1
|
Shi A, Xiong H, Michaels TE, Chen S. Genome and GWAS analyses for soybean cyst nematode resistance in USDA world-wide common bean ( Phaseolus vulgaris) germplasm. FRONTIERS IN PLANT SCIENCE 2025; 16:1520087. [PMID: 40190663 PMCID: PMC11968425 DOI: 10.3389/fpls.2025.1520087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Soybean cyst nematode (SCN), Heterodera glycines, has become a significant threat in common bean (Phaseolus vulgaris) production, particularly in regions like the upper Midwest USA. Host genetic resistance offers an effective and environmentally friendly approach to managing SCN. This study aimed to conduct a genome-wide association study (GWAS) and genomic prediction for resistance to SCN HG Types 7 (race 6), 2.5.7 (race 5), and 1.3.6.7 (race 14) using 0.7 million whole-genome resequencing-generated SNPs in 354 USDA worldwide common bean germplasm accessions. Among these, 26 lines exhibited resistance to all three HG types, with a female index (FI) of less than 10. Four QTL regions on chromosomes (Chr) 2, 3, 6, and 10 were associated with resistance to HG Type 7; four regions on Chrs 2, 6, 9, and 11 were associated with resistance to HG Type 2.5.7; and three regions on Chrs 2, 6, and 10 were associated with resistance to HG Type 1.3.6.7. Cross-prediction revealed high prediction ability (PA) of 75% (r-value) for resistance to each of the three HG types. However, low PA was observed for SCN resistance through across-population prediction between the two domestications, Mesoamerican and Andean common bean accessions. Yet, using a population of mixed Mesoamerican and Andean accessions as a training set showed a high PA to predict either sub-population. This study provides SNP markers for marker-assisted selection and high PA for genomic selection in common bean molecular breeding, enabling the selection of lines and plants with high SCN resistance. Moreover, the study observed high PA for resistance among the three HG types. Interestingly, the most highly associated SNP markers and QTL for SCN resistance varied between the two domestications, and SCN resistance is more associated with the Mesoamerican domestication than the Andean domestication. This result suggests that resistance to SCN in common bean may be related to domestication rather than co-evolution with SCN.
Collapse
Affiliation(s)
- Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Haizheng Xiong
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Thomas E. Michaels
- Department of Horticultural Science, University of Minnesota, St Paul, MN, United States
| | - Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN, United States
| |
Collapse
|
2
|
Usovsky M, Bilyeu K, Bent A, Scaboo AM. Allele-tagged TaqMan ® PCR genotyping assays for high-throughput detection of soybean cyst nematode resistance. Mol Biol Rep 2024; 52:33. [PMID: 39621159 PMCID: PMC11611941 DOI: 10.1007/s11033-024-10114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Whole genome resequencing (WGRS) platforms provide exceptional fingerprinting of the entire genome but are expensive and less flexible to use as a routine genotyping tool for targeting causal polymorphisms within a germplasm collection or breeding program. Therefore, there has been a continuous effort to develop small-scale genotyping platforms that facilitate robust and quick assessments of the allelic status of causal variants for important traits within soybean breeding programs. The objective was to develop a comprehensive panel of soybean cyst nematode (SCN) resistance TaqMan® assays via selecting the causative genes and analyzing their associated alleles. METHODS The Soybean Allele Catalog was utilized to investigate WGRS-derived variants which are predicted to cause a change in the amino acid sequence of a gene product. This panel of TaqMan® assays reflects current knowledge about known SCN resistance-causing genes and their associated alleles: GmSNAP18-a and -b, GmSNAP11, GmSHMT08, GmSNAP15, GmNSFRAN07, and GmSNAP02-ins and -del. Developed assays were tested using elite breeding lines and segregating populations. TaqMan assays were compared to other currently available KASP and CAPS assays. CONCLUSION All assays showed excellent allele determination efficiencies. This SCN genotyping assay panel can be utilized as a simplified, accurate and reliable genotyping platform further equipping the updated soybean breeding toolbox.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - Kristin Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew Bent
- Department of Plant Pathology, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Kwon KM, Viana JPG, Walden KKO, Usovsky M, Scaboo AM, Hudson ME, Mitchum MG. Genome scans for selection signatures identify candidate virulence genes for adaptation of the soybean cyst nematode to host resistance. Mol Ecol 2024; 33:e17490. [PMID: 39135406 DOI: 10.1111/mec.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72-0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - João P G Viana
