1
|
Rottersman MG, Zhang W, Zhang J, Grigorean G, Burguener G, Carter C, Vang T, Hegarty J, Zhang X, Finnie S, Dubcovsky J. Deletion of wheat alpha-gliadins from chromosome 6D improves gluten strength and reduces immunodominant celiac disease epitopes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:94. [PMID: 40198388 PMCID: PMC11978689 DOI: 10.1007/s00122-025-04882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/11/2025] [Indexed: 04/10/2025]
Abstract
Wheat gliadins and glutenins confer valuable end-use characteristics but include amino acid sequences (epitopes) that can elicit celiac disease (CeD) in genetically predisposed individuals. The onset of CeD in these individuals is affected by the amount and duration of the exposure to immunogenic epitopes. Therefore, a reduction of epitopes that result in high immune responses in the majority of CeD patients (immunodominant epitopes) may reduce the incidence of CeD at a population level. We generated gamma radiation-induced deletions encompassing the α-gliadins in each of the three wheat genomes and characterized them using exome capture. These deletions, designated as Δgli-A2, Δgli-B2, and Δgli-D2, were deposited in GRIN-Global. The Δgli-A2 and Δgli-B2 deletions showed limited effects on breadmaking quality, but the Δgli-D2 deletion significantly increased gluten strength and improved breadmaking quality without compromising dough elasticity, protein content, or grain yield. The stronger effect of Δgli-D2 on gluten strength was associated with an increased proportion of glutenins and the deletion of α-gliadins with seven cysteines, which are absent in the GLI-A2 and GLI-B2 loci. We show that α-gliadins with seven cysteines are incorporated into the gluten polymer, where they likely function as chain terminators limiting the expansion of the gluten polymer and reducing its strength. In addition to its beneficial effects on breadmaking quality, the Δgli-D2 deletion eliminates major wheat immunodominant CeD epitopes. The deployment of this publicly available Δgli-D2 deletion can simultaneously improve wheat gluten strength and reduce the population-wide burden of CeD.
Collapse
Affiliation(s)
- Maria G Rottersman
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Junli Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Gabriela Grigorean
- Proteomics Core Facility, University of California, 451 E. Health Sciences Dr., Davis, CA, 95616, USA
| | - German Burguener
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD, 201815, USA
| | - Claudia Carter
- California Wheat Commission, 1240 Commerce Ave., Woodland, CA, 95776, USA
| | - Teng Vang
- California Wheat Commission, 1240 Commerce Ave., Woodland, CA, 95776, USA
| | - Joshua Hegarty
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Xiaoqin Zhang
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Sean Finnie
- USDA-ARS E-202 Food Quality Building, Washington State University, Pullman, WA, 99164, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD, 201815, USA.
| |
Collapse
|
2
|
Gimenez K, Blanc P, Argillier O, Kitt J, Pierre JB, Le Gouis J, Paux E. Impact of structural variations and genome partitioning on bread wheat hybrid performance. Funct Integr Genomics 2025; 25:10. [PMID: 39789234 DOI: 10.1007/s10142-024-01512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/11/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
The agronomical interest of hybrid wheat has long been a matter of debate. Compared to maize where hybrids have been successfully grown for decades, the mixed results obtained in wheat have been attributed at least partially to the lack of heterotic groups. The wheat genome is known to be strongly partitioned and characterized by numerous presence/absence variations and alien introgressions which have not been thoroughly considered in hybrid breeding. The objective was to investigate the relationships between hybrid performance and genomic diversity. For this, we characterized a set of 124 hybrids as well as their 19 female and 16 male parents. Phenotyping for yield and yield components was conducted during two years in three locations. Parental lines were genotyped using a 410 K SNP array as well as through sequence capture of roughly 200,000 loci. This led to the identification of 180 structural variations including presence-absence variations and alien introgressions. Twenty-six of them were associated to hybrid performance through either additivity or dominance effects. While no correlation was observed at the whole genome level, the genetic distance for 25 genomic regions resulting from the structural and functional partitioning of the chromosomes shown positive or negative correlation with agronomic traits including yield. Large introgressions, like the Aegilops ventricosa 2NS-2AS translocation, can correspond to entire chromosomal regions, such as the R1 region, with an impact on yield. Our results suggest hybrid breeding should consider both structural variations and chromosome partitioning rather than maximizing whole-genome genetic distance, and according to genomic regions to combine homozygosity and heterozygosity.
