1
|
Chamarthi SK, Purcell LC, Fritschi FB, Ray JD, Smith JR, Kaler AS, King CA, Gillman JD. Association mapping for water use efficiency in soybean identifies previously reported and novel loci and permits genomic prediction. FRONTIERS IN PLANT SCIENCE 2024; 15:1486736. [PMID: 39670270 PMCID: PMC11634610 DOI: 10.3389/fpls.2024.1486736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
Soybean is a major legume crop cultivated globally due to the high quality and quantity of its seed protein and oil. However, drought stress is the most significant factor that decreases soybean yield, and more than 90% of US soybean acreage is dependent on rainfall. Water use efficiency (WUE) is positively correlated with the carbon isotopic ratio 13C/12C (C13 ratio) and selecting soybean varieties for high C13 ratio may enhance WUE and help improve tolerance to drought. Our study objective was to identify genetic loci associated with C13 ratio using a diverse set of 205 soybean maturity group IV accessions, and to examine the genomic prediction accuracy of C13 ratio across a range of environments. An accession panel was grown and assessed across seven distinct combinations of site, year and treatment, with five site-years under irrigation and two site-years under drought stress. Genome-wide association mapping (GWAM) analysis identified 103 significant single nucleotide polymorphisms (SNPs) representing 93 loci associated with alterations to C13 ratio. Out of these 93 loci, 62 loci coincided with previous studies, and 31 were novel. Regions tagged by 96 significant SNPs overlapped with 550 candidate genes involved in plant stress responses. These confirmed genomic loci could serve as a valuable resource for marker-assisted selection to enhance WUE and drought tolerance in soybean. This study also demonstrated that genomic prediction can accurately predict C13 ratio across different genotypes and environments and by examining only significant SNPs identified by GWAM analysis, higher prediction accuracies (P ≤ 0.05; 0.51 ≤ r ≤ 0.65) were observed. We generated genomic estimated breeding values for each genotype in the entire USDA-GRIN germplasm collection for which there was marker data. This information was used to identify the top ten extreme genotypes for each soybean maturity group, which could serve as valuable genetic and physiological resources for future breeding and physiological studies.
Collapse
Affiliation(s)
- Siva K. Chamarthi
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Felix B. Fritschi
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States
| | - Jeffery D. Ray
- Crop Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - James R. Smith
- Crop Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - Avjinder S. Kaler
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - C. Andy King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jason D. Gillman
- Plant Genetic Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Krueger CB, Ray JD, Smith JR, Dhanapal AP, Arifuzzaman M, Gao F, Fritschi FB. Identification of QTLs for symbiotic nitrogen fixation and related traits in a soybean recombinant inbred line population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:89. [PMID: 38536528 DOI: 10.1007/s00122-024-04591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 04/16/2024]
Abstract
KEY MESSAGE The genetic architecture of symbiotic N fixation and related traits was investigated in the field. QTLs were identified for percent N derived from the atmosphere, shoot [N] and C to N ratio. Soybean [Glycine max (L.) Merr.] is cultivated worldwide and is the most abundant source of plant-based protein. Symbiotic N2 fixation (SNF) in legumes such as soybean is of great importance; however, yields may still be limited by N in both high yielding and stressful environments. To better understand the genetic architecture of SNF and facilitate the development of high yielding cultivars and sustainable soybean production in stressful environments, a recombinant inbred line population consisting of 190 lines, developed from a cross between PI 442012A and PI 404199, was evaluated for N derived from the atmosphere (Ndfa), N concentration ([N]), and C to N ratio (C/N) in three environments. Significant genotype, environment and genotype × environment effects were observed for all three traits. A linkage map was constructed containing 3309 single nucleotide polymorphism (SNP) markers. QTL analysis was performed for additive effects of QTLs, QTL × environment interactions, and QTL × QTL interactions. Ten unique additive QTLs were identified across all traits and environments. Of these, two QTLs were detected for Ndfa and eight for C/N. Of the eight QTLs for C/N, four were also detected for [N]. Using QTL × environment analysis, six QTLs were detected, of which five were also identified in the additive QTL analysis. The QTL × QTL analysis identified four unique epistatic interactions. The results of this study may be used for genomic selection and introgression of favorable alleles for increased SNF, [N], and C/N via marker-assisted selection.
