1
|
Xia C, Mao A, Yin S, Teng H, Jin C, Zhang J, Li Y, Dong R, Wu T, Wen C. The silicon efflux transporter BEC1 is essential for bloom formation and stress tolerance in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40326667 DOI: 10.1111/jipb.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/30/2025] [Indexed: 05/07/2025]
Abstract
Silicon (Si) plays a crucial role in plant growth, development, and stress tolerance. However, in some consumable plant products, such as fruits, Si deposition leads to the formation of a white powdery layer known as bloom, which diminishes glossiness and consumer appeal. Despite its significance, the genetic basis of bloom formation remains largely unexplored. Here, we identified a unique cucumber backbone parent line exhibiting bloomless fruit, which was designated blooml ess cucumber 1 (bec1). Map-based cloning of the bec1 locus revealed that BEC1, harboring a natural C-to-T variation at the 754th base of its coding region, is a strong candidate gene for the bloomless trait. Functional validation through gene-editing mutants and BEC1::BEC1-GFP transgenic lines confirmed that BEC1, encoding a Si efflux transporter, is responsible for bloom formation. Mutation of BEC1 impaired Si uptake, thereby preventing the deposition of Si on the surface of glandular trichomes and resulting in bloomless fruits. Additionally, Si deficiency in BEC1 mutants compromised resistance to Corynespora cassiicola and chilling stress. Interestingly, grafting bec1 scions onto bloom rootstocks restored the Si accumulation and stress resistance, while maintaining bloomless phenotype. Overall, our findings elucidate the role of BEC1 in bloom formation and provide a valuable genetic target for breeding bloomless cucumber with enhanced stress resilience.
Collapse
Affiliation(s)
- Changxuan Xia
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Key Laboratory of Superior Quality Vegetable Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Aijun Mao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Key Laboratory of Superior Quality Vegetable Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Shanshan Yin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huitong Teng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Caijiao Jin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Key Laboratory of Superior Quality Vegetable Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| | - Ying Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Rui Dong
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Key Laboratory of Superior Quality Vegetable Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China
| |
Collapse
|
2
|
Cao W, Sun H, Wang C, Yang L, Zhang Y, Zhuang M, Lv H, Wang Y, Liu F, Ji J. Genome-wide identification of the ECERIFERUM (CER) gene family in cabbage and critical role of BoCER4.1 in wax biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109718. [PMID: 40037175 DOI: 10.1016/j.plaphy.2025.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The ECERIFERUM (CER) gene family is essential for the biosynthesis of plant cuticular wax. In this study, 32 BoCER genes were identified in cabbage through genome-wide analysis. We found that the BoCER genes are highly conserved with their homologous counterparts in Arabidopsis thaliana. However, there was a significant divergence in the expression pattern among the BoCER paralogs, which suggests the occurrence of functional specialization during evolution. The expression analysis also showed that most of the BoCER genes are expressed in the aboveground part. Cis-regulatory element analysis suggested that BoCER genes could potentially be regulated through coordinated light and hormonal signaling. Furthermore, the abscisic acid and drought treatments markedly upregulated multiple BoCER genes, highlighting their involvement in abiotic stress responses. The functional analysis using CRISPR/Cas9-mediated knockout showed that BoCER4.1 governs the biosynthesis of alcohol. In situ hybridization localized the expression of BoCER4.1 to the tapetum, microspores, stem epidermis, and vascular bundles, while subcellular localization assays indicated its location in the endoplasmic reticulum, which aligns it with the biosynthetic machinery for wax. A phenotypic analysis revealed that the cuticles of the BoCER4.1 mutants were more permeable, and this was characterized by accelerated water loss and chlorophyll leaching. Correspondingly, the drought resistance of cababge with BoCER4.1 knockout was significantly reduced, accompanied by increased malondialdehyde content and decreased proline content under drought condition. This study provides new insights into the role of BoCERs in wax biosynthesis of cabbage, and also provides scientific basis for genetic improvement of drought resistance in cabbage.
Collapse
Affiliation(s)
- Wenxue Cao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huagang Sun
- China Vegetable Seed Technology Co. Ltd. (Chongqing), Chongqing, 402561, China
| | - Caihong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China.
