1
|
Dhandhanya UK, Afreen U, Jha SK, Mukhopadhyay K, Kumar M. Elucidating circRNA-miRNA-mRNA competing endogenous regulatory RNA network during leaf rust pathogenesis in wheat (Triticum aestivum L.). Funct Integr Genomics 2025; 25:15. [PMID: 39815073 DOI: 10.1007/s10142-024-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs). Here we explored the previously published circRNAs for their differential expression and correlated the data with the differentially expressed miRNAs (DEMs) through various in silico methods to acquire the target miRNAs of circRNAs and the downstream target mRNAs of miRNAs. Finally, a competing endogenous RNA (ceRNAs) regulatory network was constructed and validated through RT-qPCR method. We have identified the ceRNA regulatory network of four differentially expressed circRNAs (DECs) and five DEMs to highlight their crucial roles in the robust enhancement of the temporal expression profiles of five defense responsive genes (mRNAs) in wheat NILs against leaf rust infection. The study confirms the synergistic expression of circRNAs and mRNAs with an antagonistic correlation with the expression profile of the corresponding miRNAs. The vital role of leaf rust-resistant gene Lr28 has also been highlighted for driving the efficiency of the circRNAs to upregulate target gene expression. Thus, understanding the circRNA-miRNA-target gene interaction during leaf rust pathogenesis can help to identify stress-specific regulatory biomarkers to enhance defense responses in wheat for improved resilience through multi-omics integration of transcriptomics, proteomics and metabolomics.
Collapse
Affiliation(s)
- Umang Kumar Dhandhanya
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Uzma Afreen
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Kunal Mukhopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Manish Kumar
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
2
|
Yan H, Zhu J, Jin Y, Bai X, Zeng Q, Gao H, Ma J, Huang L, Kang Z, Zhan G. Evaluation of Stripe Rust Resistance and Chip Detection Resistance Genes in 286 Xinjiang Wheat Cultivars and Breeding Lines. PLANT DISEASE 2024; 108:3269-3278. [PMID: 38937931 DOI: 10.1094/pdis-04-24-0780-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Wheat stripe rust is a destructive disease worldwide, caused by Puccinia striiformis f. sp. tritici (Pst). Resistance breeding is the most effective method of controlling stripe rust. Xinjiang is a relatively independent epidemic region of wheat stripe rust in China. In recent years, wheat stripe rust in this area has shown an upward trend. Therefore, the purpose of this study was to evaluate the resistance level of wheat cultivars (lines) to the prevalent Pst races and determine the genetic background of stripe rust resistance genes in Xinjiang. Six predominant Pst races in China were used to study resistance of 286 wheat cultivars (lines) at both the seedling stage under controlled conditions and the adult-plant stage under field conditions. In the seedling tests, 175 (61.19%) entries were resistant to the race CYR23, 125 (43.71%) to CYR29, 153 (53.50%) to CYR31, 88 (30.77%) to CYR32, 174 (60.84%) to CYR33, and 98 (34.27%) to CYR34. Among the resistant entries, 23 (8.04%) were resistant to all six races. In the field test, 135 (47.20%) entries were resistant to the tested mixed races. Through comparing the responses in the seedling and adult-plant stages, 109 (38.11%) entries were found to have adult-plant resistance (APR), and 14 (4.90%) entries have all-stage resistance (ASR). The 286 wheat entries were also tested using a wheat breeder chip containing 12 Yr resistance loci. Among these entries, 44 (15.38%) were found to have a single gene, 221 (77.27%) have two or more genes, and 21 (7.34%) have none of the 12 genes, including 144 (50.35%) with Yr30 and 5 (1.75%) with YrSP. Entries with two or more genes have stronger resistance to Pst. Overall, the majority of entries have all-stage and/or adult-plant resistance, but their genes for resistance in addition to the 12 tested Yr genes need to be determined. It is also necessary to introduce more effective resistance genes in the breeding programs to improve stripe rust resistance in wheat cultivars in Xinjiang.
