1
|
Zhang ZT, Liang QF, Wang X, Wang RS, Duan TT, Wang SM, Tang D. Protective effects of Huang-Qi-Ge-Gen decoction against diabetic liver injury through regulating PI3K/AKT/Nrf2 pathway and metabolic profiling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117647. [PMID: 38163558 DOI: 10.1016/j.jep.2023.117647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Qi-Ge-Gen decoction (HGD) is a traditional Chinese medicine prescription that has been used for centuries to treat "Xiaoke" (the name of diabetes mellitus in ancient China). However, the ameliorating effects of HGD on diabetic liver injury (DLI) and its mechanisms are not yet fully understood. AIM OF THE STUDY To elucidate the ameliorative effect of HGD on DLI and explore its material basis and potential hepatoprotective mechanism. MATERIALS AND METHODS A diabetic mice model was induced by feeding a high-fat diet and injecting intraperitoneally with streptozotocin (40 mg kg-1) for five days. After the animals were in confirmed diabetic condition, they were given HGD (3 or 12 g kg-1, i. g.) for 14 weeks. The effectiveness of HGD in treating DLI mice was evaluated by monitoring blood glucose and blood lipid levels, liver function, and pathological conditions. Furthermore, UPLC-MS/MS was used to identify the chemical component profile in HGD and absorption components in HGD-treated plasma. Network pharmacology and molecular docking were performed to predict the potential pathway of HGD intervention in DLI. Then, the results of network pharmacology were validated by examining biochemical parameters and using western blotting. Lastly, urine metabolites were analyzed by metabolomics strategy to explore the effect of HGD on the metabolic profile of DLI mice. RESULTS HGD exerted therapeutic potential against the disorders of glucose metabolism and lipid metabolism, liver dysfunction, liver steatosis, and fibrosis in a DLI model mice induced by HFD/STZ. A total of 108 chemical components in HGD and 18 absorption components in HGD-treated plasma were preliminarily identified. Network pharmacology and molecular docking results of the absorbed components in plasma indicated PI3K/AKT as a potential pathway for HGD to intervene in DLI mice. Further experiments verified that HGD markedly reduced liver oxidative stress in DLI mice by modulating the PI3K/AKT/Nrf2 signaling pathway. Moreover, 19 differential metabolites between normal and DLI mice were detected in urine, and seven metabolites could be significantly modulated back by HGD. CONCLUSIONS HGD could ameliorate diabetic liver injury by modulating the PI3K/AKT/Nrf2 signaling pathway and urinary metabolic profile.
Collapse
Affiliation(s)
- Zhi-Tong Zhang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Engineering Research Center for Development and Application of External Drugs in Traditional Chinese Medicine, Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Qing-Feng Liang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ru-Shang Wang
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Ting-Ting Duan
- Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, 510530, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mohr AE, Crawford M, Jasbi P, Fessler S, Sweazea KL. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett 2022; 596:849-875. [PMID: 35262962 DOI: 10.1002/1873-3468.14328] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/10/2022]
Abstract
Systemic inflammation is associated with chronic disease and is purported to be a main pathogenic mechanism underlying metabolic conditions. Microbes harbored in the host gastrointestinal tract release signaling byproducts from their cell wall, such as lipopolysaccharides (LPS), which can act locally and, after crossing the gut barrier and entering circulation, also systemically. Defined as metabolic endotoxemia, elevated concentrations of LPS in circulation are associated with metabolic conditions and chronic disease. As such, measurement of LPS is highly prevalent in animal and human research investigating these states. Indeed, LPS can be a potent stimulant of host immunity but this response depends on the microbial species' origin, a parameter often overlooked in both preclinical and clinical investigations. Indeed, the lipid A portion of LPS is mutable and comprises the main virulence and endotoxic component, thus contributing to the structural and functional diversity among LPSs from microbial species. In this review, we discuss how such structural differences in LPS can induce differential immunological responses in the host.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Meli'sa Crawford
