1
|
Foster TL, Frei UK, Fakude M, Krause MD, Pfeffer S, Dutta S, Tracy WF, Resende MFR, Lübberstedt T. Association mapping of haploid male fertility in sweet corn. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:102. [PMID: 40237860 DOI: 10.1007/s00122-025-04888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
KEY MESSAGE Association mapping of a subset of the SweetCAP diversity panel revealed ten single-nucleotide polymorphisms (SNPs) associated with haploid male fertility (HMF), which provided four candidate genes. Doubled haploid (DH) technology using in vivo haploid induction has dramatically improved the efficiency of maize breeding programs worldwide. However, limitations from genome doubling create a bottleneck for DH line production. To overcome such limitations, spontaneous haploid genome doubling (SHGD) has gained prominence over the last decade, specifically in field corn materials. On the contrary, SHGD in sweet corn has been largely overlooked. A subset of 286 sweet corn genotypes from the SweetCAP diversity panel was evaluated for their ability to restore male fertility in the haploid state, otherwise known as haploid male fertility (HMF). Association mapping identified ten single-nucleotide polymorphisms (SNPs) associated with HMF, which provided four candidate genes. Our results highlight significant variation for HMF, with 11 genotypes having > 54% HMF. These genotypes demonstrate HMF naturally exists in sweet corn germplasm and can be used for population improvement.
Collapse
Affiliation(s)
- Tyler L Foster
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Matheus D Krause
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Sarah Pfeffer
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - William F Tracy
- Department of Plant and Agroecosystem Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marcio F R Resende
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | | |
Collapse
|
2
|
Ye H, Louden M, Reinders JAT. A novel in vivo genome editing doubled haploid system for Zea mays L. NATURE PLANTS 2024; 10:1493-1501. [PMID: 39333351 DOI: 10.1038/s41477-024-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024]
Abstract
Doubled haploid (DH) technologies accelerate maize inbred development. Recently, methods using CRISPR-Cas have created gene-edited maize DH populations, albeit with relatively low editing frequencies. Restoring fertility via haploid chromosome doubling remains a critically important production constraint. Thus, improved editing and chromosome doubling outcomes are needed. Here we obtained maternally derived diploid embryos in vivo by ectopically co-expressing Zea mays BABY BOOM and cyclin D-like gene products within unfertilized egg cells. When combined with gene editing, the in vivo method enables the production of mature seed with a maternally derived, gene-edited diploid embryo without requiring in vitro tissue culture methods nor the use of a chemical chromosome doubling agent. In summary, we report a novel approach for creating gene-edited maize DH populations that we expect can accelerate genetic gain in a scalable, cost-effective manner.
Collapse
Affiliation(s)
- Huaxun Ye
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Academy of Agricultural Sciences, Wenzhou, China
| | - Mei Louden
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA
| | - Jon A T Reinders
- Corteva Agriscience. Johnston Global Business Center, Johnston, IA, USA.
| |
Collapse
|
3
|
Qu Y, Fernie AR, Liu J, Yan J. Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. MOLECULAR PLANT 2024; 17:1005-1018. [PMID: 38877700 DOI: 10.1016/j.molp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.
Collapse
Affiliation(s)
- Yanzhi Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max- Planck- Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- Yazhouwan National Laboratory, Sanya 572024, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
4
|
Foster TL, Kloiber-Maitz M, Gilles L, Frei UK, Pfeffer S, Chen YR, Dutta S, Seetharam AS, Hufford MB, Lübberstedt T. Fine mapping of major QTL qshgd1 for spontaneous haploid genome doubling in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:117. [PMID: 38700534 DOI: 10.1007/s00122-024-04615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/09/2024]
Abstract
KEY MESSAGE A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.
Collapse
Affiliation(s)
- Tyler L Foster
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | | | - Laurine Gilles
- Limagrain Europe SAS, Research Centre, 63720, Chappes, France
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Sarah Pfeffer
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
5
|
Chen YR, Lübberstedt T, Frei UK. Development of doubled haploid inducer lines facilitates selection of superior haploid inducers in maize. FRONTIERS IN PLANT SCIENCE 2024; 14:1320660. [PMID: 38250445 PMCID: PMC10796511 DOI: 10.3389/fpls.2023.1320660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Haploid inducers are key components of doubled haploid (DH) technology in maize. Robust agronomic performance and better haploid induction ability of inducers are persistently sought through genetic improvement. We herein developed C1-I inducers enabling large-scale in vivo haploid induction of inducers and discovered superior inducers from the DH progenies. The haploid induction rate (HIR) of C1-I inducers ranged between 5.8% and 12.0%. Overall, the success rate of DH production was 13% on average across the 23 different inducer crosses. The anthesis-silking interval and days to flowering of inducer F1s are significantly correlated with the success rate of DH production (r = -0.48 and 0.47, respectively). Transgressive segregants in DH inducers (DHIs) were found for the traits (days to flowering, HIR, plant height, and total primary branch length). Moreover, the best HIR in DHIs exceeded 23%. Parental genome contributions to DHI progenies ranged between 0.40 and 0.55, respectively, in 25 and 75 percentage quantiles, and the mean and median were 0.48. The allele frequency of the four traits from inducer parents to DHI progenies did not correspond with the phenotypic difference between superior and inferior individuals in the DH populations by genome-wide Fst analysis. This study demonstrated that the recombinant DHIs can be accessed on a large scale and used as materials to facilitate the genetic improvement of maternal haploid inducers by in vivo DH technology.