Collapse
Affiliation(s)
- Haohao Yan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianing Zhu
- College of Life Science and Technology, Tarim University, Alar, Xinjiang 843300, China
| | - Yongjin Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Xiang M, Tian B, Cao J, Liu S, Zhou C, Wang X, Zhang Y, Li J, Yuan X, Wan J, Yu R, Zheng W, Wu J, Zeng Q, Kang Z, Li C, Cui F, Han D. Yr29 combined with QYr.nwafu-4BL.3 confers durable resistance to stripe rust in wheat cultivar Jing 411. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:252. [PMID: 39425797 DOI: 10.1007/s00122-024-04758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE The combination of a QTL on chromosome arm 4BL and Yr29 provides durable resistance with no significant yield penalty. Wheat stripe rust or yellow rust (YR), caused by Puccinia striiformis f. sp. tritici (Pst), causes substantial yield reductions globally, but losses can be minimized by using resistance genes. Chinese wheat cultivar Jing 411 (J411) has continued to display an acceptable level of adult-plant resistance (APR) to YR in varied field conditions since its release in the 1990s. A recombinant inbred line (RIL) population comprising 187 lines developed from a cross of J411 and Kenong 9204 (KN9204) was evaluated in multiple environments to identify genomic regions carrying genes for YR resistance. A total of five quantitative trait loci (QTL) on chromosome arm 1BL, 3BS, 4BL, 6BS, and 7BL from J411 and two QTL on 3DS and 7DL from KN9204 were detected using inclusive composite interval mapping with the wheat 660 K SNP array. QYr.nwafu-1BL.5 and QYr.nwafu-4BL.3 from J411 were robust and showed similar effects in all environments. QYr.nwafu-1BL.5 was likely the pleiotropic gene of Yr29/Lr46. QYr.nwafu-4BL.3 was located within a 1.0 cM interval delimited by KASP markers AX-111609222 and AX-89755491. Based on haplotype analysis, Yr29 and QYr.nwafu-4BL.3 were identified as genetic components of quantitative resistance in a number of wheat cultivars. Moreover, RILs with Yr29 and QYr.nwafu-4BL.3 individually or when combined showed higher resistance to YR in rust nurseries compared with RILs without them, and there was no negative effect of their presence on agronomic traits under rust-free conditions. These results suggest that effective polymerization strategy is important for breeding high yielding and durable resistance cultivars.
Collapse
Affiliation(s)
- Mingjie Xiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bo Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianghao Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Caie Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yibo Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiale Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xunying Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jufen Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Fa Cui
- College of Agriculture/Key Laboratory of Molecular Module-Based Breeding of High Yield and AbioticResistant Plants, Ludong University, Universities of Shandong, Yantai, Shandong, 264025, People's Republic of China.
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Wang M, Hu X, Chen X. Identification of a Locus for High-Temperature Adult-Plant Resistance to Stripe Rust in the Wheat Yr8 Near-Isogenic Line Through Mutagenesis and Molecular Mapping. PLANT DISEASE 2024; 108:1261-1269. [PMID: 37938905 DOI: 10.1094/pdis-10-23-2037-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Aegilops species are wheat relatives that harbor valuable disease resistance genes for wheat breeding. The wheat Yr8 near-isogenic line AvSYr8NIL has long been believed to carry only Yr8 for race-specific all-stage resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, derived from Aegilops comosa. However, AvSYr8NIL has been found to have high-temperature adult-plant (HTAP) resistance in our field and greenhouse tests. To confirm both HTAP and Yr8 resistance, seeds from AvSYr8NIL were treated with ethyl methanesulfonate to generate mutant lines. The mutant lines with only Yr8 (M641) and only HTAP resistance (M488) were crossed with the susceptible recurrent parent Avocet S (AvS). The F1 and F4 lines of AvS/M641 were phenotyped with Yr8-avirulent races in the seedling stage at the low-temperature (4 to 20°C) profile, while the F1, F2, F4, and F5 lines of AvS/M488 were phenotyped with Yr8-virulent races in the adult-plant stage at the high-temperature (10 to 30°C) profile. Both Yr8 and the HTAP resistance gene (YrM488) were recessive. The F4 populations of AvS/M641 and AvS/M488 were genotyped using polymorphic Kompetitive allele-specific PCR markers converted from single-nucleotide polymorphisms. Yr8 was mapped to a 0.66-cM fragment, and YrM488 was mapped to a 1.22-cM interval on chromosome 2D. The physical distance between the two resistance genes was estimated to be more than 500 Mb, indicating their distinct loci. The mutant lines with separated resistance genes would be useful in enhancing our understanding of different types of resistance and in further studying the interactions between wheat and the stripe rust pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, U.S.A
