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
2
|
Xu X, Feng G, Li P, Yu S, Hao F, Nie G, Huang L, Zhang X. Genome-wide association analysis reveals the function of DgSAUR71 in plant height improvement. BMC PLANT BIOLOGY 2025; 25:240. [PMID: 39987023 PMCID: PMC11846171 DOI: 10.1186/s12870-025-06246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Orchardgrass (Dactylis glomerata L.) is one of the four most economically important forage grasses cultivated globally and serves as an excellent perennial forage with high ecological value. Plant height is a key determinant of both biomass and grain yield. While numerous genes regulating plant height have been identified in annual crops, no such genes have been reported for orchardgrass. RESULTS In this study, we analyzed the relationship between plant height and biomass yield in a natural population of 264 orchardgrass genotypes and found that a plant height of 90-110 cm contributed to the maximum biomass yield. Genome-wide association analysis (GWAS) identified 23 candidate loci associated with plant height, corresponding to 62 candidate genes. Among these, DgSAUR71, a member of the small auxin-up RNA (SAUR) gene family, emerged as a novel candidate gene associated with plant height. Functional analysis revealed that DgSAUR71 slightly reduced plant height in rice (Oryza sativa L.) and was involved in regulating plant height in orchardgrass. CONCLUSIONS This study demonstrates that plant height is an important contributor for optimizing biomass yield in orchardgrass, with an optimal range identified. DgSAUR71 was identified as a gene associated with plant height through GWAS and shown to negatively regulate plant height. These findings provide new insights into plant height regulation in orchardgrass and contribute to advancing crop height diversification research.
Collapse
Affiliation(s)
- Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuai Yu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feixiang Hao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Wang X, Kong F, Gao L, Shen G, Duan B, Wang Z, Xu D, Fan D, Deng Y, Han Z. Identification of QTLs for early maturity-related traits based on RIL population of two elite cotton cultivars. BMC PLANT BIOLOGY 2024; 24:1243. [PMID: 39716047 DOI: 10.1186/s12870-024-05947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Early-maturity cotton varieties have the potential to be cultivated in a wider geographical area, extending as far north as 46 °N in China, and confer to address the issue of competition for land between grain and cotton by reducing their whole growth period (WGP). Therefore, it is of great importance to develop cotton varieties with comprehensive early maturity and high yield following investigating the regulatory mechanism underlying early maturity and identifying early maturity-related genes. RESULTS In this study, 'SCRC19' and 'SCRC21', two excellent cultivars with significantly different WGP, along with their recombinant inbred lines (RILs) consisting of 150 individuals were re-sequenced, yielding 4,092,677 high-quality single nucleotide polymorphisms (SNPs) and 794 bin markers across 26 chromosomes. A genetic map spanning 2213.71 cM was constructed using the 794 bin markers. Based on this map, we identified a total of 78 early maturity-related QTLs, including 12 QTLs for WGP, 4 for SSP, 12 for SFP, 3 for FBP, 11 for NFFB, 8 for NFB, 16 for HNFFB and 12 for PH. Six QTL clusters, each containing more than four traits, were identified. One particular QTL cluster, which had the largest number of QTLs, ranged from 108.5 cM to 109 cM on Dt3, and contained 39 genes. Through functional analysis, we highlighted two early maturity-related candidates of GH_D03G1554 and GH_D03G1541, which were annotated as a BEL1-like homeodomain protein 8 and a homeobox-leucine zipper family protein, respectively. CONCLUSIONS We have identified a QTL cluster related to six early maturity-associated traits on Dt3. Through annotation of genes from candidate region, we have identified two candidate genes, GH_D03G1554 and GH_D03G1541, whose expression levels in 'SCRC21' were significantly higher than those in 'SCRC19' at different stages of flower bud development. These candidate genes provide new insights into the study of early-maturity mechanism and offer potential genetic improvement of cotton.
Collapse
Affiliation(s)
- Xiaoge Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Fanjin Kong
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Liying Gao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Guifang Shen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Bing Duan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Zongwen Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Dongdong Xu
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Degang Fan
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China
| | - Yongsheng Deng
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China.
| | - Zongfu Han
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250100, China.
| |
Collapse
|
4
|
Li C, Huang L, Huang Y, Kuang M, Wu Y, Ma Z, Fu X. Fine-mapping of a major QTL controlling plant height by BSA-seq and transcriptome sequencing in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:217. [PMID: 39249496 DOI: 10.1007/s00122-024-04714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
KEY MESSAGE GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating the GA signaling. Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and examination of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant height by regulating GA signaling.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China
| | - Longyu Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China
- Hainan Seed Industry Laboratory, Sanya, 572025, China
| | - Yiwen Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhen Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, 071000, China.
