1
|
Liu S, Yang H, Zhang H, Liu J, Ma S, Hui H, Wang L, Cheng Q, Shen H. Phenotypic, genetic, variation, and molecular function of CaMYB113 in pepper (Capsicum annuum L.). Int J Biol Macromol 2024; 281:136300. [PMID: 39389497 DOI: 10.1016/j.ijbiomac.2024.136300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pepper (Capsicum annuum L.) is widely consumed vegetables worldwide, and F1 hybrids are highly sought after in the pepper seed industry. However, studies on gene mutations affecting the color of cotyledon are rare, and the same is true for peppers. In this study, a segregating population was developed by crossing the pepper accession 21C1344 with purple cotyledon and accession 21C912 with green cotyledon. Initially, a target genomic region was identified by screening polymorphic SSR markers distributed across 12 chromosomes. Subsequently, polymorphic markers were developed based on resequencing data from the two parental lines, and genetic linkage analysis was performed. This approach ultimately identified Capana10g001433 (CaMYB113) as the candidate gene responsible for the purple cotyledons. The gene mutation type in 21C912 represents a new mutation type distinct from the reported missense mutation types, and this mutation affects the biosynthesis of anthocyanins. Virus-induced gene silencing (VIGS) of CaMYB113 substantially decreased anthocyanin accumulation in the cotyledons. Subsequent overexpression of CaMYB113 resulted in purple callus and leaves of pepper, and changed the expression levels of downstream genes involved in anthocyanin synthesis. Yeast one-hybrid and dual-luciferase transient expression assays demonstrated the binding of CaMYB113 to anthocyanin biosynthesis-related genes, thereby regulating anthocyanin accumulation in pepper cotyledons.
Collapse
Affiliation(s)
- Sujun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Hanyu Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Haizhou Zhang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jiankun Liu
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shijie Ma
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Han Hui
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Liru Wang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Qing Cheng
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| | - Huolin Shen
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Tang P, Huang J, Wang J, Wang M, Huang Q, Pan L, Liu F. Genome-wide identification of CaWD40 proteins reveals the involvement of a novel complex (CaAN1-CaDYT1-CaWD40-91) in anthocyanin biosynthesis and genic male sterility in Capsicum annuum. BMC Genomics 2024; 25:851. [PMID: 39261781 PMCID: PMC11389352 DOI: 10.1186/s12864-024-10681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.
Collapse
Affiliation(s)
- Peng Tang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jingcai Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jin Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Meiqi Wang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Qing Huang
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Luzhao Pan
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Feng Liu
- Engineering Research Center for Germplasm Innovation and New Varieties Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
3
|
Tan H, Li L, Tie M, Lu R, Pan S, Tang Y. Transcriptome analysis of green and purple fruited pepper provides insight into novel regulatory genes in anthocyanin biosynthesis. PeerJ 2024; 12:e16792. [PMID: 38250728 PMCID: PMC10799612 DOI: 10.7717/peerj.16792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pepper (Capsicum annuum L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated. Methods RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software. Results The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 vs EJT-10, HN191-20 vs EJT-20, HN191-30 vs EJT-30, HN192-30 vs EJT-30, and HN005-30 vs EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.
Collapse
Affiliation(s)
- Huaqiang Tan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Liping Li
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Manman Tie
- Agricultural and Rural Bureau of Lushan County, Yaan, Sichuan, China
| | - Ronghai Lu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Shaokun Pan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| | - Youwan Tang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Yang Y, Li Y, Guang Y, Lin J, Zhou Y, Yu T, Ding F, Wang Y, Chen J, Zhou Y, Dang F. Red light induces salicylic acid accumulation by activating CaHY5 to enhance pepper resistance against Phytophthora capsici. HORTICULTURE RESEARCH 2023; 10:uhad213. [PMID: 38046851 PMCID: PMC10689078 DOI: 10.1093/hr/uhad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023]
Abstract
Pepper (Capsicum annuum L.) is frequently challenged by various pathogens, among which Phytophthora capsici is the most devastating to pepper production. Red light signal acts as a positive induction of plant resistance against multiple pathogens. However, little is known about how the red light signal affects pepper resistance to P. capsici infection (PCI). Here, we report that red light regulates salicylic acid (SA) accumulation by activating elongated hypocotyl5 (CaHY5), a basic leucine zipper (bZIP) transcription factor, thereby decreasing pepper susceptibility to PCI. Exogenous SA treatment reduced pepper susceptibility to PCI, while silencing of CaPHYB (a red light photoreceptor) increased its susceptibility. PCI significantly induced CaHY5 expression, and silencing of CaHY5 reduced SA accumulation, accompanied by decreases in the expression levels of phenylalanine ammonia-lyase 3 (CaPAL3), CaPAL7, pathogenesis-related 1 (CaPR1), and CaPR1L, which finally resulted in higher susceptibility of pepper to PCI. Moreover, CaHY5 was found to activate the expression of CaPAL3 and CaPAL7, which are essential for SA biosynthesis, by directly binding to their promoters. Further analysis revealed that exogenous SA treatment could restore the resistance of CaHY5-silenced pepper plants to PCI. Collectively, this study reveals a critical mechanism through which red light induces SA accumulation by regulating CaHY5-mediated CaPAL3 and CaPAL7 expression, leading to enhanced resistance to PCI. Moreover, red light-induced CaHY5 regulates pepper resistance to PCI, which may have implications for PCI control in protected vegetable production.
Collapse
Affiliation(s)
- Youxin Yang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Li
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yelan Guang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinhui Lin
- Fruit Research Institute, Fujian Academy of Agricultural science, Fuzhou 350013, China
| | - Yong Zhou
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ting Yu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Fengfeng Dang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
5
|
He R, Liu K, Zhang S, Ju J, Hu Y, Li Y, Liu X, Liu H. Omics Analysis Unveils the Pathway Involved in the Anthocyanin Biosynthesis in Tomato Seedling and Fruits. Int J Mol Sci 2023; 24:ijms24108690. [PMID: 37240046 DOI: 10.3390/ijms24108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.
Collapse
Affiliation(s)
- Rui He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaizhe Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Ju
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Youzhi Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|