1
|
Chowdhury RN, Gordon T, Babar MA, Harrison SA, Kianian SF, Klos KE. Mapping crown rust resistance in the oat diploid accession PI 258731 (Avena strigosa). PLoS One 2024; 19:e0295006. [PMID: 38306337 PMCID: PMC10836666 DOI: 10.1371/journal.pone.0295006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/13/2023] [Indexed: 02/04/2024] Open
Abstract
Oat crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks. (Pca), is a major biotic impediment to global oat production. Crown rust resistance has been described in oat diploid species A. strigosa accession PI 258731 and resistance from this accession has been successfully introgressed into hexaploid A. sativa germplasm. The current study focuses on 1) mapping the location of QTL containing resistance and evaluating the number of quantitative trait loci (QTL) conditioning resistance in PI 258731; 2) understanding the relationship between the original genomic location in A. strigosa and the location of the introgression in the A. sativa genome; 3) identifying molecular markers tightly linked with PI 258731 resistance loci that could be used for marker assisted selection and detection of this resistance in diverse A. strigosa accessions. To achieve this, A. strigosa accessions, PI 258731 and PI 573582 were crossed to produce 168 F5:6 recombinant inbred lines (RILs) through single seed descent. Parents and RILs were genotyped with the 6K Illumina SNP array which generated 168 segregating SNPs. Seedling reactions to two isolates of Pca (races TTTG, QTRG) were conditioned by two genes (0.6 cM apart) in this population. Linkage mapping placed these two resistant loci to 7.7 (QTRG) to 8 (TTTG) cM region on LG7. Field reaction data was used for QTL analysis and the results of interval mapping (MIM) revealed a major QTL (QPc.FD-AS-AA4) for field resistance. SNP marker assays were developed and tested in 125 diverse A. strigosa accessions that were rated for crown rust resistance in Baton Rouge, LA and Gainesville, FL and as seedlings against races TTTG and QTRG. Our data proposed SNP marker GMI_ES17_c6425_188 as a candidate for use in marker-assisted selection, in addition to the marker GMI_ES02_c37788_255 suggested by Rine's group, which provides an additional tool in facilitating the utilization of this gene in oat breeding programs.
Collapse
Affiliation(s)
- Rawnaq N. Chowdhury
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Tyler Gordon
- USDA-ARS, Plant Genetic Resources Unit, Geneva, New York, United States of America
| | - Md. Ali Babar
- Department of Agronomy, UFL, Gainesville, Florida, United States of America
| | - Stephen A. Harrison
- School of Plant, Environmental and Soil Sciences, LSU, Baton Rouge, Louisiana, United States of America
| | | | - Kathy Esvelt Klos
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| |
Collapse
|
2
|
Androsiuk P, Milarska SE, Dulska J, Kellmann-Sopyła W, Szablińska-Piernik J, Lahuta LB. The comparison of polymorphism among Avena species revealed by retrotransposon-based DNA markers and soluble carbohydrates in seeds. J Appl Genet 2023; 64:247-264. [PMID: 36719514 PMCID: PMC10076396 DOI: 10.1007/s13353-023-00748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
Here, we compared the polymorphism among 13 Avena species revealed by the iPBS markers and soluble carbohydrate profiles in seeds. The application of seven iPBS markers generated 83 bands, out of which 20.5% were polymorphic. No species-specific bands were scored. Shannon's information index (I) and expected heterozygosity (He) revealed low genetic diversity, with the highest values observed for A. nuda (I = 0.099; He = 0.068). UPGMA clustering of studied Avena accessions and PCoA results showed that the polyploidy level is the main grouping criterion. High-resolution gas chromatography revealed that the studied Avena accessions share the same composition of soluble carbohydrates, but significant differences in the content of total (5.30-22.38 mg g-1 of dry weight) and particular sugars among studied samples were observed. Sucrose appeared as the most abundant sugar (mean 61.52% of total soluble carbohydrates), followed by raffinose family oligosaccharides (31.23%), myo-inositol and its galactosides (6.16%), and monosaccharides (1.09%). The pattern of interspecific variation in soluble carbohydrates, showed by PCA, was convergent to that revealed by iPBS markers. Thus, both methods appeared as a source of valuable data useful in the characterization of Avena resources or in the discussion on the evolution of this genus.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Justyna Dulska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Wioleta Kellmann-Sopyła
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|