Collapse
Affiliation(s)
- Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, Taiwan
| | | | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Santos IGD, Verzegnazzi AL, Edwards J, Frei UK, Boerman N, Tonello Zuffo L, Pires LPM, de La Fuente G, Lübberstedt T. Usefulness of temperate-adapted maize lines developed by doubled haploid and single-seed descent methods. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1829-1841. [PMID: 35305125 DOI: 10.1007/s00122-022-04075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Spontaneous haploid genome doubling is not associated with undesirable linkage drag effects. The presence of spontaneous doubling genes allows maximum exploitation of variability from the temperate-adapted BS39 population Tropical non-elite maize (Zea mays L.) germplasm, such as BS39, provides a unique opportunity for broadening the genetic base of U.S. Corn Belt germplasm. In vivo doubled haploid (DH) technology has been used to efficiently exploit non-elite germplasm. It can help to purge deleterious recessive alleles. The objectives of this study were to determine the usefulness of BS39-derived inbred lines using both SSD and DH methods, to determine the impact of spontaneous as compared with artificial haploid genome doubling on genetic variance among BS39-derived DH lines, and to identify SNP markers associated with agronomic traits among BS39 inbreds monitored at testcross level. We developed two sets of inbred lines directly from BS39 by DH and SSD methods, named BS39_DH and BS39_SSD. Additionally, two sets were derived from a cross between BS39 and A427 (SHGD donor) by DH and SSD methods, named BS39 × A427_DH and BS39 × A427_SSD, respectively. Grain yield, moisture, plant height, ear height, stalk lodging, and root lodging were measured to estimate genetic parameters. For genome-wide association analysis, inbred lines were genotyped using genotype-by-sequencing and Diversity Array Technology Sequencing (DArTSeq). Some BS39-derived inbred lines performed better than elite germplasm inbreds and all sets showed significant genetic variance. The presence of spontaneous haploid genome doubling genes did not affect performance of inbred lines. Five SNPs were significant and three of them located within genes related to plant development or abiotic stresses. These results demonstrate the potential of BS39 to add novel alleles to temperate elite germplasm.
Collapse
Affiliation(s)
| | | | - Jode Edwards
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Nicholas Boerman
- USDA-ARS, Southern Plains Range Research Station, Woodward, OK, USA
| | - Leandro Tonello Zuffo
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
7
|
Trampe B, Batîru G, Pereira da Silva A, Frei UK, Lübberstedt T. QTL Mapping for Haploid Inducibility Using Genotyping by Sequencing in Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:878. [PMID: 35406857 PMCID: PMC9002859 DOI: 10.3390/plants11070878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology in maize takes advantage of in vivo haploid induction (HI) triggered by pollination of donors of interest with inducer genotypes. However, the ability of different donors to be induced-inducibility (IND), varies among germplasm and the underlying molecular mechanisms are still unclear. In this study, the phenotypic variation for IND in a mapping population of temperate inbred lines was evaluated to identify regions in the maize genome associated with IND. A total of 247 F2:3 families derived from a biparental cross of two elite inbred lines, A427 and CR1Ht, were grown in three different locations and Inclusive Composite Interval Mapping (ICIM) was used to identify quantitative trait loci (QTL) for IND. In total, four QTL were detected, explaining 37.4% of the phenotypic variance. No stable QTL was found across locations. The joint analysis revealed QTL × location interactions, suggesting minor QTL control IND, which are affected by the environment.