| | - Xiaoqiong Fu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
5
|
Ma J, Yang L, Dang Y, Shahzad K, Song J, Jia B, Wang L, Feng J, Wang N, Pei W, Wu M, Zhang X, Zhang J, Wu J, Yu J. Deciphering the dynamic expression network of fiber elongation and the functional role of the GhTUB5 gene for fiber length in cotton based on an introgression population of upland cotton. J Adv Res 2024:S2090-1232(24)00324-2. [PMID: 39106927 DOI: 10.1016/j.jare.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Interspecific introgression between Gossypium hirsutum and G. barbadense allows breeding cotton with outstanding fiber length (FL). However, the dynamic gene regulatory network of FL-related genes has not been characterized, and the functional mechanism through which the hub gene GhTUB5 mediates fiber elongation has yet to be determined. METHODS Coexpression analyses of 277 developing fiber transcriptomes integrated with QTL mapping using 250 introgression lines of different FL phenotypes were conducted to identify genes related to fiber elongation. The function of GhTUB5 was determined by ectopic expression of two TUB5 alleles in Arabidopsis and knockout of GhTUB5 in upland cotton. Yeast two-hybrid, split-luciferase and pull-down assays were conducted to screen for interacting proteins, and upstream genes were identified by yeast one-hybrid, dual-LUC and electrophoretic mobility shift assays. RESULTS The 32,612, 30,837 and 30,277 genes expressed at 5, 10 and 15 days postanthesis (dpa) were grouped into 19 distinct coexpression modules, and 988 genes in the MEblack module were enriched in the cell wall process and exhibited significant associations with FL. A total of 20 FL-QTLs were identified, each explaining 3.34-16.04 % of the phenotypic variance in the FL. Furthermore, several FL-QTLs contained 15 genes that were differentially expressed in the MEblack module including the tubulin beta gene (TUB5). Compared with the wild type, the overexpression of GhTUB5 and GbTUB5 in Arabidopsis suppressed root cell length but promoted cellulose synthesis. Knockout of GhTUB5 resulted in longer fiber lines. Protein-based experiments revealed that GhTUB5 interacts with GhZFP6. Additionally, GhTUB5 was directly activated by GhHD-ZIP7, a homeobox-leucine zipper transcription factor, and its paralogous gene was previously reported to mediate fiber elongation. CONCLUSION This study opens a new avenue to dissect functional mechanism of cotton fiber elongation. Our findings provide some molecular details on how GhTUB5 mediates the FL phenotype in cotton.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuanyue Dang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Nuohan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Man Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China.
| | - Jiwen Yu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China; Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
6
|
Han K, Wang Z, Shen L, Du X, Lian S, Li Y, Li Y, Tang C, Li H, Zhang L, Wang J. Mapping of dynamic quantitative trait loci for plant height in a RIL population of foxtail millet ( Setaria italica L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1418328. [PMID: 39114469 PMCID: PMC11303304 DOI: 10.3389/fpls.2024.1418328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Plant height (PH) is a crucial trait for strengthening lodging resistance and boosting yield in foxtail millet. To identify quantitative trait loci (QTL) and candidate genes associated with PH, we first developed a genetic map using a recombinant inbred line (RIL) population derived from a cross between Aininghuang and Jingu 21. Then, PH phenotyping data and four variations of best linear unbiased prediction (BLUP) were collected from nine environments and three development stages. Next, QTL mapping was conducted using both unconditional and conditional QTL methods. Subsequently, candidate genes were predicted via transcriptome analysis of parental samples at three developmental stages. The results revealed that the genetic map, based on re-sequencing, consisted of 4,360 bin markers spanning 1,016.06 cM with an average genetic distance of 0.23 cM. A total of 19 unconditional QTL, accounting for 5.23%-35.36% of the phenotypic variation explained (PVE), which included 7 major and 4 stable QTL, were identified. Meanwhile, 13 conditional QTL, explaining 5.88%-40.35% of PVE, including 5 major and 3 stable QTL, were discovered. Furthermore, four consistent and stable QTL were identified. Finally, eight candidate genes were predicted through RNA-seq and weighted gene co-expression network analysis (WGCNA). Those findings provide a crucial foundation for understanding the genetic mechanisms underlying PH development and facilitate molecular marker-assisted breeding of ideal plant types in foxtail millet.
Collapse
Affiliation(s)
- Kangni Han
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Zhilan Wang
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Lin Shen
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaofen Du
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Shichao Lian
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Yuxin Li
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Yanfang Li
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Chuchu Tang
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Huixia Li
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Linyi Zhang
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
| | - Jun Wang
- Hou Ji Laboratory in Shanxi Province, Millet Research Institute, Shanxi Agricultural University, Changzhi, China
- College of Agriculture, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
7
|
Wang H, Cai X, Umer MJ, Xu Y, Hou Y, Zheng J, Liu F, Wang K, Chen M, Ma S, Yu J, Zhou Z. Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines. PHYSIOLOGIA PLANTARUM 2024; 176:e14442. [PMID: 39030776 DOI: 10.1111/ppl.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 07/22/2024]
Abstract
Cotton plays a crucial role in the progress of the textile industry and the betterment of human life by providing natural fibers. In our study, we explored the genetic determinants of cotton architecture and fiber yield and quality by crossbreeding Gossypium hirsutum and Gossypium barbadense, creating a recombinant inbred line (RIL) population. Utilizing SNP markers, we constructed an extensive genetic map encompassing 7,730 markers over 2,784.2 cM. We appraised two architectural and seven fiber traits within six environments, identifying 58 QTLs, of which 49 demonstrated stability across these environments. These encompassed QTLs for traits such as lint percentage (LP), boll weight (BW), fiber strength (STRENGTH), seed index (SI), and micronaire (MIC), primarily located on chromosomes chr-A07, chr-D06, and chr-D07. Notably, chr-D07 houses a QTL region affecting SI, corroborated by multiple studies. Within this region, the genes BZIP043 and SEP2 were identified as pivotal, with SEP2 particularly showing augmented expression in developing ovules. These discoveries contribute significantly to marker-assisted selection, potentially elevating both the yield and quality of cotton fiber production. These findings provide valuable insights into marker-assisted breeding strategies, offering crucial information to enhance fiber yield and quality in cotton production.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jie Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Mengshan Chen
- Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jingzhong Yu
- Standing Committee of the People's Congress of Jiangsu Province, Nanjing, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| |
Collapse
|
8
|
Li G, Che J, Gong J, Duan L, Zhang Z, Jiang X, Xu P, Fan S, Gong W, Shi Y, Liu A, Li J, Li P, Pan J, Deng X, Yuan Y, Shang H. Quantitative Trait Locus Mapping for Plant Height and Branch Number in CCRI70 Recombinant Inbred Line Population of Upland Cotton (Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1509. [PMID: 38891318 PMCID: PMC11174691 DOI: 10.3390/plants13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.