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; China Vegetable Seed Technology Co. Ltd. (Chongqing), Chongqing, 402561, China.
| |
Collapse
|
3
|
Xie J, Yang L, Hu W, Song J, Kuang L, Huang Y, Liu D, Liu Y. The CsMYB44-csi-miR0008-CsCER1 module regulates cuticular wax biosynthesis and drought tolerance in citrus. THE NEW PHYTOLOGIST 2025; 246:1757-1779. [PMID: 40149021 DOI: 10.1111/nph.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Cuticular wax covering aboveground organs serves as the first line of defense shielding plants from nonstomatal water loss and diverse environmental stresses. While there have been several wax-related genes identified, the molecular mechanisms responsible for the control of wax biosynthesis remain poorly understood in citrus, particularly at the posttranscriptional level. Here, we demonstrated that the CsMYB44-csi-miR0008-CsCER1 module is responsible for regulating drought tolerance in citrus through its control of cuticular wax biosynthesis. In this study, microRNA (miRNA) sequencing analyses of 'Newhall' navel oranges and the wax-deficient 'Ganqi 3' mutant variety led to the identification of a novel cuticular wax biosynthesis-related miRNA, csi-miR0008. csi-miR0008 suppresses the expression of CsCER1, an aldehyde decarbonylase-encoding gene associated with n-alkane biosynthesis. The leaves of csi-miR0008-silencing and CsCER1-overexpressing plants exhibited increases in total wax levels, with particularly pronounced increases in n-alkane levels, contributing to enhanced drought tolerance. csi-miR0008-overexpressing and CsCER1-silencing plants exhibited the opposite phenotypes. CsMYB44 was confirmed to promote wax accumulation by directly inhibiting the expression of csi-miR0008. Taken together, our study offers new insight into the mechanisms responsible for the posttranscriptional control of citrus cuticular wax biosynthesis, while also providing a foundation for the breeding of novel citrus varieties exhibiting enhanced drought tolerance.
Collapse
Affiliation(s)
- Jingheng Xie
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjie Huang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
4
|
Alexander LE, Winkelman D, Stenback KE, Lane M, Campbell KR, Trost E, Flyckt K, Schelling MA, Rizhsky L, Yandeau-Nelson MD, Nikolau BJ. The impact of the GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase. FRONTIERS IN PLANT SCIENCE 2024; 15:1403779. [PMID: 39055356 PMCID: PMC11269236 DOI: 10.3389/fpls.2024.1403779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
The maize glossy2 and glossy2-like genes are homologs, which encode proteins that belong to the BAHD family of acyltransferases. In planta genetic studies have demonstrated that these genes may be involved in the elongation of very long chain fatty acids (VLCFAs) that are precursors of the cuticular wax fraction of the plant cuticle. VLCFAs are synthesized by a fatty acyl-CoA elongase complex (FAE) that consists of four component enzymes. Previously, we functionally identified the maize FAE component enzymes by their ability to complement haploid Saccharomyces cerevisiae strains that carry lethal deletion alleles for each FAE component enzyme. In this study we used these complemented haploid strains and wild-type diploid strains to evaluate whether the co-expression of either GLOSSY2 or GLOSSY2-LIKE with individual maize FAE component enzymes affects the VLCFA product-profile of the FAE system. Wild-type diploid strains produced VLCFAs of up to 28-carbon chain length. Co-expression of GLOSSY2 or GLOSSY2-LIKE with a combination of maize 3-ketoacyl-CoA synthases stimulated the synthesis of longer VLCFAs, up to 30-carbon chain lengths. However, such results could not be recapitulated when these co-expression experiments were conducted in the yeast haploid mutant strains that lacked individual components of the endogenous FAE system. Specifically, lethal yeast mutant strains that are genetically complemented by the expression of maize FAE-component enzymes produce VLCFAs that range between 20- and 26-carbon chain lengths. However, expressing either GLOSSY2 or GLOSSY2-LIKE in these complemented strains does not enable the synthesis of longer chain VLCFAs. These results indicate that the apparent stimulatory role of GLOSSY2 or GLOSSY2-LIKE to enable the synthesis of longer chain VLCFAs in diploid yeast cells may be associated with mixing plant enzyme components with the endogenous FAE complex.