| |
Collapse
|
5
|
Mir ZA, Chauhan D, Pradhan AK, Srivastava V, Sharma D, Budhlakoti N, Mishra DC, Jadon V, Sahu TK, Grover M, Gangwar OP, Kumar S, Bhardwaj SC, Padaria JC, Singh AK, Rai A, Singh GP, Kumar S. Comparative transcriptome profiling of near isogenic lines PBW343 and FLW29 to unravel defense related genes and pathways contributing to stripe rust resistance in wheat. Funct Integr Genomics 2023; 23:169. [PMID: 37209309 DOI: 10.1007/s10142-023-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Stripe rust (Sr), caused by Puccinia striiformis f. sp. tritici (Pst), is the most devastating disease that poses serious threat to the wheat-growing nations across the globe. Developing resistant cultivars is the most challenging aspect in wheat breeding. The function of resistance genes (R genes) and the mechanisms by which they influence plant-host interactions are poorly understood. In the present investigation, comparative transcriptome analysis was carried out by involving two near-isogenic lines (NILs) PBW343 and FLW29. The seedlings of both the genotypes were inoculated with Pst pathotype 46S119. In total, 1106 differentially expressed genes (DEGs) were identified at early stage of infection (12 hpi), whereas expressions of 877 and 1737 DEGs were observed at later stages (48 and 72 hpi) in FLW29. The identified DEGs were comprised of defense-related genes including putative R genes, 7 WRKY transcriptional factors, calcium, and hormonal signaling associated genes. Moreover, pathways involved in signaling of receptor kinases, G protein, and light showed higher expression in resistant cultivar and were common across different time points. Quantitative real-time PCR was used to further confirm the transcriptional expression of eight critical genes involved in plant defense mechanism against stripe rust. The information about genes are likely to improve our knowledge of the genetic mechanism that controls the stripe rust resistance in wheat, and data on resistance response-linked genes and pathways will be a significant resource for future research.
Collapse
Affiliation(s)
- Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Chauhan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | | | - Vivek Srivastava
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Divya Sharma
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | | | - Vasudha Jadon
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Tanmaya Kumar Sahu
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal, Pradesh, 171002, India
| | - Jasdeep C Padaria
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - G P Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
6
|
Genome-Wide Association Study Identifies Two Loci for Stripe Rust Resistance in a Durum Wheat Panel from Iran. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Stripe rust (Puccinia striiformis f. sp. tritici (Pst)) is one of the most devastating fungal diseases of durum wheat (Triticum turgidum L. var. durum Desf.). Races of Pst with new virulence combinations are emerging more regularly on wheat-growing continents, which challenges wheat breeding for resistance. This study aimed to identify and characterize resistance to Pst races based on a genome-wide association study. GWAS is an approach to analyze the associations between a genome-wide set of single-nucleotide polymorphisms (SNPs) and target phenotypic traits. A total of 139 durum wheat accessions from Iran were evaluated at the seedling stage against isolates Pstv-37 and Pstv-40 of Pst and then genotyped using a 15K SNP chip. In total, 230 significant associations were identified across 14 chromosomes, of which 30 were associated with resistance to both isolates. Furthermore, 17 durum wheat landraces showed an immune response against both Pst isolates. The SNP markers and resistant accessions identified in this study may be useful in programs breeding durum wheat for stripe rust resistance.
