1
|
Bewick P, Forstner P, Zhang B, Collakova E. Identification of novel candidate genes for regulating oil composition in soybean seeds under environmental stresses. FRONTIERS IN PLANT SCIENCE 2025; 16:1572319. [PMID: 40313727 PMCID: PMC12044429 DOI: 10.3389/fpls.2025.1572319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Introduction A key objective of soybean breeding programs is to enhance nutritional quality for human and animal consumption, with improved fatty acid (FA) composition for health benefits, and expand soybean use for industrial applications. Methods We conducted a metabolite genome-wide association study (mGWAS) to identify genomic regions associated with changes in FA composition and FA ratios in soybean seeds influenced by environmental factors. This mGWAS utilized 218 soybean plant introductions (PIs) grown in two field locations in Virginia over two years. Results The mGWAS revealed that 20 SNPs were significantly associated with 21 FA ratios, while additional suggestive SNPs were found for 36 FA ratios, highlighting potential quantitative trait loci linked to FA composition. Discussion Many of these SNPs are located near or within the genes related to phytohormone-mediated biotic and abiotic stress responses, suggesting the involvement of environmental factors in modulating FA composition in soybean seeds. Our findings provide novel insights into the genetic and environmental factors influencing FA composition in oilseeds. This research also lays the foundation for developing stable markers to develop soybean cultivars with tailored FA profiles for different practical applications under variable growth conditions.
Collapse
Affiliation(s)
- Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Peter Forstner
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Translational Plant Science Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
2
|
Cardoso-Sichieri R, Oliveira LS, Lopes-Caitar VS, Silva DCGD, Lopes IDON, Oliveira MFD, Arias CA, Abdelnoor RV, Marcelino-Guimarães FC. Genome-Wide Association Studies and QTL Mapping Reveal a New Locus Associated with Resistance to Bacterial Pustule Caused by Xanthomonas citri pv. glycines in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2484. [PMID: 39273969 PMCID: PMC11397087 DOI: 10.3390/plants13172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars.
Collapse
Affiliation(s)
- Rafaella Cardoso-Sichieri
- Center for Biological Sciences, Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina 86057-970, PR, Brazil
| | - Liliane Santana Oliveira
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Alberto Carazzai Avenue, 1640, Cornélio Procópio 86300-000, PR, Brazil
| | | | | | - Ivani de O N Lopes
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | | |
Collapse
|
3
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
4
|
Sang Y, Liu X, Yuan C, Yao T, Li Y, Wang D, Zhao H, Wang Y. Genome-wide association study on resistance of cultivated soybean to Fusarium oxysporum root rot in Northeast China. BMC PLANT BIOLOGY 2023; 23:625. [PMID: 38062401 PMCID: PMC10702129 DOI: 10.1186/s12870-023-04646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Fusarium oxysporum is a prevalent fungal pathogen that diminishes soybean yield through seedling disease and root rot. Preventing Fusarium oxysporum root rot (FORR) damage entails on the identification of resistance genes and developing resistant cultivars. Therefore, conducting fine mapping and marker development for FORR resistance genes is of great significance for fostering the cultivation of resistant varieties. In this study, 350 soybean germplasm accessions, mainly from Northeast China, underwent genotyping using the SoySNP50K Illumina BeadChip, which includes 52,041 single nucleotide polymorphisms (SNPs). Their resistance to FORR was assessed in a greenhouse. Genome-wide association studies utilizing the general linear model, mixed linear model, compressed mixed linear model, and settlement of MLM under progressively exclusive relationship models were conducted to identify marker-trait associations while effectively controlling for population structure. RESULTS The results demonstrated that these models effectively managed population structure. Eight SNP loci significantly associated with FORR resistance in soybean were detected, primarily located on Chromosome 6. Notably, there was a strong linkage disequilibrium between the large-effect SNPs ss715595462 and ss715595463, contributing substantially to phenotypic variation. Within the genetic interval encompassing these loci, 28 genes were present, with one gene Glyma.06G088400 encoding a protein kinase family protein containing a leucine-rich repeat domain identified as a potential candidate gene in the reference genome of Williams82. Additionally, quantitative real-time reverse transcription polymerase chain reaction analysis evaluated the gene expression levels between highly resistant and susceptible accessions, focusing on primary root tissues collected at different time points after F. oxysporum inoculation. Among the examined genes, only this gene emerged as the strongest candidate associated with FORR resistance. CONCLUSIONS The identification of this candidate gene Glyma.06G088400 improves our understanding of soybean resistance to FORR and the markers strongly linked to resistance can be beneficial for molecular marker-assisted selection in breeding resistant soybean accessions against F. oxysporum.