Collapse
Affiliation(s)
- Kevin Gimenez
- INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | | | - Jonathan Kitt
- INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | | | - Jacques Le Gouis
- INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
| | - Etienne Paux
- INRAE, Genetics, Diversity and Ecophysiology of Cereals, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
- VetAgro Sup, Lempdes, France
| |
Collapse
|
3
|
Li H, Li K, Li H, Yang C, Perera G, Wang G, Lyu S, Hua L, Rehman SU, Zhang Y, Ayliffe M, Yu H, Chen S. Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701. PLANTS (BASEL, SWITZERLAND) 2024; 13:2197. [PMID: 39204633 PMCID: PMC11359134 DOI: 10.3390/plants13162197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongyu Li
- National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Geetha Perera
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shams ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Haitao Yu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang 261071, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| |
Collapse
|
4
|
Wang X, Li H, Shen T, Wang X, Yi S, Meng T, Sun J, Wang X, Qu X, Chen S, Guo L. A near-complete genome sequence of einkorn wheat provides insight into the evolution of wheat A subgenomes. PLANT COMMUNICATIONS 2024; 5:100768. [PMID: 37978797 PMCID: PMC11121175 DOI: 10.1016/j.xplc.2023.100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/15/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Xiangfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xinrui Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Shu Yi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Tan Meng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China; China Agricultural University, College of Information and Electrical Engineering, Beijing 100083, China
| | - Jie Sun
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xiaoliang Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Xiaojian Qu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| | - Li Guo
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
5
|
Xu B, Shen T, Chen H, Li H, Rehman SU, Lyu S, Hua L, Wang G, Zhang C, Li K, Li H, Lan C, Chen GY, Hao M, Chen S. Mapping and characterization of rust resistance genes Lr53 and Yr35 introgressed from Aegilops species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:113. [PMID: 38678511 PMCID: PMC11056342 DOI: 10.1007/s00122-024-04616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.
Collapse
Affiliation(s)
- Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100000, China
| | - Hong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shams Ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
6
|
Boehm J, Cai X. Enrichment and Diversification of the Wheat Genome via Alien Introgression. PLANTS (BASEL, SWITZERLAND) 2024; 13:339. [PMID: 38337872 PMCID: PMC10857235 DOI: 10.3390/plants13030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.
Collapse
Affiliation(s)
- Jeffrey Boehm
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Xiwen Cai
- USDA-ARS, Wheat, Sorghum & Forage Research Unit, Lincoln, NE 68583, USA;
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
7
|
Wang W, Jin P, Zhang J, Tang Y, Zhao B, Yue W, Cheng P, Li Q, Wang B. Favorable Loci Identified for Stripe Rust Resistance in Chinese Winter Wheat Accessions via Genome-Wide Association Study. PLANT DISEASE 2024; 108:71-81. [PMID: 37467133 DOI: 10.1094/pdis-12-22-2842-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Currently, the utilization of resistant cultivars is the most viable way to reduce yield losses. In this study, a panel of 188 wheat accessions from China was evaluated for stripe rust resistance, and genome-wide association studies were performed using high-quality Diversity Arrays Technology markers. According to the phenotype and genotype data, a total of 26 significant marker-trait associations were identified, representing 18 quantitative trait loci (QTLs) on chromosomes 1B, 2A, 2B, 3A, 3B, 5A, 5B, 6B, 7B, and 7D. Of the 18 QTLs, almost all were associated with adult plant resistance (APR) except QYr.nwsuaf-6B.2, which was associated with all-stage resistance (also known as seedling resistance). Three of the 18 QTLs were mapped far from previously identified Pst resistance genes and QTLs and were considered potentially new loci. The other 15 QTLs were mapped close to known resistance genes and QTLs. Subsequent haplotype analysis for QYr.nwsuaf-2A and QYr.nwsuaf-7B.3 revealed the degrees of resistance of the panel in the APR stage. In summary, the favorable alleles identified in this study may be useful in breeding for disease resistance to stripe rust.