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kimberly K O Walden
- Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Wang H, Li Z, Wang D, Fu ZQ. Fortifying nematode resistance through susceptibility gene inactivation. TRENDS IN PLANT SCIENCE 2024; 29:939-942. [PMID: 38692971 DOI: 10.1016/j.tplants.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The predominant genetic defense mechanism against soybean cyst nematode (SCN) in 95% of the North America market is under threat by virulent SCN populations. Usovsky et al. identified GmSNAP02 as an SCN susceptibility gene through fine-mapping of unique bi-parental populations. Loss-of-function of GmSNAP02 confers enhanced resistance to more virulent SCN.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Ziyue Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
5
|
Usovsky M, Gamage VA, Meinhardt CG, Dietz N, Triller M, Basnet P, Gillman JD, Bilyeu KD, Song Q, Dhital B, Nguyen A, Mitchum MG, Scaboo AM. Loss-of-function of an α-SNAP gene confers resistance to soybean cyst nematode. Nat Commun 2023; 14:7629. [PMID: 37993454 PMCID: PMC10665432 DOI: 10.1038/s41467-023-43295-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Vinavi A Gamage
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Clinton G Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Nicholas Dietz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Marissa Triller
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Pawan Basnet
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Jason D Gillman
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Kristin D Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Bishnu Dhital
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Alice Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Mahmood A, Bilyeu KD, Škrabišová M, Biová J, De Meyer EJ, Meinhardt CG, Usovsky M, Song Q, Lorenz AJ, Mitchum MG, Shannon G, Scaboo AM. Cataloging SCN resistance loci in North American public soybean breeding programs. FRONTIERS IN PLANT SCIENCE 2023; 14:1270546. [PMID: 38053759 PMCID: PMC10694258 DOI: 10.3389/fpls.2023.1270546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Collapse
Affiliation(s)
- Anser Mahmood
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Elizabeth J. De Meyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Clinton G. Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Andrew M. Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Han S, Smith JM, Du Y, Bent AF. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS. PLANT PHYSIOLOGY 2023; 192:133-153. [PMID: 36805759 PMCID: PMC10152651 DOI: 10.1093/plphys/kiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Rhg1 (Resistance to Heterodera glycines 1) mediates soybean (Glycine max) resistance to soybean cyst nematode (SCN; H. glycines). Rhg1 is a 4-gene, ∼30-kb block that exhibits copy number variation, and the common PI 88788-type rhg1-b haplotype carries 9 to 10 tandem Rhg1 repeats. Glyma.18G022400 (Rhg1-GmAAT), 1 of 3 resistance-conferring genes at the complex Rhg1 locus, encodes the putative amino acid transporter AATRhg1 whose mode of action is largely unknown. We discovered that AATRhg1 protein abundance increases 7- to 15-fold throughout root cells along the migration path of SCN. These root cells develop an increased abundance of vesicles and large vesicle-like bodies (VLB) as well as multivesicular and paramural bodies. AATRhg1 protein is often present in these structures. AATRhg1 abundance remained low in syncytia (plant cells reprogrammed by SCN for feeding), unlike the Rhg1 α-SNAP protein, whose abundance has previously been shown to increase in syncytia. In Nicotiana benthamiana, if soybean AATRhg1 was present, oxidative stress promoted the formation of large VLB, many of which contained AATRhg1. AATRhg1 interacted with the soybean NADPH oxidase GmRBOHG, the ortholog of Arabidopsis thaliana RBOHD previously found to exhibit upregulated expression upon SCN infection. AATRhg1 stimulated reactive oxygen species (ROS) generation when AATRhg1 and GmRBOHG were co-expressed. These findings suggest that AATRhg1 contributes to SCN resistance along the migration path as SCN invades the plant and does so, at least in part, by increasing ROS production. In light of previous findings about α-SNAPRhg1, this study also shows that different Rhg1 resistance proteins function via at least 2 spatially and temporally separate modes of action.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Yulin Du
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|