Collapse
Affiliation(s)
- Liza Esther Alexander
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Dirk Winkelman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kenna E. Stenback
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Madison Lane
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Katelyn R. Campbell
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Elysse Trost
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Kayla Flyckt
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Michael A. Schelling
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Ludmila Rizhsky
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| | - Marna D. Yandeau-Nelson
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Basil J. Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
- Center for Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
6
|
Zhang B, Wu Y, Li S, Ren W, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Hou X, Zhang Y. Chloroplast C-to-U editing, regulated by a PPR protein BoYgl-2, is important for chlorophyll biosynthesis in cabbage. HORTICULTURE RESEARCH 2024; 11:uhae006. [PMID: 38559470 PMCID: PMC10980974 DOI: 10.1093/hr/uhae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 04/04/2024]
Abstract
Leaf color is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the detailed mechanism underlying leaf color formation remains unclear. In this study, we characterized a Brassica oleracea yellow-green leaf 2 (BoYgl-2) mutant 4036Y, which has significantly reduced chlorophyll content and abnormal chloroplasts during early leaf development. Genetic analysis revealed that the yellow-green leaf trait is controlled by a single recessive gene. Map-based cloning revealed that BoYgl-2 encodes a novel nuclear-targeted P-type PPR protein, which is absent in the 4036Y mutant. Functional complementation showed that BoYgl-2 from the normal-green leaf 4036G can rescue the yellow-green leaf phenotype of 4036Y. The C-to-U editing efficiency and expression levels of atpF, rps14, petL and ndhD were significantly reduced in 4036Y than that in 4036G, and significantly increased in BoYgl-2 overexpression lines than that in 4036Y. The expression levels of many plastid- and nuclear-encoded genes associated with chloroplast development in BoYgl-2 mutant were also significantly altered. These results suggest that BoYgl-2 participates in chloroplast C-to-U editing and development, which provides rare insight into the molecular mechanism underlying leaf color formation in cabbage.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuankang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoufan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenjing Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Wang P, Li Z, Zhu L, Cheng M, Chen X, Wang A, Wang C, Zhang X. Fine Mapping and Identification of a Candidate Gene for the Glossy Green Trait in Cabbage ( Brassica oleracea var. capitata). PLANTS (BASEL, SWITZERLAND) 2023; 12:3340. [PMID: 37765502 PMCID: PMC10538046 DOI: 10.3390/plants12183340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
In higher plants, cuticular wax deposited on the surface of epidermal cells plays an important role in protecting the plant from biotic and abiotic stresses; however, the molecular mechanism of cuticular wax production is not completely understood. In this study, we identified a glossy green mutant (98-1030gl) from the glaucous cabbage inbred line 98-1030. Scanning electron microscopy indicated that the amount of leaf cuticular wax significantly decreased in 98-1030gl. Genetic analysis showed that the glossy green trait was controlled by a single recessive gene. Bulked segregant analysis coupled with whole genome sequencing revealed that the candidate gene for the glossy green trait was located at 13,860,000-25,070,000 bp (11.21 Mb) on Chromosome 5. Based on the resequencing data of two parents and the F2 population, insertion-deletion markers were developed and used to reduce the candidate mapping region. The candidate gene (Bol026949) was then mapped in a 50.97 kb interval. Bol026949 belongs to the Agenet/Tudor domain protein family, whose members are predicted to be involved in chromatin remodeling and RNA transcription. Sequence analysis showed that a single nucleotide polymorphism mutation (C → G) in the second exon of Bol026949 could result in the premature termination of its protein translation in 98-1030gl. Phylogenetic analysis showed that Bol026949 is relatively conserved in cruciferous plants. Transcriptome profiling indicated that Bol026949 might participate in cuticular wax production by regulating the transcript levels of genes involved in the post-translational cellular process and phytohormone signaling. Our findings provide an important clue for dissecting the regulatory mechanisms of cuticular wax production in cruciferous crops.
Collapse
Affiliation(s)
- Peiwen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Li B, Yue Z, Ding X, Zhao Y, Lei J, Zang Y, Hu Q, Tao P. A BrLINE1-RUP insertion in BrCER2 alters cuticular wax biosynthesis in Chinese cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1212528. [PMID: 37502704 PMCID: PMC10368883 DOI: 10.3389/fpls.2023.1212528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Glossiness is an important quality-related trait of Chinese cabbage, which is a leafy vegetable crop in the family Brassicaceae. The glossy trait is caused by abnormal cuticular wax accumulation. In this study, on the basis of a bulked segregant analysis coupled with next-generation sequencing (BSA-seq) and fine-mapping, the most likely candidate gene responsible for the glossy phenotype of Chinese cabbage was identified. It was subsequently named Brcer2 because it is homologous to AtCER2 (At4g24510). A bioinformatics analysis indicated a long interspersed nuclear element 1 (LINE-1) transposable element (named BrLINE1-RUP) was inserted into the first exon of Brcer2 in HN19-G via an insertion-mediated deletion mechanism, which introduced a premature termination codon. Gene expression analysis showed that the InDel mutation of BrCER2 reduced the transcriptional expression levels of Brcer2 in HN19-G. An analysis of cuticular waxes suggested that a loss-of-function mutation to BrCER2 in Chinese cabbage leads to a severe decrease in the abundance of very-long-chain-fatty-acids (> C28), resulting in the production of a cauline leaf, inflorescence stem, flower, and pistil with a glossy phenotype. These findings imply the insertion of the LINE-1 transposable element BrLINE1-RUP into BrCER2 can modulate the waxy traits of Chinese cabbage plants.
