1
|
Feng L, Zhou M, Tao A, Ma X, Wang N, Zhang H, Duan H, Tao Y. Map-based cloning of Zmccr3 and its network construction and validation for regulating maize seed germination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:105. [PMID: 40261412 DOI: 10.1007/s00122-025-04890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
KEY MESSAGE Map-based cloning of Zmccr3 for regulate SG and its molecular regulatory pathway was performed and validated. WGCNA, target genes/pathways during the process of seed dormancy formation were obtained. Seed dormancy (SD) and pre-harvest sprouting (PHS) affect the grain yield and quality of grain in cereal and hybrid seed production. Although the benefits of studying SD and seed germination (SG) during seed development are well established, research into the genetic variation and molecular regulation of SD, particularly during the transition from SD to SG, remains very limited. In this study, bulked segregant analysis (BSA) and linkage analysis were used to map the QTL for the maize vp16 mutant of PHS. Using genetic and biological methods, the candidate gene was identified as Zmccr3, encoding cinnamoyl-CoA reductase 3 (ccr3), which is involved in the phenylalanine pathway of lignin metabolism and affects SG. Based on RNA-seq (RNA sequencing) at two stages of grain development with extreme PHS traits, a weighted gene coexpression network analysis (WGCNA) related to SD and SG formation was constructed, and ten target genes and three pathways during the transition from SD to SG were identified. Simultaneously, the Zmccr3 pathway was established and validated, involving upstream lipid metabolism, redox modification and degradation of cell wall oligosaccharides (as electrophilic compounds), regulation of GA signaling and intracellular ROS homeostasis, and downstream oxidation of cell wall lignin units and synthesis of phenolic compounds that affect endosperm weakening and cell wall loosening, ultimately regulating SG or SD. Therefore, we propose the Zmccr3 hypothesis to elucidate its possible functions. These findings have important theoretical and practical implications for understanding the genetic basis of PHS and SD in maize, increasing genetic resources and improving traits.
Collapse
Affiliation(s)
- Liqing Feng
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Mingting Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China
| | - Anyan Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Xiaolin Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - He Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Yongsheng Tao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Huang S, Wang C, Wang L, Li S, Wang T, Tao Z, Zhao Y, Ma J, Zhao M, Zhang X, Wang L, Xie C, Li P. Loss-of-function of LIGULELESS1 activates the jasmonate pathway and promotes maize resistance to corn leaf aphids. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3326-3341. [PMID: 39145425 PMCID: PMC11606423 DOI: 10.1111/pbi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Corn leaf aphids (Rhopalosiphum maidis) are highly destructive pests of maize (Zea mays) that threaten growth and seed yield, but resources for aphid resistance are scarce. Here, we identified an aphid-resistant maize mutant, resistance to aphids 1 (rta1), which is allelic to LIGULELESS1 (LG1). We confirmed LG1's role in aphid resistance using the independent allele lg1-2, allelism tests and LG1 overexpression lines. LG1 interacts with, and increases the stability of ZINC-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM (ZIM1), a central component of the jasmonic acid (JA) signalling pathway, by disturbing its interaction with the F-box protein CORONATINE INSENSITIVE 1a (COI1a). Natural variation in the LG1 promoter was associated with aphid resistance among inbred lines. Moreover, a loss-of-function mutant in the LG1-related gene SPL8 in the dicot Arabidopsis thaliana conferred aphid resistance. This study revealed the aphid resistance mechanism of lg1, providing a theoretical basis and germplasm for breeding aphid-resistant crops.