Collapse
Affiliation(s)
- Yongsheng Sang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, 130118, Jilin, PR China
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, PR China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, 130118, Jilin, China
| | - Cuiping Yuan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, 130118, Jilin, PR China
| | - Tong Yao
- College of Agronomy, Jilin Agricultural University, Changchun, 130118, Jilin, PR China
| | - Yuqiu Li
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, 130118, Jilin, PR China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824, USA
| | - Hongkun Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, 130118, Jilin, PR China.
| | - Yumin Wang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, National Engineering Research Center for Soybean, Changchun, 130118, Jilin, PR China.
| |
Collapse
|
5
|
Mbula JP, Andres MF, Kitete EM, Kasiama NG, Tshilanda DD, Ngbolua KN, Tshibangu DST, Onautshu O, González-Coloma A, Mpiana PT. Valorization of the essential oil from Drypetes gossweileri S. Moore (Putranjivaceae): in vitro, in vivo, and in silico nematicidal activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1260360. [PMID: 38098790 PMCID: PMC10720977 DOI: 10.3389/fpls.2023.1260360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
The chemical composition, insect antifeedant, in vtro/in vivo nematicidal activity, phytotoxicity, and in silico nematicidal activity of the essential oil (EO) of the African medicinal plant Drypetes gossweileri were studied. Chemical analysis using GC/MS indicated that benzyl isothiocyanate (96.23%) was the major compound, followed by benzyl cyanide (1.38%). The biocidal effects of this oil were tested against insect pests and root-knot nematodes. All the insect species tested were significantly affected by the oil according to their feeding adaptations (Spodoptera littoralis and Myzus persicae were less affected than Rhopalosiphum padi) with efficient doses (EC50) of 29.4 8.3 μg/cm2, 14.744 8.3 μg/cm2, and 8.3 μg/cm2, respectively. The oil was highly effective against juveniles J2 of the nematode Meloidogyne javanica, with LC50-LC90 values of 0.007 mg/mL-0.0113 mg/mL. D. gossweileri EO at minimum lethal concentrations (MLC) and below strongly inhibited egg hatching in vitro, whereas soil treatment caused a strong suppression of nematode population, infection frequency, and multiplication rate. The EO inhibited ryegrass (Lolium perenne) germination at 0.4 mg/mL, while at 0.1 mg/mL, its effects on germination, root and leaf growth were moderate (32.4%, 8.4%, and 18.3%, respectively). The tomato (Solanum lycopersicum) germination was not affected by the EO, but the root growth was reduced (56% at 0.1 mg/mL) at a dose 10 times higher than the LD50 calculated for M. javanica J2 mortality. Molecular docking of the nematicidal effects of the oil using PyRx revealed a strong interaction between potassium chloride transporting KCC3 (PDB ID: 7D90) and benzyl cyanide at a distance of 2.20 A° with GLN C:350, followed by benzyl isothiocyanate at a distance of 2.78 A° with ARG B:294. The in vivo nematicidal effects of D. gossweileri EO on M. javanica penetration and reproduction in tomato roots further support the potential of this EO as a nematicidal agent with insect antifeedant effects, which could be used by local farmers for crop protection.