Collapse
Affiliation(s)
- Wenli Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengfei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Chinese Jujube, School of Life Science, Yan'an University, Shaanxi 716000, China
| | - Jia Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaqi Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingjie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiyun Yue
- Tianshui Institute of Agricultural Science, Tianshui 741000, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
8
|
Deblieck M, Ordon F, Serfling A. Mapping of prehaustorial resistance against wheat leaf rust in einkorn ( Triticum monococcum), a progenitor of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1252123. [PMID: 37936932 PMCID: PMC10626456 DOI: 10.3389/fpls.2023.1252123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
Wheat leaf rust (Puccinia triticina) is one of the most significant fungal diseases of wheat, causing substantial yield losses worldwide. Infestation is currently being reduced by fungicide treatments and mostly vertical resistance. However, these measures often break down when the fungal virulence pattern changes, resulting in a breakdown of vertical resistances. In contrast, the prehaustorial resistance (phr) that occurs in the einkorn-wheat leaf rust interaction is race-independent, characterized by an early defense response of plants during the prehaustorial phase of infestation. Einkorn (Triticum monococcum) is closely related to Triticum urartu as a progenitor of wheat and generally shows a high level of resistance against leaf rust of wheat. Hence, einkorn can serve as a valuable source to improve the level of resistance to the pathogen in future wheat lines. In particular, einkorn accession PI272560 is known to exhibit a hypersensitive prehaustorial effector triggered immune reaction, preventing the infection of P. triticina. Remarkably, this effector-triggered immune reaction turned out to be atypical as it is non-race-specific (horizontal). To genetically dissect the prehaustorial resistance (phr) in PI272560, a biparental F2 population of 182 plants was established after crossing PI272560 with the susceptible T. boeoticum accession 36554. Three genetic maps comprising 2,465 DArT-seq markers were constructed, and a major QTL was detected on chromosome 5A. To locate underlying candidate genes, marker sequences flanking the respective QTL were aligned to the T. urartu reference genome and transcriptome data available from the parental accessions were used. Within the QTL interval of approximately 16.13 million base pairs, the expression of genes under inoculated and non-inoculated conditions was analyzed via a massive analysis of cDNA (MACE). Remarkably, a single gene located 3.4 Mbp from the peak marker within the major QTL was upregulated (20- to 95-fold) after the inoculation in the resistant accession in comparison to the susceptible T. boeoticum accession. This gene belongs to a berberine bridge enzyme-like protein that is suspected to interact on the plant surface with glycoside hydrolases (GH) secreted by the fungus and to induce a hypersensitive defense reaction in the plant after fungal infections.
Collapse
|
9
|
Li H, Hua L, Zhao S, Hao M, Song R, Pang S, Liu Y, Chen H, Zhang W, Shen T, Gou JY, Mao H, Wang G, Hao X, Li J, Song B, Lan C, Li Z, Deng XW, Dubcovsky J, Wang X, Chen S. Cloning of the wheat leaf rust resistance gene Lr47 introgressed from Aegilops speltoides. Nat Commun 2023; 14:6072. [PMID: 37770474 PMCID: PMC10539295 DOI: 10.1038/s41467-023-41833-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Leaf rust, caused by Puccinia triticina Eriksson (Pt), is one of the most severe foliar diseases of wheat. Breeding for leaf rust resistance is a practical and sustainable method to control this devastating disease. Here, we report the identification of Lr47, a broadly effective leaf rust resistance gene introgressed into wheat from Aegilops speltoides. Lr47 encodes a coiled-coil nucleotide-binding leucine-rich repeat protein that is both necessary and sufficient to confer Pt resistance, as demonstrated by loss-of-function mutations and transgenic complementation. Lr47 introgression lines with no or reduced linkage drag are generated using the Pairing homoeologous1 mutation, and a diagnostic molecular marker for Lr47 is developed. The coiled-coil domain of the Lr47 protein is unable to induce cell death, nor does it have self-protein interaction. The cloning of Lr47 expands the number of leaf rust resistance genes that can be incorporated into multigene transgenic cassettes to control this devastating disease.