Collapse
Affiliation(s)
- Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Xinqiao Zhang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Lei Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
4
|
Wen T, Zhang X, Zhu J, Zhang S, Rhaman MS, Zeng W. A SLAF-based high-density genetic map construction and genetic architecture of thermotolerant traits in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1338086. [PMID: 38384753 PMCID: PMC10880447 DOI: 10.3389/fpls.2024.1338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
The leaf scorching trait at flowering is a crucial thermosensitive phenotype in maize under high temperature stress (HS), yet the genetic basis of this trait remains poorly understood. In this study, we genotyped a 254 RIL-F2:8 population, derived from the leaf scorch-free parental inbred line Abe2 and the leaf scorching maternal inbred line B73, using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 10,112 polymorphic SLAF markers were developed, and a high-density genetic map with a total length of 1,475.88 cM was constructed. The average sequencing depth of the parents was 55.23X, and that of the progeny was 12.53X. Then, we identified a total of 16 QTLs associated with thermotolerant traits at flowering, of which four QTLs of leaf scorching damage (LS) were distributed on chromosomes 1 (qLS1), 2 (qLS2.1, qLS2.2) and 3 (qLS3), which could explain 19.73% of phenotypic variation. Combining one qLS1 locus with QTL-seq results led to the identification of 6 candidate genes. Expression experiments and sequence variation indicated that Zm00001d033328, encoding N-acetyl-gamma-glutamyl-phosphate reductase, was the most likely candidate gene controlling thermotolerant traits at flowering. In summary, the high-density genetic map and genetic basis of thermotolerant traits lay a critical foundation for mapping other complex traits and identifying the genes associated with thermotolerant traits in maize.
Collapse
Affiliation(s)
- Tingting Wen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
- Seed Administration Station of Shandong Province, Jinan, China
| | - Xuefei Zhang
- Taian Daiyue District Bureau of Agriculture and Rural Affairs, Taian, China
| | - Jiaojiao Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Susu Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Wei Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| |
Collapse
|
5
|
Chen Y, Du T, Zhang J, Chen S, Fu J, Li H, Yang Q. Genes and pathways correlated with heat stress responses and heat tolerance in maize kernels. FRONTIERS IN PLANT SCIENCE 2023; 14:1228213. [PMID: 37662159 PMCID: PMC10470023 DOI: 10.3389/fpls.2023.1228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Global warming leads to frequent extreme weather, especially the extreme heat events, which threating the safety of maize production. Here we selected a pair of maize inbred lines, PF5411-1 and LH150, with significant differences in heat tolerance at kernel development stage. The two maize inbred lines were treated with heat stress at kernel development stage. Compared with the control groups, transcriptomic analysis identified 770 common up- and down-regulated genes between PF5411-1 and LH150 under heat stress conditions, and 41 putative TFs were predicted. Based on the interaction term of the two-factorial design, we also identified 6,744 differentially regulated genes between LH150 and PF5411-1, 111 common up-regulated and 141 common down-regulated genes were overlapped with the differentially regulated genes, respectively. Combined with proteins and metabolites data, several key pathways including seven differentially regulated genes were highly correlated with the heat tolerance of maize kernels. The first is the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway ko04141: protein processing in endoplasmic reticulum, four small heat shock protein (sHSP) genes were enriched in this pathway, participating with the process of ER-associated degradation (ERAD). The second one is the myricetin biosynthesis pathway, a differentially regulated protein, flavonoid 3',5'-hydroxylase [EC:1.14.14.81], catalyzed the synthesis of myricetin. The third one is the raffinose metabolic pathway, one differentially regulated gene encoded the raffinose synthase controlled the synthesis of raffinose, high level of raffinose enhances the heat tolerance of maize kernels. And the last one is the ethylene signaling pathway. Taken together, our work identifies many genes responded to heat stress in maize kernels, and finds out seven genes and four pathways highly correlated with heat tolerance of maize kernels.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Tingting Du
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Jie Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Junjie Fu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Qin Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
6
|
Zeng W, Li H, Zhang F, Wang X, Rehman S, Huang S, Zhang C, Wu F, Li J, Lv Y, Zhang C, Li M, Li Z, Shi Y. Functional characterization and allelic mining of OsGLR genes for potential uses in rice improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1236251. [PMID: 37636110 PMCID: PMC10450912 DOI: 10.3389/fpls.2023.1236251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
Glutamate-like receptor (GLR) genes are a group of regulatory genes involved in many physiological processes of plants. With 26 members in the rice genome, the functionalities of most rice GLR genes remain unknown. To facilitate their potential uses in rice improvement, an integrated strategy involving CRISPR-Cas9 mediated knockouts, deep mining and analyses of transcriptomic responses to different abiotic stresses/hormone treatments and gene CDS haplotype (gcHap) diversity in 3,010 rice genomes was taken to understand the functionalities of the 26 rice GLR genes, which led us to two conclusions. First, the expansion of rice GLR genes into a large gene family during evolution had gone through repeated gene duplication events occurred primarily in two large GLR gene clusters on rice chromosomes 9 and 6, which was accompanied with considerable functional differentiation. Secondly, except for two extremely conserved ones (OsGLR6.2 and OsGLR6.3), rich gcHap diversity exists at the remaining GLR genes which played important roles in rice population differentiation and rice improvement, evidenced by their very strong sub-specific and population differentiation, by their differentiated responses to day-length and different abiotic stresses, by the large phenotypic effects of five GLR gene knockout mutants on rice yield traits, by the significant association of major gcHaps at most GLR loci with yield traits, and by the strong genetic bottleneck effects and artificial selection on the gcHap diversity in populations Xian (indica) and Geng (japonica) during modern breeding. Our results suggest the potential values of the natural variation at most rice GLR loci for improving the productivity and tolerances to abiotic stresses. Additional efforts are needed to determine the phenotypic effects of major gcHaps at these GLR loci in order to identify 'favorable' alleles at specific GLR loci specific target traits in specific environments to facilitate their application to rice improvement in future.