Collapse
Affiliation(s)
- Gangling Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Li Duan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiao Jiang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Peng Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Senmiao Fan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Aiying Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Pengtao Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiaoying Deng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Youlu Yuan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Haihong Shang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| |
Collapse
|
9
|
Ma J, Jia B, Bian Y, Pei W, Song J, Wu M, Wang W, Kashif, Shahzad, Wang L, Zhang B, Feng P, Yang L, Zhang J, Yu J. Genomic and co-expression network analyses reveal candidate genes for oil accumulation based on an introgression population in Upland cotton (Gossypium hirsutum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:23. [PMID: 38231256 DOI: 10.1007/s00122-023-04527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
KEY MESSAGE Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Yingying Bian
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | | | - Shahzad
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Liupeng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, USA.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Anyang, China.
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Zhang X, Su J, Jia F, He Y, Liao Y, Wang Z, Jiang J, Guan Z, Fang W, Chen F, Zhang F. Genetic architecture and genomic prediction of plant height-related traits in chrysanthemum. HORTICULTURE RESEARCH 2024; 11:uhad236. [PMID: 38222820 PMCID: PMC10782495 DOI: 10.1093/hr/uhad236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/06/2023] [Indexed: 01/16/2024]
Abstract
Plant height (PH) is a crucial trait determining plant architecture in chrysanthemum. To better understand the genetic basis of PH, we investigated the variations of PH, internode number (IN), internode length (IL), and stem diameter (SD) in a panel of 200 cut chrysanthemum accessions. Based on 330 710 high-quality SNPs generated by genotyping by sequencing, a total of 42 associations were identified via a genome-wide association study (GWAS), and 16 genomic regions covering 2.57 Mb of the whole genome were detected through selective sweep analysis. In addition, two SNPs, Chr1_339370594 and Chr18_230810045, respectively associated with PH and SD, overlapped with the selective sweep regions from FST and π ratios. Moreover, candidate genes involved in hormones, growth, transcriptional regulation, and metabolic processes were highlighted based on the annotation of homologous genes in Arabidopsis and transcriptomes in chrysanthemum. Finally, genomic selection for four PH-related traits was performed using a ridge regression best linear unbiased predictor model (rrBLUP) and six marker sets. The marker set constituting the top 1000 most significant SNPs identified via GWAS showed higher predictabilities for the four PH-related traits, ranging from 0.94 to 0.97. These findings improve our knowledge of the genetic basis of PH and provide valuable markers that could be applied in chrysanthemum genomic selection breeding programs.
Collapse
Affiliation(s)
- Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Feifei Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yuan Liao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhenxing Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
11
|
Jia X, Wang S, Zhao H, Zhu J, Li M, Wang G. QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton. FRONTIERS IN PLANT SCIENCE 2023; 14:1113059. [PMID: 36760643 PMCID: PMC9905821 DOI: 10.3389/fpls.2023.1113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Understanding the genetic basis of the node of the first fruiting branch (NFFB) improves early-maturity cotton breeding. Here we report QTL mapping on 200 F2 plants and derivative F2:3 and F2:4 populations by genotyping by sequencing (GBS). BC1F2 population was constructed by backcrossing one F2:4 line with the maternal parent JF914 and used for BSA-seq for further QTL mapping. A total of 1,305,642 SNPs were developed between the parents by GBS, and 2,907,790 SNPs were detected by BSA-seq. A high-density genetic map was constructed containing 11,488 SNPs and spanning 4,202.12 cM in length. A total of 13 QTL were mapped in the 3 tested populations. JF914 conferred favorable alleles for 11 QTL, and JF173 conferred favorable alleles for the other 2 QTL. Two stable QTL were repeatedly mapped in F2:3 and F2:4, including qNFFB-D3-1 and qNFFB-D6-1. Only qNFFB-D3-1 contributed more than 10% of the phenotypic variation. This QTL covered about 24.7 Mb (17,130,008-41,839,226 bp) on chromosome D3. Two regions on D3 (41,779,195-41,836,120 bp, 41,836,768-41,872,287 bp) were found by BSA-seq and covered about 92.4 Kb. This 92.4 Kb region overlapped with the stable QTL qNFFB-D3-1 and contained 8 annotated genes. By qRT-PCR, Ghir_D03G012430 showed a lower expression level from the 1- to 2-leaf stage and a higher expression level from the 3- to 6-leaf stage in the buds of JF173 than that of JF914. Ghir_D03G012390 reached the highest level at the 3- and 5-leaf stages in the buds of JF173 and JF914, respectively. As JF173 has lower NFFB and more early maturity than JF914, these two genes might be important in cell division and differentiation during NFFB formation in the seedling stage. The results of this study will facilitate a better understanding of the genetic basis of NFFB and benefit cotton molecular breeding for improving earliness traits.