Collapse
Affiliation(s)
- Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Rui Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Shuyong Pang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Yanna Liu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Hong Chen
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jin-Ying Gou
- Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, 100193, Beijing, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Xiaohua Hao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jian Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zaifeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, 071000, Baoding, Hebei, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, 261325, Shandong, China.
| |
Collapse
|
10
|
Mahmood MA, Mansoor S. Einkorn genomics reveals ancient roots of domesticated wheat. CELL GENOMICS 2023; 3:100406. [PMID: 37719140 PMCID: PMC10504668 DOI: 10.1016/j.xgen.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Wheat is an important staple food crop that underwent complex genome duplications. During domestication, genetic changes occurred, improving modern wheat, but understanding its phylogenetic history has been lacking. Mahmood and Mansoor discuss a recent publication demonstrating the evolutionary history of domesticated wheat (Triticum monococcum), providing opportunities for advancements in cereal improvement.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Shahid Mansoor
- International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Ahmed HI, Heuberger M, Schoen A, Koo DH, Quiroz-Chavez J, Adhikari L, Raupp J, Cauet S, Rodde N, Cravero C, Callot C, Lazo GR, Kathiresan N, Sharma PK, Moot I, Yadav IS, Singh L, Saripalli G, Rawat N, Datla R, Athiyannan N, Ramirez-Gonzalez RH, Uauy C, Wicker T, Tiwari VK, Abrouk M, Poland J, Krattinger SG. Einkorn genomics sheds light on history of the oldest domesticated wheat. Nature 2023; 620:830-838. [PMID: 37532937 PMCID: PMC10447253 DOI: 10.1038/s41586-023-06389-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.
Collapse
Affiliation(s)
- Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Adam Schoen
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Charlotte Cravero
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, USA
| | - Nagarajan Kathiresan
- KAUST Supercomputing Core Lab (KSL), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ian Moot
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Inderjit Singh Yadav
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
12
|
Tehseen MM, Tonk FA, Tosun M, Randhawa HS, Kurtulus E, Ozseven I, Akin B, Nur Zulfuagaoglu O, Nazari K. QTL Mapping of Adult Plant Resistance to Stripe Rust in a Doubled Haploid Wheat Population. Front Genet 2022; 13:900558. [PMID: 35646084 PMCID: PMC9131033 DOI: 10.3389/fgene.2022.900558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. is a major bread wheat disease worldwide with yield losses of up to 100% under severe disease pressure. The deployment of resistant cultivars with adult plant resistance to the disease provides a long-term solution to stripe rust of wheat. An advanced line from the International Winter Wheat Improvement Program (IWWIP) 130675 (Avd/Vee#1//1-27-6275/Cf 1770/3/MV171-C-17466) showed a high level of adult plant resistance to stripe rust in the field. To identify the adult plant resistance genes in this elite line, a mapping population of 190 doubled haploid (DH) lines was developed from a cross between line 130675 and the universal stripe rust-susceptible variety Avocet S. The DH population was evaluated at precision wheat stripe rust phenotyping platform, in Izmir during 2019, 2020, and 2021 cropping seasons under artificial inoculations. Composite interval mapping (CIM) identified two stable QTLs QYr.rcrrc-3B.1, and QYr.rcrrc-3B.2, which were detected in multiple years. In addition to these two QTLs, five more QTLs, QYr.rcrrc-1B, QYr.rcrrc-2A, QYr.rcrrc-3A, QYr.rcrrc-5A, and QYr.rcrrc-7D, were identified, which were specific to the cropping year (environment). All QTLs were derived from the resistant parent, except QYr.rcrrc-3A. The significant QTLs explained 3.4-20.6% of the phenotypic variance. SNP markers flanking the QTL regions can be amenable to marker-assisted selection. The best DH lines with high yield, end-use quality, and stripe rust resistance can be used for further selection for improved germplasm. SNP markers flanking the QTL regions can aid in identifying such lines.