Collapse
Affiliation(s)
- C Bennet Krueger
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Jeffery D Ray
- Crop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - James R Smith
- Crop Genetics Research Unit, USDA, Agricultural Research Service, 141 Experiment Station Rd, Stoneville, MS, 38776, USA
| | - Arun Prabhu Dhanapal
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Fei Gao
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Felix B Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Jiang W, Liu Y, Zhang C, Pan L, Wang W, Zhao C, Zhao T, Li Y. Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1852-1871. [PMID: 38226463 DOI: 10.1093/jxb/erad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Drought tolerance is a complex trait in soybean that is controlled by polygenetic quantitative trait loci (QTLs). In this study, wilting score, days-to-wilting, leaf relative water content, and leaf relative conductivity were used to identify QTLs associated with drought tolerance in recombinant inbred lines derived from a cross between a drought-sensitive variety, Lin, and a drought-tolerant variety, Meng. A total of 33 drought-tolerance QTLs were detected. Of these 17 were major QTLs. In addition, 15 were novel drought-tolerance QTLs. The most predominant QTL was on chromosome 11. This was detected in at least three environments. The overlapped mapping interval of the four measured traits was 0.2 cM in genetic distance (about 220 kb in physical length). Glyma.11g143500 (designated as GmUAA6), which encodes a UDP-N-acetylglucosamine transporter, was identified as the most likely candidate gene. The allele of GmUAA6 from Lin (GmUAA6Lin) was associated with improved soybean drought tolerance. Overexpression of GmUAA6Lin in Arabidopsis and soybean hairy roots enhanced drought tolerance. Furthermore, a 3-bp insertion/deletion (InDel) in the coding sequence of GmUAA6 explained up to 49.9% of the phenotypic variation in drought tolerance-related traits, suggesting that this InDel might be used in future marker-assisted selection of drought-tolerant lines in soybean breeding programs.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yandang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Pan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tuanjie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
4
|
Arifuzzaman M, Mamidi S, Sanz-Saez A, Zakeri H, Scaboo A, Fritschi FB. Identification of loci associated with water use efficiency and symbiotic nitrogen fixation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1271849. [PMID: 38034552 PMCID: PMC10687445 DOI: 10.3389/fpls.2023.1271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.
Collapse
Affiliation(s)
- Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hossein Zakeri
- College of Agriculture, California State University-Chico, Chico, CA, United States
| | - Andrew Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Jiang L, Shen W, Liu C, Tahir MM, Li X, Zhou S, Ma F, Guan Q. Engineering drought-tolerant apple by knocking down six GH3 genes and potential application of transgenic apple as a rootstock. HORTICULTURE RESEARCH 2022; 9:uhac122. [PMID: 35937857 PMCID: PMC9347023 DOI: 10.1093/hr/uhac122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 06/01/2023]
Abstract
Drought poses a major threat to apple fruit production and quality. Because of the apple's long juvenile phase, developing varieties with improved drought tolerance using biotechnology approaches is needed. Here, we used the RNAi approach to knock down six GH3 genes in the apple. Under prolonged drought stress, the MdGH3 RNAi plants performed better than wild-type plants and had stronger root systems, higher root-to-shoot ratio, greater hydraulic conductivity, increased photosynthetic capacity, and increased water use efficiency. Moreover, MdGH3 RNAi plants promoted the drought tolerance of the scion when they were used as rootstock, compared with wild-type and M9-T337 rootstocks. Scions grafted onto MdGH3 RNAi plants showed increased plant height, stem diameter, photosynthetic capacity, specific leaf weight, and water use efficiency. The use of MdGH3 RNAi plants as rootstocks can also increase the C/N ratio of the scion and achieve the same effect as the M9-T337 rootstock in promoting the flowering and fruiting of the scion. Notably, using MdGH3 RNAi plants as rootstocks did not reduce fruit weight and scion quality compared with using M9-T337 rootstock. Our research provides candidate genes and demonstrates a general approach that could be used to improve the drought tolerance of fruit trees without sacrificing the yield and quality of scion fruits.