Collapse
Affiliation(s)
- Wei Zeng
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Hua Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fanlin Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xinchen Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Shamsur Rehman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Shiji Huang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chenyang Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Fengcai Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jianfeng Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yamei Lv
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Chaopu Zhang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhikang Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingyao Shi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Comprehensive Analysis of Glutamate Receptor-like Genes in Rice ( Oryza sativa L.): Genome-Wide Identification, Characteristics, Evolution, Chromatin Accessibility, gcHap Diversity, Population Variation and Expression Analysis. Curr Issues Mol Biol 2022; 44:6404-6427. [PMID: 36547098 PMCID: PMC9777005 DOI: 10.3390/cimb44120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glutamate receptors (GLR) are widely present in animals and plants, playing essential roles in regulating plant growth, development and stress response. At present, most studies of GLRs in plants are focused on Arabidopsis thaliana, while there have been few studies on rice. In this study, we identified 26 OsGLR genes in rice (Oryza sativa L.). Then, we analyzed the chromosomal location, physical and chemical properties, subcellular location, transmembrane (TM) helices, signal peptides, three-dimensional (3D) structure, cis-acting elements, evolution, chromatin accessibility, population variation, gene-coding sequence haplotype (gcHap) and gene expression under multiple abiotic stress and hormone treatments. The results showed that out of the 26 OsGLR genes, ten genes had the TM domain, signal peptides and similar 3D structures. Most OsGLRs exhibited high tissue specificity in expression under drought stress. In addition, several OsGLR genes were specifically responsive to certain hormones. The favorable gcHap of many OsGLR genes in modern varieties showed obvious differentiation between Xian/indica and Geng/japonica subspecies. This study, for the first time, comprehensively analyzes the OsGLR genes in rice, and provides an important reference for further research on their molecular function.
Collapse
|
8
|
Li B, Zhang X, Liu Z, Wang L, Song L, Liang X, Dou S, Tu J, Shen J, Yi B, Wen J, Fu T, Dai C, Gao C, Wang A, Ma C. Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122815. [PMID: 34961286 PMCID: PMC8709392 DOI: 10.3390/plants10122815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/20/2023]
Abstract
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The Brassica species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II S haplotype, named BrS-325, was identified in a pak choi line '325', which was responsible for the completely self-compatible phenotype. To obtain the entire S locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in B. rapa. S locus comparative analysis showed that the closest relatives to BrS-325 was BrS-60, and high sequence polymorphism existed in the S locus. Meanwhile, two duplicated SRKs (BrSRK-325a and BrSRK-325b) were distributed in the BrS-325 locus with opposite transcription directions. BrSRK-325b and BrSCR-325 were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II S haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II S haplotype BrS-325 in B. rapa. The complete SC phenotype of '325' showed the potential for practical breeding application value in B. rapa.
Collapse
Affiliation(s)
- Bing Li
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Xueli Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Zhiquan Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China;
| | - Lulin Wang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Liping Song
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Xiaomei Liang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Shengwei Dou
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxing Tu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxiong Shen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Bin Yi
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jing Wen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Tingdong Fu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Cheng Dai
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Chaozhi Ma
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| |
Collapse
|