Collapse
Affiliation(s)
- Biyuan Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhichen Yue
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoya Ding
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yanting Zhao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juanli Lei
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yunxiang Zang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Tao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Liu L, Xu H, Zhang W, Xing J, Zhu M, Zhang Y, Wang Y. Genome-Wide Analysis of the BAHD Family in Welsh Onion and CER2-LIKEs Involved in Wax Metabolism. Genes (Basel) 2023; 14:1286. [PMID: 37372466 DOI: 10.3390/genes14061286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.
Collapse
Affiliation(s)
- Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Huanhuan Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Wanyue Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yuchen Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| |
Collapse
|
10
|
Yan J, Chen F, Sun P, Liu W, Xie D, Qian Y, Jiang B. Genome-wide association study and genetic mapping of BhWAX conferring mature fruit cuticular wax in wax gourd. BMC PLANT BIOLOGY 2022; 22:539. [PMID: 36401157 PMCID: PMC9675113 DOI: 10.1186/s12870-022-03931-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wax gourd [Benincasa hispida (Thunb) Cogn. (2n = 2x = 24)] is an economically important vegetable crop of genus Benincasa in the Cucurbitaceae family. Fruit is the main consumption organ of wax gourd. The mature fruit cuticular wax (MFCW) is an important trait in breeding programs, which is also of evolutionary significance in wax gourd. However, the genetic architecture of this valuable trait remains unrevealed. RESULTS In this study, genetic analysis revealed that the inheritance of MFCW was controlled by a single gene, with MFCW dominant over non-MFCW, and the gene was primarily named as BhWAX. Genome-wide association study (GWAS) highlighted a 1.1 Mb interval on chromosome 9 associated with MFCW in wax gourd germplasm resources. Traditional fine genetic mapping delimited BhWAX to a 0.5 Mb region containing 12 genes. Based on the gene annotation, expression analysis and co-segregation analysis, Bhi09G001428 that encodes a membrane bound O-acyltransferase (MBOAT) was proposed as the candidate gene for BhWAX. Moreover, it was demonstrated that the efficiency of a cleaved amplified polymorphic sequences (CAPS) marker in the determination of MFCW in wax gourd reached 80%. CONCLUSIONS In closing, the study identified the candidate gene controlling MFCW and provided an efficient molecular marker for the trait in wax gourd for the first time, which will not only be beneficial for functional validation of the gene and marker-assisted breeding of wax gourd, but also lay a foundation for analysis of its evolutionary meaning among cucurbits.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Feng Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Piaoyun Sun
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Yulei Qian
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
11
|
Zhang S, Zhou F, Liu Z, Feng X, Li Y, Zhu P. Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale. HORTICULTURE RESEARCH 2022; 9:uhac219. [PMID: 36479583 PMCID: PMC9720449 DOI: 10.1093/hr/uhac219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Identifying genes associated with wax deposition may contribute to the genetic improvement of ornamental kale. Here, we characterized a candidate gene for wax contents, BoORP3a, encoding an oxysterol-binding protein. We sequenced the BoORP3a gene and coding sequence from the high-wax line S0835 and the low-wax line F0819, which revealed 12 single nucleotide polymorphisms between the two lines, of which six caused five amino acids substitutions. BoORP3a appeared to be relatively well conserved in Brassicaceae, as determined by a phylogenetic analysis, and localized to the endoplasmic reticulum and the nucleus. To confirm the role of BoORP3a in wax deposition, we generated three orp3a mutants in a high-wax kale background via CRISPR/Cas9-mediated genome editing. Importantly, all three mutants exhibited lower wax contents and glossy leaves. Overall, these data suggest that BoORP3a may participate in cuticular wax deposition in ornamental kale.
Collapse
Affiliation(s)
| | | | | | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | - Yashu Li
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, 110866, China
| | | |
Collapse
|
12
|
BrWAX3, Encoding a β-ketoacyl-CoA Synthase, Plays an Essential Role in Cuticular Wax Biosynthesis in Chinese Cabbage. Int J Mol Sci 2022; 23:ijms231810938. [PMID: 36142850 PMCID: PMC9501823 DOI: 10.3390/ijms231810938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a β-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the ‘cutin, suberine, and wax biosynthesis’ pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.
Collapse
|