Collapse
Affiliation(s)
| | | | | | | | - Miao Li
- Institution of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding/Hebei Key Laboratory of Crop Cultivation Physiology and Green Production, Shijiazhuang, China
| | | |
Collapse
|
12
|
Yang Y, Qin B, Chen Q, Nie Q, Zhang J, Zhang L, Liu S. Construction of the first high-density SNP genetic map and identification of QTLs for the natural rubber content in Taraxacum kok-saghyz Rodin. BMC Genomics 2023; 24:13. [PMID: 36627555 PMCID: PMC9830913 DOI: 10.1186/s12864-022-09105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Taraxacum kok-saghyz Rodin (TKS) is a promising commercial alternative natural rubber (NR) yielding plant. Cultivating TKS with a high NR content is an important breeding target, and developing molecular markers related to NR content can effectively accelerate the breeding process of TKS. RESULTS To construct a high-density SNP genetic map and uncover genomic regions related to the NR content in TKS, an F1 mapping population of TKS was constructed by crossing two parents (l66 and X51) with significant differences in NR contents. The NR content of the F1 plants ranged from 0.30 to 15.14% and was distributed normally with a coefficient of variation of 47.61%, indicating quantitative trait inheritance. Then, employing whole-genome resequencing (WGR), a TKS genetic linkage map of 12,680 bin markers comprising 322,439 SNPs was generated. Based on the genetic map and NR content of the F1 population, six quantitative trait loci (QTLs) for NR content with LOD > 4.0 were identified on LG01/Chr01 and LG06/Chr06. Of them, the 2.17 Mb genomic region between qHRC-C6-1 and qHRC-C6-2 on ChrA06, with 65.62% PVE in total, was the major QTL region. In addition, the six QTLs have significant additive genetic effects on NR content and could be used to develop markers for marker-assisted selection (MAS) in TKS with a high NR content. CONCLUSION This work constructed the first high-density TKS genetic map and identified the QTLs and genomic regions controlling the NR content, which provides useful information for fine mapping, map-based cloning, and MAS in TKS.
Collapse
Affiliation(s)
- Yushuang Yang
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Bi Qin
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Qiuhui Chen
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| | - Qiuhai Nie
- Beijing Linglong Dandelion Technology and Development Ltd, 101102 Beijing, China
| | - Jichuan Zhang
- grid.48166.3d0000 0000 9931 8406College of Materials and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Liqun Zhang
- grid.48166.3d0000 0000 9931 8406College of Materials and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Shizhong Liu
- grid.453499.60000 0000 9835 1415Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, 571101 Haikou, China
| |
Collapse
|
13
|
Ma J, Jiang Y, Pei W, Wu M, Ma Q, Liu J, Song J, Jia B, Liu S, Wu J, Zhang J, Yu J. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1940-1955. [PMID: 35718938 PMCID: PMC9491459 DOI: 10.1111/pbi.13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 05/27/2023]
Abstract
Interspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation. Of 35 420 eGenes in developing fibres, 10 366 ENAs were identified and preferentially distributed in chromosomes subtelomeric regions. In total, 1056-1255 ENAs showed transgressive expression in fibres at 5-15 dpa (days post-anthesis) of some BILs, 520 of which were located in FL-quantitative trait locus (QTLs) and GhFLA9 (recombination allele) was identified with a larger effect for FL than GhFLA9 of CRI36 allele. Using ENAs as a type of markers, we identified three novel FL-QTLs. Additionally, 456 extremely eGenes were identified that were preferentially distributed in recombination hotspots. Importantly, 34 of them were significantly associated with FL. Gene expression quantitative trait locus analysis identified 1286, 1089 and 1059 eGenes that were colocalized with the FL trait at 5, 10 and 15 dpa, respectively. Finally, we verified the Ghir_D10G011050 gene linked to fibre elongation by the CRISPR-cas9 system. This study provides the first glimpse into the occurrence, distribution and expression of the developing fibres genes (especially ENAs) in an introgression population, and their possible biological significance in FL.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yafei Jiang
- Novogene Bioinformatics InstituteBeijingChina
| | - Wenfeng Pei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Man Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Qifeng Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jikun Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Bing Jia
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Shang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jianyong Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jinfa Zhang
- Department of Plant and Environmental SciencesNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Jiwen Yu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
14
|
Wu J, Mao L, Tao J, Wang X, Zhang H, Xin M, Shang Y, Zhang Y, Zhang G, Zhao Z, Wang Y, Cui M, Wei L, Song X, Sun X. Dynamic Quantitative Trait Loci Mapping for Plant Height in Recombinant Inbred Line Population of Upland Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:914140. [PMID: 35769288 PMCID: PMC9235862 DOI: 10.3389/fpls.2022.914140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Plant height (PH) is a key plant architecture trait for improving the biological productivity of cotton. Ideal PH of cotton is conducive to lodging resistance and mechanized harvesting. To detect quantitative trait loci (QTL) and candidate genes of PH in cotton, a genetic map was constructed with a recombinant inbred line (RIL) population of upland cotton. PH phenotype data under nine environments and three best linear unbiased predictions (BLUPs) were used for QTL analyses. Based on restriction-site-associated DNA sequence (RAD-seq), the genetic map contained 5,850 single-nucleotide polymorphism (SNP) markers, covering 2,747.12 cM with an average genetic distance of 0.47 cM. Thirty-seven unconditional QTL explaining 1.03-12.50% of phenotypic variance, including four major QTL and seven stable QTL, were identified. Twenty-eight conditional QTL explaining 3.27-28.87% of phenotypic variance, including 1 major QTL, were identified. Importantly, five QTL, including 4 stable QTL, were both unconditional and conditional QTL. Among the 60 PH QTL (including 39 newly identified), none of them were involved in the whole period of PH growth, indicating that QTL related to cotton PH development have dynamic expression characteristics. Based on the functional annotation of Arabidopsis homologous genes and transcriptome data of upland cotton TM-1, 14 candidate genes were predicted within 10 QTL. Our research provides valuable information for understanding the genetic mechanism of PH development, which also increases the economic production of cotton.