Collapse
Affiliation(s)
| | | | - Chen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd, Hawke’s Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | |
Collapse
|
6
|
Chamarthi SK, Kaler AS, Abdel-Haleem H, Fritschi FB, Gillman JD, Ray JD, Smith JR, Dhanapal AP, King CA, Purcell LC. Identification and Confirmation of Loci Associated With Canopy Wilting in Soybean Using Genome-Wide Association Mapping. FRONTIERS IN PLANT SCIENCE 2021; 12:698116. [PMID: 34335664 PMCID: PMC8317169 DOI: 10.3389/fpls.2021.698116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
Drought causes significant soybean [Glycine max (L.) Merr.] yield losses each year in rain-fed production systems of many regions. Genetic improvement of soybean for drought tolerance is a cost-effective approach to stabilize yield under rain-fed management. The objectives of this study were to confirm previously reported soybean loci and to identify novel loci associated with canopy wilting (CW) using a panel of 200 diverse maturity group (MG) IV accessions. These 200 accessions along with six checks were planted at six site-years using an augmented incomplete block design with three replications under irrigated and rain-fed treatments. Association mapping, using 34,680 single nucleotide polymorphisms (SNPs), identified 188 significant SNPs associated with CW that likely tagged 152 loci. This includes 87 SNPs coincident with previous studies that likely tagged 68 loci and 101 novel SNPs that likely tagged 84 loci. We also determined the ability of genomic estimated breeding values (GEBVs) from previous research studies to predict CW in different genotypes and environments. A positive relationship (P ≤ 0.05;0.37 ≤ r ≤ 0.5) was found between observed CW and GEBVs. In the vicinity of 188 significant SNPs, 183 candidate genes were identified for both coincident SNPs and novel SNPs. Among these 183 candidate genes, 57 SNPs were present within genes coding for proteins with biological functions involved in plant stress responses. These genes may be directly or indirectly associated with transpiration or water conservation. The confirmed genomic regions may be an important resource for pyramiding favorable alleles and, as candidates for genomic selection, enhancing soybean drought tolerance.
Collapse
Affiliation(s)
- Siva K. Chamarthi
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Avjinder S. Kaler
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Hussein Abdel-Haleem
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Jason D. Gillman
- Plant Genetic Research Unit, USDA-ARS, University of Missouri, Columbia, MO, United States
| | - Jeffery D. Ray
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, United States
| | - James R. Smith
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, United States
| | - Arun P. Dhanapal
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Charles A. King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
7
|
Eggels S, Blankenagel S, Schön CC, Avramova V. The carbon isotopic signature of C 4 crops and its applicability in breeding for climate resilience. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1663-1675. [PMID: 33575820 PMCID: PMC8205923 DOI: 10.1007/s00122-020-03761-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops. In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.
Collapse
Affiliation(s)
- Stella Eggels
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Sonja Blankenagel
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany
| | - Viktoriya Avramova
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Straße 2, 85354, Freising, Germany.
| |
Collapse
|
8
|
Bazzer SK, Purcell LC. Identification of quantitative trait loci associated with canopy temperature in soybean. Sci Rep 2020; 10:17604. [PMID: 33077811 PMCID: PMC7572360 DOI: 10.1038/s41598-020-74614-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.
Collapse
Affiliation(s)
- Sumandeep K Bazzer
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA
| | - Larry C Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72704, USA.
| |
Collapse
|