Collapse
Affiliation(s)
- Jean Pierre Mbula
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Maria Fe Andres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Emmanuel M. Kitete
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - N. G. Kasiama
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. D. Tshilanda
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - K. N. Ngbolua
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - D. S. T. Tshibangu
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - O. Onautshu
- Faculté des Sciences, Université de Kisangani, Kisangani, Democratic Republic of Congo
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pius T. Mpiana
- Faculté des Sciences, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| |
Collapse
|
6
|
Sang Y, Zhao H, Liu X, Yuan C, Qi G, Li Y, Dong L, Wang Y, Wang D, Wang Y, Dong Y. Genome-wide association study of powdery mildew resistance in cultivated soybean from Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1268706. [PMID: 38023859 PMCID: PMC10651740 DOI: 10.3389/fpls.2023.1268706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Powdery mildew (PMD), caused by the pathogen Microsphaera diffusa, leads to substantial yield decreases in susceptible soybean under favorable environmental conditions. Effective prevention of soybean PMD damage can be achieved by identifying resistance genes and developing resistant cultivars. In this study, we genotyped 331 soybean germplasm accessions, primarily from Northeast China, using the SoySNP50K BeadChip, and evaluated their resistance to PMD in a greenhouse setting. To identify marker-trait associations while effectively controlling for population structure, we conducted genome-wide association studies utilizing factored spectrally transformed linear mixed models, mixed linear models, efficient mixed-model association eXpedited, and compressed mixed linear models. The results revealed seven single nucleotide polymorphism (SNP) loci strongly associated with PMD resistance in soybean. Among these, one SNP was localized on chromosome (Chr) 14, and six SNPs with low linkage disequilibrium were localized near or in the region of previously mapped genes on Chr 16. In the reference genome of Williams82, we discovered 96 genes within the candidate region, including 17 resistance (R)-like genes, which were identified as potential candidate genes for PMD resistance. In addition, we performed quantitative real-time reverse transcription polymerase chain reaction analysis to evaluate the gene expression levels in highly resistant and susceptible genotypes, focusing on leaf tissues collected at different times after M. diffusa inoculation. Among the examined genes, three R-like genes, including Glyma.16G210800, Glyma.16G212300, and Glyma.16G213900, were identified as strong candidates associated with PMD resistance. This discovery can significantly enhance our understanding of soybean resistance to PMD. Furthermore, the significant SNPs strongly associated with resistance can serve as valuable markers for genetic improvement in breeding M. diffusa-resistant soybean cultivars.
Collapse
Affiliation(s)
- Yongsheng Sang
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Hongkun Zhao
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiaodong Liu
- Crop Germplasm Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cuiping Yuan
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guangxun Qi
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuqiu Li
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Lingchao Dong
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingnan Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Yumin Wang
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yingshan Dong
- College of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
- Soybean Institute, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
7
|
Xu S, Tian P, Jiang Z, Chen X, Li B, Sun J, Zhang Z. Transcriptome analysis of two tobacco varieties with contrast resistance to Meloidogyne incognita in response to PVY M SN R infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1213494. [PMID: 37701805 PMCID: PMC10493397 DOI: 10.3389/fpls.2023.1213494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
Root-knot nematode (RKN) disease is a major disease of tobacco worldwide, which seriously hinders the improvement of tobacco yield and quality. Obvious veinal necrosis-hypersensitive responses are observed only in RKN-resistant lines infected by Potyvirus Y (PVY) MSNR, making this an effective approach to screen for RKN-resistant tobacco. RNA-seq analysis, real-time quantitative PCR (qRT-PCR) and functional enrichment analysis were conducted to gain insight into the transcription dynamics difference between G28 (RKN-resistant) and CBH (RKN-susceptible) varieties infected with PVY MSNR. Results showed that a total of 7900, 10576, 9921, 11530 and 12531 differentially expressed genes (DEGs) were identified between the two varieties at 0, 1, 3, 5, and 7 d after infection, respectively. DEGs were associated with plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and photosynthesis-related metabolic pathways. Additional DEGs related to starch and sucrose metabolism, energy production, and the indole-3-acetic acid signaling pathway were induced in CBH plants after infection. DEGs related to phenylpropanoid biosynthesis, abscisic acid, salicylic acid, brassinosteroids, and jasmonic acid signaling pathway were induced in G28 after infection. Our findings reveal DEGs that may contribute to differences in PVY MSNR resistance among tobacco varieties. These results help us to understand the differences in transcriptional dynamics and metabolic processes between RKN-resistant and RKN-susceptible varieties involved in tobacco-PVY MSNR interaction.