Collapse
Affiliation(s)
- Jing Wu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Lili Mao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest Agriculture and Forestry University, Xianyang, China
| | - Xiuxiu Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Ming Xin
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Yongqi Shang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Yanan Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | | | - Yiming Wang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Mingshuo Cui
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Liming Wei
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| | - Xuezhen Sun
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Taian, China
| |
Collapse
|
15
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Li T, Li Q, Wang J, Yang Z, Tang Y, Su Y, Zhang J, Qiu X, Pu X, Pan Z, Zhang H, Liang J, Liu Z, Li J, Yan W, Yu M, Long H, Wei Y, Deng G. High-resolution detection of quantitative trait loci for seven important yield-related traits in wheat (Triticum aestivum L.) using a high-density SLAF-seq genetic map. BMC Genom Data 2022; 23:37. [PMID: 35562674 PMCID: PMC9107147 DOI: 10.1186/s12863-022-01050-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yield-related traits including thousand grain weight (TGW), grain number per spike (GNS), grain width (GW), grain length (GL), plant height (PH), spike length (SL), and spikelet number per spike (SNS) are greatly associated with grain yield of wheat (Triticum aestivum L.). To detect quantitative trait loci (QTL) associated with them, 193 recombinant inbred lines derived from two elite winter wheat varieties Chuanmai42 and Chuanmai39 were employed to perform QTL mapping in six/eight environments. RESULTS A total of 30 QTLs on chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 3A, 4A, 5A, 5B, 6A, 6D, 7A, 7B and 7D were identified. Among them, six major QTLs QTgw.cib-6A.1, QTgw.cib-6A.2, QGw.cib-6A, QGl.cib-3A, QGl.cib-6A, and QSl.cib-2D explaining 5.96-23.75% of the phenotypic variance were detected in multi-environments and showed strong and stable effects on corresponding traits. Three QTL clusters on chromosomes 2D and 6A containing 10 QTLs were also detected, which showed significant pleiotropic effects on multiple traits. Additionally, three Kompetitive Allele Specific PCR (KASP) markers linked with five of these major QTLs were developed. Candidate genes of QTgw.cib-6A.1/QGl.cib-6A and QGl.cib-3A were analyzed based on the spatiotemporal expression patterns, gene annotation, and orthologous search. CONCLUSIONS Six major QTLs for TGW, GL, GW and SL were detected. Three KASP markers linked with five of these major QTLs were developed. These QTLs and KASP markers will be useful for elucidating the genetic architecture of grain yield and developing new wheat varieties with high and stable yield in wheat.
Collapse
Affiliation(s)
- Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xvebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Wuyun Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
17
|
Si Z, Jin S, Chen J, Wang S, Fang L, Zhu X, Zhang T, Hu Y. Construction of a high-density genetic map and identification of QTLs related to agronomic and physiological traits in an interspecific (Gossypium hirsutum × Gossypium barbadense) F2 population. BMC Genomics 2022; 23:307. [PMID: 35428176 PMCID: PMC9013169 DOI: 10.1186/s12864-022-08528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Advances in genome sequencing technology, particularly restriction-site associated DNA sequence (RAD-seq) and whole-genome resequencing, have greatly aided the construction of cotton interspecific genetic maps based on single nucleotide polymorphism (SNPs), Indels, and other types of markers. High-density genetic maps can improve accuracy of quantitative trait locus (QTL) mapping, narrow down location intervals, and facilitate identification of the candidate genes.
Result
In this study, 249 individuals from an interspecific F2 population (TM-1 and Hai7124) were re-sequenced, yielding 6303 high-confidence bin markers spanning 5057.13 cM across 26 cotton chromosomes. A total of 3380 recombination hot regions RHRs were identified which unevenly distributed on the 26 chromosomes. Based on this map, 112 QTLs relating to agronomic and physiological traits from seedling to boll opening stage were identified, including 15 loci associated with 14 traits that contained genes harboring nonsynonymous SNPs. We analyzed the sequence and expression of these ten candidate genes and discovered that GhRHD3 (GH_D10G0500) may affect fiber yield while GhGPAT6 (GH_D04G1426) may affect photosynthesis efficiency.
Conclusion
Our research illustrates the efficiency of constructing a genetic map using binmap and QTL mapping on the basis of a certain size of the early-generation population. High-density genetic map features high recombination exchanges in number and distribution. The QTLs and the candidate genes identified based on this high-density genetic map may provide important gene resources for the genetic improvement of cotton.
Collapse
|
18
|
Wu L, Jia B, Pei W, Wang L, Ma J, Wu M, Song J, Yang S, Xin Y, Huang L, Feng P, Zhang J, Yu J. Quantitative Trait Locus Analysis and Identification of Candidate Genes Affecting Seed Size and Shape in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 13:837984. [PMID: 35392518 PMCID: PMC8981304 DOI: 10.3389/fpls.2022.837984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Seed size and shape are key agronomic traits affecting seedcotton yield and seed quality in cotton (Gossypium spp.). However, the genetic mechanisms that regulate the seed physical traits in cotton are largely unknown. In this study, an interspecific backcross inbred line (BIL) population of 250 BC1F7 lines, derived from the recurrent parent Upland CRI36 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), was used to investigate the genetic basis of cotton seed physical traits via quantitative trait locus (QTL) mapping and candidate gene identification. The BILs were tested in five environments, measuring eight seed size and shape-related traits, including 100-kernel weight, kernel length width and their ratio, kernel area, kernel girth, kernel diameter, and kernel roundness. Based on 7,709 single nucleotide polymorphic (SNP) markers, a total of 49 QTLs were detected and each explained 2.91-35.01% of the phenotypic variation, including nine stable QTLs mapped in at least three environments. Based on pathway enrichment, gene annotation, genome sequence, and expression analysis, five genes encoding starch synthase 4, transcription factor PIF7 and MYC4, ubiquitin-conjugating enzyme E27, and THO complex subunit 4A were identified as candidate genes that might be associated with seed size and shape. Our research provides valuable information to improve seed physical traits in cotton breeding.