Collapse
Affiliation(s)
| | | | - Muzaffer Tosun
- Department of Field Crops, Ege University, Izmir, Turkey
| | | | - Ezgi Kurtulus
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey
| | - Izzet Ozseven
- Agean Agricultural Research Institute, Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey
| | - Behyan Akin
- International Maize and Wheat Improvement Center (IWWIP-Turkey), Ankara, Turkey
| | | | - Kumarse Nazari
- Turkey-ICARDA Regional Cereal Rust Research Center (RCRRC), Izmir, Turkey
| |
Collapse
|
13
|
Burridge AJ, Winfield MO, Wilkinson PA, Przewieslik-Allen AM, Edwards KJ, Barker GLA. The Use and Limitations of Exome Capture to Detect Novel Variation in the Hexaploid Wheat Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:841855. [PMID: 35498663 PMCID: PMC9039655 DOI: 10.3389/fpls.2022.841855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The bread wheat (Triticum aestivum) pangenome is a patchwork of variable regions, including translocations and introgressions from progenitors and wild relatives. Although a large number of these have been documented, it is likely that many more remain unknown. To map these variable regions and make them more traceable in breeding programs, wheat accessions need to be genotyped or sequenced. The wheat genome is large and complex and consequently, sequencing efforts are often targeted through exome capture. In this study, we employed exome capture prior to sequencing 12 wheat varieties; 10 elite T. aestivum cultivars and two T. aestivum landrace accessions. Sequence coverage across chromosomes was greater toward distal regions of chromosome arms and lower in centromeric regions, reflecting the capture probe distribution which itself is determined by the known telomere to centromere gene gradient. Superimposed on this general pattern, numerous drops in sequence coverage were observed. Several of these corresponded with reported introgressions. Other drops in coverage could not be readily explained and may point to introgressions that have not, to date, been documented.
Collapse
Affiliation(s)
| | - Mark O. Winfield
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Paul A. Wilkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | | | - Keith J. Edwards
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary L. A. Barker
- School of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
14
|
Luo J, Rouse MN, Hua L, Li H, Li B, Li T, Zhang W, Gao C, Wang Y, Dubcovsky J, Chen S. Identification and characterization of Sr22b, a new allele of the wheat stem rust resistance gene Sr22 effective against the Ug99 race group. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:554-563. [PMID: 34695276 PMCID: PMC8882774 DOI: 10.1111/pbi.13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 05/09/2023]
Abstract
Wheat stem (or black) rust, caused by Puccinia graminis f. sp. tritici (Pgt), has been historically among the most devastating global fungal diseases of wheat. The recent occurrence and spread of new virulent races such as Ug99 have prompted global efforts to identify and isolate more effective stem rust resistance (Sr) genes. Here, we report the map‐based cloning of the Ug99‐effective SrTm5 gene from diploid wheat Triticum monococcum accession PI 306540 that encodes a typical coiled‐coil nucleotide‐binding leucine‐rich repeat protein. This gene, designated as Sr22b, is a new allele of Sr22 with a rare insertion of a large (13.8‐kb) retrotransposon into its second intron. Biolistic transformation of an ~112‐kb circular bacterial artificial chromosome plasmid carrying Sr22b into the susceptible wheat variety Fielder was sufficient to confer resistance to stem rust. In a survey of 168 wheat genotypes, Sr22b was present only in cultivated T. monococcum subsp. monococcum accessions but absent in all tested tetraploid and hexaploid wheat lines. We developed a diagnostic molecular marker for Sr22b and successfully introgressed a T. monococcum chromosome segment containing this gene into hexaploid wheat to accelerate its deployment and pyramiding with other Sr genes in wheat breeding programmes. Sr22b can be a valuable component of gene pyramids or transgenic cassettes combining different resistance genes to control this devastating disease.
Collapse
Affiliation(s)
- Jing Luo
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Matthew N. Rouse
- USDA‐ARS Cereal Disease Laboratory and Department of Plant PathologyUniversity of MinnesotaSt. PaulMN55108USA
| | - Lei Hua
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Hongna Li
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Tianya Li
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoning110000China
| | - Wenjun Zhang
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringCenter for Genome EditingInstitute of Genetics and Developmental BiologyThe Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Jorge Dubcovsky
- Department of Plant SciencesUniversity of CaliforniaDavisCA95616USA
- Howard Hughes Medical InstituteChevy ChaseMD20815USA
| | - Shisheng Chen
- Peking University Institute of Advanced Agricultural SciencesWeifangShandong261000China
| |
Collapse
|
15
|
Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B. Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 2022; 12:1908. [PMID: 35115645 PMCID: PMC8813953 DOI: 10.1038/s41598-022-05865-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
16
|
Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B. Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 2022; 12:1908. [PMID: 35115645 DOI: 10.21203/rs.3.rs-910879/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 05/26/2023] Open
Abstract
Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|