Collapse
Affiliation(s)
- Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Pei Tian
- China Tobacco Jiangsu Industry Co, Ltd. Xuzhou Cigarette Factory, Xuzhou, China
| | - Zhimin Jiang
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Xiaoxiang Chen
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Jutao Sun
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Zhiqiang Zhang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
8
|
Bisht A, Saini DK, Kaur B, Batra R, Kaur S, Kaur I, Jindal S, Malik P, Sandhu PK, Kaur A, Gill BS, Wani SH, Kaur B, Mir RR, Sandhu KS, Siddique KHM. Multi-omics assisted breeding for biotic stress resistance in soybean. Mol Biol Rep 2023; 50:3787-3814. [PMID: 36692674 DOI: 10.1007/s11033-023-08260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.
Collapse
Affiliation(s)
- Ashita Bisht
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
- CSK Himachal Pradesh Krishi Vishvavidyalaya, Highland Agricultural Research and Extension Centre, 175142, Kukumseri, Lahaul and Spiti, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India.
| | - Baljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, 25004, Meerut, India
| | - Sandeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ishveen Kaur
- Agriculture, Environmental and Sustainability Sciences, College of sciences, University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
| | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Palvi Malik
- , Gurdev Singh Khush Institute of Genetics, Plant Breeding and Biotechnology, Punjab Agricultural University,, 141004, Ludhiana, India
| | - Pawanjit Kaur Sandhu
- Department of Chemistry, University of British Columbia, V1V 1V7, Okanagan, Kelowna, Canada
| | - Amandeep Kaur
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Balwinder Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Shabir Hussain Wani
- MRCFC Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Shalimar, India
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, 33430, Belle Glade, Florida, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, 193201, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, 6001, Perth, WA, Australia.
| |
Collapse
|
9
|
Channale S, Thompson JP, Varshney RK, Thudi M, Zwart RS. Multi-locus genome-wide association study of chickpea reference set identifies genetic determinants of Pratylenchus thornei resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1139574. [PMID: 37035083 PMCID: PMC10080060 DOI: 10.3389/fpls.2023.1139574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Pratylenchus thornei is an economically important species of root-lesion nematode adversely affecting chickpea (Cicer arietinum) yields globally. Integration of resistant crops in farming systems is recognised as the most effective and sustainable management strategy for plant-parasitic nematodes. However, breeding for P. thornei resistance in chickpea is limited by the lack of genetic diversity. We deployed a genome-wide association approach to identify genomic regions and candidate genes associated with P. thornei resistance in 285 genetically diverse chickpea accessions. Chickpea accessions were phenotyped for P. thornei resistance in replicated glasshouse experiments performed for two years (2018 and 2020). Whole genome sequencing data comprising 492,849 SNPs were used to implement six multi-locus GWAS models. Fourteen chickpea genotypes were found to be resistant to P. thornei. Of the six multi-locus GWAS methods deployed, FASTmrMLM was found to be the best performing model. In all, 24 significant quantitative trait nucleotides (QTNs) were identified, of which 13 QTNs were associated with lower nematode population density and 11 QTNs with higher nematode population density. These QTNs were distributed across all of the chickpea chromosomes, except chromosome 8. We identified, receptor-linked kinases (RLKs) on chromosomes 1, 4 and 6, GDSL-like Lipase/Acylhydrolase on chromosome 3, Aspartic proteinase-like and Thaumatin-like protein on chromosome 4, AT-hook DNA-binding and HSPRO2 on chromosome 6 as candidate genes for P. thornei resistance in the chickpea reference set. New sources of P. thornei resistant genotypes were identified that can be harnessed into breeding programs and putative candidate P. thornei resistant genes were identified that can be explored further to develop molecular markers and accelerate the incorporation of improved P. thornei resistance into elite chickpea cultivars.
Collapse
Affiliation(s)
- Sonal Channale
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - John P. Thompson
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, Murdoch University, Perth, WA, Australia
| | - Mahendar Thudi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
| | - Rebecca S. Zwart
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- School of Agriculture and Environmental Science, Faculty of Health, Engineering and Science, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
10
|
Pereira BM, Arraes F, Martins ACQ, Alves NSF, Melo BP, Morgante CV, Saraiva MAP, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. A novel soybean hairy root system for gene functional validation. PLoS One 2023; 18:e0285504. [PMID: 37200365 DOI: 10.1371/journal.pone.0285504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.