Collapse
Affiliation(s)
- Luyao Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jikun Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxian Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yue Xin
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Huang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pan Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
19
|
Zhang J, Abdelraheem A, Ma J, Zhu Y, Dever J, Wheeler TA, Hake K, Wedegaertner T, Yu J. Mapping of dynamic QTLs for resistance to Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) race 4 in a backcross inbred line population of Upland cotton. Mol Genet Genomics 2022; 297:319-332. [PMID: 35020076 DOI: 10.1007/s00438-021-01846-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
KEY MESSAGE A backcross inbred line population of cotton was evaluated for Fusarium wilt race 4 resistance at different days after inoculation (DAI). Both constitutively expressed and developmentally regulated QTLs were detected. The soil-borne fungus Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) causes Fusarium wilt including seedling mortality in cotton. A backcross inbred line (BIL) population of 181 lines, derived from a bi-parental cross of moderately resistant non-recurrent Hai 7124 (Gossypium barbadense) and recurrent parent CCRI 36 (G. hirsutum), was evaluated under temperature-controlled conditions for FOV4 resistance with artificial inoculations. Based on three replicated tests evaluated at 7, 14, 21, and 28 days after inoculation (DAI), only 2-5 BILs showed lower disease severity ratings (DSR) than the parents while 22-50 BILs were more susceptible, indicating transgressive segregation toward susceptibility. Although DSR were overall congruent between DAI, there were many BILs displaying different responses to FOV4 across DAI. Genetic mapping using 7709 SNP markers identified 42 unique QTLs for four evaluation parameters- disease incidence (DI), DSR, mortality rate (MR), and area under disease progress curve (AUDPC), including 26 for two or more parameters. All five QTLs for AUDPC were co-localized with QTLs for DI, DSR, and/or MR at one or two DAI, indicating the unnecessary use of AUDPC in QTL mapping for FOV4 resistance. Those common QTLs explained the significant positive associations between parameters observed. Ten common QTLs with negative or positive additive effects were detected between DAI. DAI-specific and consistent QTLs were detected between DAI in cotton for the first time, suggesting the existence of both constitutively expressed and developmentally regulated QTLs for FOV4 resistance and the importance of evaluating genetic populations for FOV4 resistance at different growth stages.
Collapse
Affiliation(s)
- Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Abdelraheem Abdelraheem
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jianjiang Ma
- National Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yi Zhu
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jane Dever
- Texas A&M AgriLife Research, 1102 E. Drew St., Lubbock, TX, 79403, USA
| | - Terry A Wheeler
- Texas A&M AgriLife Research, 1102 E. Drew St., Lubbock, TX, 79403, USA
| | | | | | - Jiwen Yu
- National Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
20
|
Ma C, Rehman A, Li HG, Zhao ZB, Sun G, Du XM. Mapping of dwarfing QTL of Ari1327, a semi-dwarf mutant of upland cotton. BMC PLANT BIOLOGY 2022; 22:5. [PMID: 34979924 PMCID: PMC8722190 DOI: 10.1186/s12870-021-03359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Upland Cotton (Gossypium hirsutum L.) has few cotton varieties suitable for mechanical harvesting. The plant height of the cultivar is one of the key features that need to modify. Hence, this study was planned to locate the QTL for plant height in a 60Co γ treated upland cotton semi-dwarf mutant Ari1327. RESULTS Interestingly, bulk segregant analysis (BSA) and genotyping by sequencing (GBS) methods exhibited that candidate QTL was co-located in the region of 5.80-9.66 Mb at D01 chromosome in two F2 populations. Using three InDel markers to genotype a population of 1241 individuals confirmed that the offspring's phenotype is consistent with the genotype. Comparative analysis of RNA-seq between the mutant and wild variety exhibited that Gh_D01G0592 was identified as the source of dwarfness from 200 genes. In addition, it was also revealed that the appropriate use of partial separation markers in QTL mapping can escalate linkage information. CONCLUSIONS Overwhelmingly, the results will provide the basis to reveal the function of candidate genes and the utilization of excellent dwarf genetic resources in the future.
Collapse
Affiliation(s)
- Chenhui Ma
- State Key Laboratory of cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Hong Ge Li
- State Key Laboratory of cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zi Bo Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450000, China
| | - Gaofei Sun
- State Key Laboratory of Cotton Biology, Research Base, Anyang Institute of Technology, Anyang, China
| | - Xiong Ming Du
- State Key Laboratory of cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
21
|
Chandnani R, Kim C, Patel JD, Guo H, Shehzad T, Wallace JG, He D, Zhang Z, Adhikari J, Khanal S, Chee PW, Paterson AH. Identification of small effect quantitative trait loci of plant architectural, flowering, and early maturity traits in reciprocal interspecific introgression population in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:981682. [PMID: 36061803 PMCID: PMC9433993 DOI: 10.3389/fpls.2022.981682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 05/13/2023]
Abstract
Plant architecture, flowering time and maturity traits are important determinants of yield and fiber quality of cotton. Genetic dissection of loci determining these yield and quality components is complicated by numerous loci with alleles conferring small differences. Therefore, mapping populations segregating for smaller numbers and sizes of introgressed segments is expected to facilitate dissection of these complex quantitative traits. At an advanced stage in the development of reciprocal advanced backcross populations from crosses between elite Gossypium hirsutum cultivar 'Acala Maxxa' (GH) and G. barbadense 'Pima S6' (GB), we undertook mapping of plant architectural traits, flowering time and maturity. A total of 284 BC4F1 and BC4F2 progeny rows, 120 in GH and 164 in GB background, were evaluated for phenotype, with only 4 and 3 (of 7) traits showing significant differences among progenies. Genotyping by sequencing yielded 3,186 and 3,026 SNPs, respectively, that revealed a total of 27 QTLs in GH background and 22 in GB, for plant height, days to flowering, residual flowering at maturity and maturity. More than of 90% QTLs identified in both backgrounds had small effects (%PV < 10), supporting the merit of this population structure to reduce background noise and small effect QTLs. Germplasm developed in this study may serve as potential pre-breeding material to develop improved cotton cultivars.