Collapse
Affiliation(s)
| | - Grigorii Batîru
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| | | | - Ursula Karoline Frei
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA; (G.B.); (U.K.F.)
| |
Collapse
|
8
|
Aboobucker SI, Jubery TZ, Frei UK, Chen YR, Foster T, Ganapathysubramanian B, Lübberstedt T. Protocols for In Vivo Doubled Haploid (DH) Technology in Maize Breeding: From Haploid Inducer Development to Haploid Genome Doubling. Methods Mol Biol 2022; 2484:213-235. [PMID: 35461455 DOI: 10.1007/978-1-0716-2253-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology reduces the time required to obtain homozygous genotypes and accelerates plant breeding among other advantages. It is established in major crop species such as wheat, barley, maize, and canola. DH lines can be produced by both in vitro and in vivo methods and the latter is focused here. The major steps involved in in vivo DH technology are haploid induction, haploid selection/identification, and haploid genome doubling. Herein, we elaborate on the various steps of DH technology in maize breeding from haploid induction to haploid genome doubling to produce DH lines. Detailed protocols on the following topics are discussed: in vivo haploid inducer line development, haploid selection using seed and root color markers and automated seed sorting based on embryo oil content using QSorter, artificial genome doubling, and the identification of genotypes with spontaneous haploid genome doubling (SHGD) ability.
Collapse
Affiliation(s)
| | - Talukder Z Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
9
|
Bhowmik P, Bilichak A. Advances in Gene Editing of Haploid Tissues in Crops. Genes (Basel) 2021; 12:1410. [PMID: 34573392 PMCID: PMC8468125 DOI: 10.3390/genes12091410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Emerging threats of climate change require the rapid development of improved varieties with a higher tolerance to abiotic and biotic factors. Despite the success of traditional agricultural practices, novel techniques for precise manipulation of the crop's genome are needed. Doubled haploid (DH) methods have been used for decades in major crops to fix desired alleles in elite backgrounds in a short time. DH plants are also widely used for mapping of the quantitative trait loci (QTLs), marker-assisted selection (MAS), genomic selection (GS), and hybrid production. Recent discoveries of genes responsible for haploid induction (HI) allowed engineering this trait through gene editing (GE) in non-inducer varieties of different crops. Direct editing of gametes or haploid embryos increases GE efficiency by generating null homozygous plants following chromosome doubling. Increased understanding of the underlying genetic mechanisms responsible for spontaneous chromosome doubling in haploid plants may allow transferring this trait to different elite varieties. Overall, further improvement in the efficiency of the DH technology combined with the optimized GE could accelerate breeding efforts of the major crops.
Collapse
Affiliation(s)
- Pankaj Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK S7N 0W9, Canada;
| | - Andriy Bilichak
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada
| |
Collapse
|
10
|
Abstract
Doubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations. Thus, DH breeding enables fast evaluation of phenotypic traits on homogenous progeny. While for most crops haploid embryos are produced by costly and often genotype-dependent in vitro methods, for maize, two unique in planta systems are available to induce haploid embryos directly in the seed. Two "haploid inducer lines", identified from spontaneous maize mutants, are able to induce embryos of paternal or maternal origin. Although effortless crosses with lines of interest are sufficient to trigger haploid embryos, substantial improvements were necessary to bring DH technology to large scale production. They include the development of modern haploid inducer lines with high induction rates (8-12%), and methods to sort kernels with haploid embryos from the normal ones. Chromosome doubling represents also a crucial step in the DH process. Recent identification of genomic loci involved in spontaneous doubling opens up perspectives for a fully in planta DH pipeline in maize. Although discovered more than 60 years ago, maize haploid inducer lines still make headlines thanks to novel applications and findings. Indeed, maternal haploid induction was elegantly diverted to deliver genome editing machinery in germplasm recalcitrant to transformation techniques. The recent discovery of two molecular players controlling haploid induction allowed to revisit the mechanistic basis of maize maternal haploid induction and to successfully translate haploid induction ability to other crops.
Collapse
|
11
|
Verzegnazzi AL, Dos Santos IG, Krause MD, Hufford M, Frei UK, Campbell J, Almeida VC, Zuffo LT, Boerman N, Lübberstedt T. Major locus for spontaneous haploid genome doubling detected by a case-control GWAS in exotic maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1423-1434. [PMID: 33543310 DOI: 10.1007/s00122-021-03780-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
A major locus for spontaneous haploid genome doubling was detected by a case-control GWAS in an exotic maize germplasm. The combination of double haploid breeding method with this locus leads to segregation distortion on genomic regions of chromosome five. Temperate maize (Zea mays L.) breeding programs often rely on limited genetic diversity, which can be expanded by incorporating exotic germplasm. The aims of this study were to perform characterization of inbred lines derived from the tropical BS39 population using different breeding methods, to identify genomic regions showing segregation distortion in lines derived by the DH process using spontaneous haploid genome doubling (SHGD), and use case-control association mapping to identify loci controlling SHGD. Four different sets were used: BS39_DH and BS39_SSD were derived from the BS39 population by DH and single-seed descendent (SSD) methods, and BS39 × A427_DH and BS39 × A427_SSD from the cross between BS39 and A427. A total of 663 inbred lines were genotyped. The analyses of gene diversity and genetic differentiation for the DH sets provided evidence of the presence of a SHGD locus near the centromere of chromosome 5. The case-control GWAS for the DH set also pinpointed this locus. Haplotype sharing analysis showed almost 100% exclusive contribution of the A427 genome in the same region on chromosome 5 of BS39 × A427_DH, presumably due to an allele in this region affecting SHGD. This locus enables DH line production in exotic populations without colchicine or other artificial haploid genome doubling.