Collapse
Affiliation(s)
| | - Fabrício Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Bruno Paes Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Carolina Vianna Morgante
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
- EMBRAPA Semiárido, Petrolina, PE, Brazil
| | - Mario Alfredo Passos Saraiva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Patricia Messenberg Guimaraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| |
Collapse
|
11
|
Arraes FBM, Vasquez DDN, Tahir M, Pinheiro DH, Faheem M, Freitas-Alves NS, Moreira-Pinto CE, Moreira VJV, Paes-de-Melo B, Lisei-de-Sa ME, Morgante CV, Mota APZ, Lourenço-Tessutti IT, Togawa RC, Grynberg P, Fragoso RR, de Almeida-Engler J, Larsen MR, Grossi-de-Sa MF. Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202744. [PMID: 36297768 PMCID: PMC9612212 DOI: 10.3390/plants11202744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 05/08/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI 595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematode infestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT-qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematode M. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
Collapse
Affiliation(s)
- Fabricio B M Arraes
- Postgraduate Program in Cellular and Molecular Biology (PPGBCM), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Daniel D N Vasquez
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| | - Muhammed Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Muhammed Faheem
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Department of Biological Sciences, National University of Medical Sciences, The Mall, Rawalpindi 46000, Punjab, Pakistan
| | - Nayara S Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Bioprocess Engineering and Biotechnology (PPGEBB), Federal University of Paraná (UFPR), Curitiba 80060-000, PR, Brazil
| | - Clídia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Molecular Biology (PPGBiomol), University of Brasilia (UnB), Brasília 70910-900, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Minas Gerais Agricultural Research Company (EPAMIG), Uberaba 31170-495, MG, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Semiarid, Petrolina 56302-970, PE, Brazil
| | - Ana P Z Mota
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
| | - Rodrigo R Fragoso
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil
| | - Janice de Almeida-Engler
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, 06903 Sophia-Antipolis, France
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Plant-Pest Molecular Interaction Laboratory (LIMPP) and Bioinformatics Laboratory, Brasilia 70770-917, DF, Brazil
- National Institute of Science and Technology (INCT PlantStress Biotech), Brasilia 70770-917, DF, Brazil
- Postgraduate Program in Genomic Sciences and Biotechnology (PPGCGB), Catholic University of Brasilia (UCB), Brasilia 71966-700, DF, Brazil
| |
Collapse
|
12
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
13
|
Ferreira EGC, Marcelino-Guimarães FC. Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:313-340. [PMID: 35641772 DOI: 10.1007/978-1-0716-2237-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.
Collapse
|
14
|
Leaf Transcriptome Analysis of Broomcorn Millet Uncovers Key Genes and Pathways in Response to Sporisorium destruens. Int J Mol Sci 2021; 22:ijms22179542. [PMID: 34502461 PMCID: PMC8430493 DOI: 10.3390/ijms22179542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 01/26/2023] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) affected by smut (caused by the pathogen Sporisorium destruens) has reduced production yields and quality. Determining the tolerance of broomcorn millet varieties is essential for smut control. This study focuses on the differences in the phenotypes, physiological characteristics, and transcriptomes of resistant and susceptible broomcorn millet varieties under Sporisorium destruens stress. In diseased broomcorn millet, the plant height and stem diameter were reduced, while the number of nodes increased. After infection, the activities of superoxide dismutase and peroxidase decreased, and malondialdehyde and relative chlorophyll content (SPAD) decreased. Transcriptome analysis showed 514 and 5452 differentially expressed genes (DEGs) in the resistant and susceptible varieties, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that pathways related to plant disease resistance, such as phenylpropanoid biosynthesis, plant–pathogen interaction, and plant hormone signal transduction, were significantly enriched. In addition, the transcriptome changes of cluster leaves and normal leaves in diseased broomcorn millet were analysed. Gene ontology and KEGG enrichment analyses indicated that photosynthesis played an important role in both varieties. These findings lay a foundation for future research on the molecular mechanism of the interaction between broomcorn millet and Sporisorium destruens.
Collapse
|