Collapse
Affiliation(s)
- Rahul Chandnani
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Jinesh D. Patel
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Hui Guo
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Tariq Shehzad
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Jason G. Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Daohua He
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jeevan Adhikari
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Sameer Khanal
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
| | - Peng W. Chee
- NESPAL Molecular Cotton Breeding Laboratory, The University of Georgia, Tifton, GA, United States
| | - Andrew H. Paterson
- Plant Genome Mapping Laboratory, The University of Georgia, Athens, GA, United States
- *Correspondence: Andrew H. Paterson,
| |
Collapse
|
22
|
Gu Q, Ke H, Liu C, Lv X, Sun Z, Liu Z, Rong W, Yang J, Zhang Y, Wu L, Zhang G, Wang X, Ma Z. A stable QTL qSalt-A04-1 contributes to salt tolerance in the cotton seed germination stage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2399-2410. [PMID: 33928409 DOI: 10.1007/s00122-021-03831-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
A stable QTL qSalt-A04-1 for salt tolerance in the cotton seed germination stage, and two candidate genes, GhGASA1 and GhADC2, that play negative roles by modulating the GA and PA signalling pathways, respectively, were identified. The successful transition of a seed into a seedling is a prerequisite for plant propagation and crop yield. Germination is a vulnerable stage in a plant's life cycle that is strongly affected by environmental conditions, such as salinity. In this study, we identified a novel quantitative trait locus (QTL) qRGR-A04-1 associated with the relative germination rate (RGR) after salt stress treatment based on a high-density genetic map under phytotron and field conditions, with LOD values that ranged from 6.65 to 16.83 and 6.11-12.63% phenotypic variations in all five environmental tests. Two candidate genes with significantly differential expression between the two parents were finally identified through RNA-seq and qRT-PCR analyses. Further functional analyses showed that GhGASA1- and GhADC2-overexpression lines were more sensitive to salt stress than wild-type Arabidopsis based on the regulation of the transcript levels of gibberellic acid (GA)- and polyamine (PA)- related genes in GA and PA biosynthesis and the reduction in the accumulation of GA and PA, respectively, under salt stress. Virus-induced gene silencing analysis showed that TRV:GASA1 and TRV:ADC2 were more tolerant to salt stress than TRV:00 based on the increased expression of GA synthesis genes and decreased H2O2 content, respectively. Taken together, our results suggested that QTL qRGR-A04-1 and its two harboured genes, GhGASA1 and GhADC2, are promising candidates for salt tolerance improvement in cotton.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Chenchen Liu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wei Rong
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
23
|
Hu Q, Zeng M, Wang M, Huang X, Li J, Feng C, Xuan L, Liu L, Huang G. Family-Wide Evaluation of Multiple C2 Domain and Transmembrane Region Protein in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:767667. [PMID: 34759949 PMCID: PMC8573151 DOI: 10.3389/fpls.2021.767667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 05/17/2023]
Abstract
Multiple C2 domain and transmembrane region proteins (MCTPs) are a group of evolutionarily conserved proteins and show emerging roles in mediating protein trafficking and signaling transduction. Although, several studies showed that MCTPs play important roles during plant growth and development, their biological functions in cotton remain largely unknown. Here, we identify and characterize 33 GhMCTP genes from upland cotton (Gossypium hirsutum) and reveal the diverse expression patterns of GhMCTPs in various tissues. We also find that GhMCTP7, GhMCTP12, and GhMCTP17 are highly expressed in the main stem apex, suggesting their possible roles in shoot development. Through analyzing different cotton species, we discover plant heights are closely related to the expression levels of GhMCTP7, GhMCTP12, and GhMCTP17. Furthermore, we silence the expression of GhMCTP genes using virus-induced gene silencing (VIGS) system in cotton and find that GhMCTP7, GhMCTP12, and GhMCTP17 play an essential role in shoot meristem development. GhMCTPs interact with GhKNAT1 and GhKNAT2 and regulate meristem development through integrating multiple signal pathways. Taken together, our results demonstrate functional redundancy of GhMCTPs in cotton shoot meristem development and provide a valuable resource to further study various functions of GhMCTPs in plant growth and development.
Collapse
Affiliation(s)
- Qianqian Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mengting Zeng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Miao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaoyu Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Jiayi Li
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Changhui Feng
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lijie Xuan
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Lu Liu,
| | - Gengqing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Ürümqi, China
- *Correspondence: Gengqing Huang,
| |
Collapse
|
24
|
Pei W, Song J, Wang W, Ma J, Jia B, Wu L, Wu M, Chen Q, Qin Q, Zhu H, Hu C, Lei H, Gao X, Hu H, Zhang Y, Zhang J, Yu J, Qu Y. Quantitative Trait Locus Analysis and Identification of Candidate Genes for Micronaire in an Interspecific Backcross Inbred Line Population of Gossypium hirsutum × Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2021; 12:763016. [PMID: 34777444 PMCID: PMC8579039 DOI: 10.3389/fpls.2021.763016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Cotton is the most important fiber crop and provides indispensable natural fibers for the textile industry. Micronaire (MIC) is determined by fiber fineness and maturity and is an important component of fiber quality. Gossypium barbadense L. possesses long, strong and fine fibers, while upland cotton (Gossypium hirsutum L.) is high yielding with high MIC and widely cultivated worldwide. To identify quantitative trait loci (QTLs) and candidate genes for MIC in G. barbadense, a population of 250 backcross inbred lines (BILs), developed from an interspecific cross of upland cotton CRI36 × Egyptian cotton (G. barbadense) Hai7124, was evaluated in 9 replicated field tests. Based on a high-density genetic map with 7709 genotyping-by-sequencing (GBS)-based single-nucleotide polymorphism (SNP) markers, 25 MIC QTLs were identified, including 12 previously described QTLs and 13 new QTLs. Importantly, two stable MIC QTLs (qMIC-D03-2 on D03 and qMIC-D08-1 on D08) were identified. Of a total of 338 genes identified within the two QTL regions, eight candidate genes with differential expression between TM-1 and Hai7124 were identified. Our research provides valuable information for improving MIC in cotton breeding.