Collapse
Affiliation(s)
| | | | | | - Matthew Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | | | - Vinícius Costa Almeida
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro Tonello Zuffo
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
12
|
Wang L, Conteh B, Fang L, Xia Q, Nian H. QTL mapping for soybean (Glycine max L.) leaf chlorophyll-content traits in a genotyped RIL population by using RAD-seq based high-density linkage map. BMC Genomics 2020; 21:739. [PMID: 33096992 PMCID: PMC7585201 DOI: 10.1186/s12864-020-07150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/13/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Different soybean (Glycine max L.) leaf chlorophyll-content traits are considered to be significantly linked to soybean yield. To map the quantitative trait loci (QTLs) of soybean leaf chlorophyll-content traits, an advanced recombinant inbred line (RIL, ZH, Zhonghuang 24 × Huaxia 3) population was adopted to phenotypic data acquisitions for the target traits across six distinct environments (seasons and soybean growth stages). Moreover, the restriction site-associated DNA sequencing (RAD-seq) based high-density genetic linkage map of the RIL population was utilized for QTL mapping by carrying out the composite interval mapping (CIM) approach. RESULTS Correlation analyses showed that most traits were correlated with each other under specific chlorophyll assessing method and were regulated both by hereditary and environmental factors. In this study, 78 QTLs for soybean leaf chlorophyll-content traits were identified. Furthermore, 13 major QTLs and five important QTL hotspots were classified and highlighted from the detected QTLs. Finally, Glyma01g15506, Glyma02g08910, Glyma02g11110, Glyma07g15960, Glyma15g19670 and Glyma15g19810 were predicted from the genetic intervals of the major QTLs and important QTL hotspots. CONCLUSIONS The detected QTLs and candidate genes may facilitate to gain a better understanding of the hereditary basis of soybean leaf chlorophyll-content traits and may be valuable to pave the way for the marker-assisted selection (MAS) breeding of the target traits.
Collapse
Affiliation(s)
- Liang Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Brima Conteh
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Linzhi Fang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 Guangdong People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, 510642 Guangdong People’s Republic of China
| |
Collapse
|
13
|
Chaikam V, Gowda M, Martinez L, Alvarado Beltrán G, Zhang X, Prasanna BM. Diallelic Analysis of Tropical Maize Germplasm Response to Spontaneous Chromosomal Doubling. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1224. [PMID: 32957659 PMCID: PMC7570170 DOI: 10.3390/plants9091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Chromosome doubling is an important step in the production of maize doubled haploid (DH) lines to induce fertility in the male and female reproductive organs of haploid plants. Chromosomal doubling is routinely accomplished by treating haploid seedlings with mitosis-inhibiting chemicals. However, chromosomal doubling involves several labor-intensive steps and toxic chemicals. Spontaneous chromosomal doubling without any chemical treatments occurs at high frequency in haploids from a few maize genotypes. This study focused on elucidating the genetic components of two traits important for using spontaneous doubling in maize-breeding programs, namely, haploid male fertility (HMF) and haploid fertility (HF). In two different sets of diallel crosses, haploids were derived and assessed for HMF and HF in two environments in replicated trials. The results revealed significant genotypic variations for both traits. The general combining ability (GCA) and specific combining (SCA) were significant for both traits. Significant and positive GCA effects of up to 14% and 9% were found for HMF and HF, respectively. No significant reciprocal effects and genotype-by-environment (G×E) interactions were found for HF in both experiments, but HMF showed significant effects for both in one of the experiments. The GCA effects were more important than the SCA effects for HMF and HF across environments, implying that selection could facilitate their improvement. The high correlations between F1-hybrid performance and mid-parent values, as well as that between F1-hybrid performance and GCA effects, also supports the assumption that these traits are controlled by a few genes. SCA effects also played a role, especially when lines with low spontaneous doubling were used as parents. Overall, spontaneous doubling can be introgressed and improved in elite germplasm with selection, and it has the potential to be employed in DH pipelines.
Collapse
Affiliation(s)
- Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| | - Leocadio Martinez
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Gregório Alvarado Beltrán
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| |
Collapse
|