Collapse
|
7
|
Mago R, Chen C, Xia X, Whan A, Forrest K, Basnet BR, Perera G, Chandramohan S, Randhawa M, Hayden M, Bansal U, Huerta-Espino J, Singh RP, Bariana H, Lagudah E. Adult plant stem rust resistance in durum wheat Glossy Huguenot: mapping, marker development and validation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1541-1550. [PMID: 35199199 DOI: 10.1007/s00122-022-04052-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Adult plant stem rust resistance locus, QSrGH.cs-2AL, was identified in durum wheat Glossy Huguenot and mendelised as Sr63. Markers closely linked with Sr63 were developed. An F3 population from a Glossy Huguenot (GH)/Bansi cross used in a previous Australian study was advanced to F6 for molecular mapping of adult plant stem rust resistance. Maturity differences among F6 lines confounded assessments of stem rust response. GH was crossed with a stem rust susceptible F6 recombinant inbred line (RIL), GHB14 (M14), with similar maturity and an F6:7 population was developed through single seed descent method. F7 and F8 RILs were tested along with the parents at different locations. The F6 individual plants and both parents were genotyped using the 90 K single nucleotide polymorphism (SNP) wheat array. Stem rust resistance QTL on the long arms of chromosomes 1B (QSrGH.cs-1BL) and 2A (QSrGH.cs-2AL) were detected. QSrGH.cs-1BL and QSrGH.cs-2AL were both contributed by GH and explained 22% and 18% adult plant stem rust response variation, respectively, among GH/M14 RIL population. RILs carrying combinations of these QTL reduced more than 14% stem rust severity compared to those that possessed QSrGH.cs-1BL and QSrGH.cs-2AL individually. QSrGH.cs1BL was demonstrated to be the same as Sr58/Lr46/Yr29/Pm39 through marker genotyping. Lines lacking QSrGH.cs-1BL were used to Mendelise QSrGH.cs-2AL. Based on genomic locations of previously catalogued stem rust resistance genes and the QSrGH.cs-2AL map, it appeared to represent a new APR locus and was permanently named Sr63. SNP markers associated with Sr63 were converted to kompetetive allele-specific PCR (KASP) assays and were validated on a set of durum cultivars.
Collapse
Affiliation(s)
- Rohit Mago
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| | - Chunhong Chen
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Xiaodi Xia
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Alex Whan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Bhoja R Basnet
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Geetha Perera
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Sutha Chandramohan
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia
| | - Mandeep Randhawa
- ICRAF House, CIMMYT Kenya, United Nations Avenue, Gigiri, Village Market, P.O. Box 1041, 00621, Nairobi, Kenya
| | - Matthew Hayden
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Agribio, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Urmil Bansal
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Julio Huerta-Espino
- Campo Experimental Valle de México, INIFAP, Chapingo, Estado de México, Mexico
| | - Ravi P Singh
- CIMMYT, Carretera Mexico-Veracruz Km 18, El Batan, Texcoco, Estado de México, Mexico
| | - Harbans Bariana
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| | - Evans Lagudah
- CSIRO Agriculture and Food, P.O. Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
Radanović A, Sprycha Y, Jocković M, Sundt M, Miladinović D, Jansen C, Horn R. KASP Markers Specific for the Fertility Restorer Locus Rf1 and Application for Genetic Purity Testing in Sunflowers ( Helianthus annuus L.). Genes (Basel) 2022; 13:465. [PMID: 35328019 PMCID: PMC8951052 DOI: 10.3390/genes13030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) were significantly associated with fertility restoration of cytoplasmic male sterility (CMS) PET1 by the restorer gene Rf1. For these SNPs, four Kompetitive allele-specific PCR (KASP) markers were successfully designed. The KASP markers cover the fertility restorer locus Rf1, spanning about 3 Mb, and clearly differentiate restorer and maintainer lines. For genetic purity testing in sunflower hybrid production, the efficiency for detecting contaminations in samples was simulated using mixtures of hypocotyls or leaves. Contaminations of restorer lines with 1%, 3%, 5%, 10%, and 50% of maintainer lines were screened with all four KASP markers. Contaminations of 10% could be clearly detected in pools of 100 plants. Contaminations below this level require detection on a single plant level. For single plant detections, ethyl methanesulfonate-treated sunflower F1 hybrids, which had been phenotypically evaluated for male sterility (potential mutation in the Rf1 gene) were screened. Nine identified either partially male-sterile or male-sterile plants were analyzed with all four KASP markers and only one proved to be a hybrid with a mutation, seven were male-sterile contaminants in the F1 seeds used (1.6%) and one a recombinant plant. The four KASP markers should be valuable tools for marker-assisted selection (MAS) in sunflower breeding regarding the restorer locus Rf1.