Collapse
Affiliation(s)
- Wenfeng Pei
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jikun Song
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wenkui Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianjiang Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bing Jia
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Luyao Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Qin Qin
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Haiyong Zhu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Chengcheng Hu
- Western Agriculture Research Centre, Chinese Academy of Agricultural Sciences, Changji, China
| | - Hai Lei
- Seed Management Station, Department of Agriculture and Rural Affairs of Xinjiang, Urumqi, China
| | - Xuefei Gao
- Join Hope Seed Co., Ltd., Changji, China
| | - Haijun Hu
- Join Hope Seed Co., Ltd., Changji, China
| | - Yu Zhang
- Join Hope Seed Co., Ltd., Changji, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Jinfa Zhang,
| | - Jiwen Yu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jiwen Yu,
| | - Yanying Qu
- Engineering Research Centre of Cotton of Ministry of Education, College of Agriculture, Xinjiang Agricultural University, Urumqi, China
- Yanying Qu,
| |
Collapse
|
25
|
Li Z, Wang X, Cui Y, Qiao K, Zhu L, Fan S, Ma Q. Comprehensive Genome-Wide Analysis of Thaumatin-Like Gene Family in Four Cotton Species and Functional Identification of GhTLP19 Involved in Regulating Tolerance to Verticillium dahlia and Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:575015. [PMID: 33193513 PMCID: PMC7606878 DOI: 10.3389/fpls.2020.575015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/25/2023]
Abstract
Thaumatin-like proteins (TLPs) present in the form of large multigene families play important roles in biotic stress and abiotic stress. However, there has been no systematic analysis of the TLPs in cotton. In this study, comprehensive identification and evolutionary analysis of TLPs in four species of cotton were conducted. In total, 50, 48, 91, and 90 homologous sequences were identified in Gossypium raimondii, G. arboreum, G. barbadense, and G. hirsutum, respectively. Gene structure, protein motifs, and gene expression were further investigated. Transcriptome and quantitative real-time PCR analysis indicated that GhTLPs participate in abiotic, biotic stress and cotton fiber development. GhTLP19 on chromosome At05 was selected as a candidate gene for further study. When GhTLP19 was silenced by virus-induced gene silencing (VIGS) in cotton, with the increase of malondialdehyde (MDA) content and the decrease of catalase (CAT) content, and as the increase of disease index (DI) and hyphae accumulation, the plants were more sensitive to drought and Verticillium dahliae. Furthermore, the GhTLP19 overexpressing Arabidopsis transgenic lines exhibited higher proline content, thicker and longer trichomes and more tolerance to drought when compared to wild type. This study will provide a basis and reference for future research on their roles in stress tolerance and fiber development.
Collapse
Affiliation(s)
- Zhanshuai Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyan Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yupeng Cui
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
26
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|
27
|
Li Q, Pan Z, Gao Y, Li T, Liang J, Zhang Z, Zhang H, Deng G, Long H, Yu M. Quantitative Trait Locus (QTLs) Mapping for Quality Traits of Wheat Based on High Density Genetic Map Combined With Bulked Segregant Analysis RNA-seq (BSR-Seq) Indicates That the Basic 7S Globulin Gene Is Related to Falling Number. FRONTIERS IN PLANT SCIENCE 2020; 11:600788. [PMID: 33424899 PMCID: PMC7793810 DOI: 10.3389/fpls.2020.600788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Numerous quantitative trait loci (QTLs) have been identified for wheat quality; however, most are confined to low-density genetic maps. In this study, based on specific-locus amplified fragment sequencing (SLAF-seq), a high-density genetic map was constructed with 193 recombinant inbred lines derived from Chuanmai 42 and Chuanmai 39. In total, 30 QTLs with phenotypic variance explained (PVE) up to 47.99% were identified for falling number (FN), grain protein content (GPC), grain hardness (GH), and starch pasting properties across three environments. Five NAM genes closely adjacent to QGPC.cib-4A probably have effects on GPC. QGH.cib-5D was the only one detected for GH with high PVE of 33.31-47.99% across the three environments and was assumed to be related to the nearest pina-D1 and pinb-D1genes. Three QTLs were identified for FN in at least two environments, of which QFN.cib-3D had relatively higher PVE of 16.58-25.74%. The positive effect of QFN.cib-3D for high FN was verified in a double-haploid population derived from Chuanmai 42 × Kechengmai 4. The combination of these QTLs has a considerable effect on increasing FN. The transcript levels of Basic 7S globulin and Basic 7S globulin 2 in QFN.cib-3D were significantly different between low FN and high FN bulks, as observed through bulk segregant RNA-seq (BSR). These QTLs and candidate genes based on the high-density genetic map would be beneficial for further understanding of the genetic mechanism of quality traits and molecular breeding of wheat.
Collapse
Affiliation(s)
- Qiao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhifen Pan, ; orcid.org/0000-0002-1692-5425
| | - Yuan Gao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zijin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|