Collapse
Affiliation(s)
- Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Yves Sprycha
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Monja Sundt
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Constantin Jansen
- Strube Research GmbH & Co. KG, Hauptstr. 1, D-38387 Söllingen, Germany;
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| |
Collapse
|
9
|
Rollar S, Geyer M, Hartl L, Mohler V, Ordon F, Serfling A. Quantitative Trait Loci Mapping of Adult Plant and Seedling Resistance to Stripe Rust ( Puccinia striiformis Westend.) in a Multiparent Advanced Generation Intercross Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:684671. [PMID: 35003147 PMCID: PMC8733622 DOI: 10.3389/fpls.2021.684671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/19/2021] [Indexed: 05/20/2023]
Abstract
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
Collapse
Affiliation(s)
- Sandra Rollar
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
10
|
Dyda M, Tyrka M, Gołębiowska G, Rapacz M, Wędzony M. Genetic mapping of adult-plant resistance genes to powdery mildew in triticale. J Appl Genet 2021; 63:73-86. [PMID: 34561842 PMCID: PMC8755695 DOI: 10.1007/s13353-021-00664-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.
Collapse
Affiliation(s)
- Mateusz Dyda
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - Maria Wędzony
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
11
|
Zhou X, Zhong X, Roter J, Li X, Yao Q, Yan J, Yang S, Guo Q, Distelfeld A, Sela H, Kang Z. Genome-Wide Mapping of Loci for Adult-Plant Resistance to Stripe Rust in Durum Wheat Svevo Using the 90K SNP Array. PLANT DISEASE 2021; 105:879-888. [PMID: 33141640 DOI: 10.1094/pdis-09-20-1933-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stripe rust is a foliar disease in wheat caused by Puccinia striiformis f. tritici. The best way to protect wheat from this disease is by growing resistant cultivars. Tetraploid wheat can serve as a good source of valuable genetic diversity for various traits. Here, we report the mapping of nine stripe rust resistance quantitative trait loci (QTL) effective against P. striiformis f. tritici in China and Israel. We used recombinant inbred lines (RILs) developed from a cross between the durum wheat cultivar Svevo and Triticum dicoccoides accession Zavitan. By genotyping the RIL population of 137 lines using the wheat 90K single-nucleotide polymorphism array, we mapped an adult-plant resistance locus QYrsv.swust-1BL.1, the most effective QTL, within a 0.75-centimorgan region in T. turgidum subsp. durum 'Svevo' on chromosome arm 1BL, corresponding to the region of 670.7 to 671.5 Mb on the Chinese Spring chromosome arm 1BL. Of the other eight minor-effect stripe rust QTL, seven were from Svevo and mapped on chromosomes 1A, 1B, 2B, 3A, 4A, and 5A, and one was from Zavitan and mapped on chromosome 2A. Several QTL with epistatic effects were identified as well. The markers linked to the resistance QTL can be useful in marker-assisted selection for incorporation of these resistance QTL into both durum and common wheat cultivars.
Collapse
Affiliation(s)
- Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Xiao Zhong
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Jonatan Roter
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qiang Yao
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Jiahui Yan
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qingyun Guo
- Key Laboratory of Agricultural Integrated Pest Management, Qinghai Province, Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Assaf Distelfeld
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Hanan Sela
- The Institute for Cereal Crops Improvement Tel-Aviv University; Institute of Evolution, Department of Evolutionary and Environmental Biology, University of Haifa; Tel Aviv 6139001, Israel
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|