- Biomedical Sciences, University of Riverside, California, Riverside, California, United States of America
| | - Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Samantha Fessler
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
3
|
Piccolo BD, Graham JL, Stanhope KL, Fiehn O, Havel PJ, Adams SH. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model. Am J Physiol Endocrinol Metab 2016; 310:E958-69. [PMID: 27094034 PMCID: PMC4935135 DOI: 10.1152/ajpendo.00052.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Elevations of plasma concentrations of branched-chain amino acids (BCAAs) are observed in human insulin resistance and type 2 diabetes mellitus (T2DM); however, there has been some controversy with respect to the passive or causative nature of the BCAA phenotype. Using untargeted metabolomics, plasma BCAA and other metabolites were assessed in lean control Sprague-Dawley rats (LC) and temporally during diabetes development in the UCD-T2DM rat model, i.e., prediabetic (PD) and 2 wk (D2W), 3 mo (D3M), and 6 mo (D6M) post-onset of diabetes. Plasma leucine, isoleucine, and valine concentrations were elevated only in D6M rats compared with D2W rats (by 28, 29, and 30%, respectively). This was in contrast to decreased plasma concentrations of several other amino acids in D3M and/or D6M relative to LC rats (Ala, Arg, Glu, Gln, Met, Ser, Thr, and Trp). BCAAs were positively correlated with fasting glucose and negatively correlated with plasma insulin, total body weight, total adipose tissue weight, and gastrocnemius muscle weight in the D3M and D6M groups. Multivariate analysis revealed that D3M and D6M UCD-T2DM rats had lower concentrations of amino acids, amino acid derivatives, 1,5-anhydroglucitol, and conduritol-β-opoxide and higher concentrations of uronic acids, pantothenic acids, aconitate, benzoic acid, lactate, and monopalmitin-2-glyceride relative to PD and D2W UCD-T2DM rats. The UCD-T2DM rat does not display elevated plasma BCAA concentrations until 6 mo post-onset of diabetes. With the acknowledgement that this is a rodent model of T2DM, the results indicate that elevated plasma BCAA concentrations are not necessary or sufficient to elicit an insulin resistance or T2DM onset.
Collapse
Affiliation(s)
- Brian D Piccolo
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, Arkansas
| | - James L Graham
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; Department of Nutrition, University of California, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; Department of Nutrition, University of California, Davis, California
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California, Davis, California; and King Abdulaziz University, Biochemistry Department, Jeddah, Saudi Arabia
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; Department of Nutrition, University of California, Davis, California
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, Arkansas; Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, Arkansas; Department of Nutrition, University of California, Davis, California;
| |
Collapse
|
4
|
In vitro anti-inflammatory effects of citrulline on peritoneal macrophages in Zucker diabetic fatty rats. Br J Nutr 2014; 113:120-4. [PMID: 25391524 DOI: 10.1017/s0007114514002086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In type 2 diabetes (T2D) macrophage dysfunction increases susceptibility to infection and mortality. This may result from the associated decreased plasma concentration of arginine, an amino acid that plays an important role in immunity. In vitro, increasing arginine availability leads to an improvement in macrophage function; however, arginine supplementation in diabetic obese patients may be detrimental. The aim of the present study was to assess in vitro whether citrulline, an arginine precursor, could replace arginine in the regulation of macrophage function under a condition of diabetes and obesity. Peritoneal macrophages from diabetic obese or lean rats were incubated for 6 h in an arginine-free medium, in the presence of increasing citrulline concentrations (0·1, 0·5, 1 or 2 mmol/l). Cytokine and NO production was determined. Peritoneal macrophages from either lean or diabetic obese rats produced NO, and at higher levels in the cells from lean rats. In diabetic obese rats, TNF-α production decreased with increasing citrulline concentrations, but was higher than that in the cells from lean rats. In contrast, IL-6 production increased with increasing citrulline concentrations. The present experiment shows that citrulline is effectively used for NO production and regulates cytokine production in macrophages from diabetic obese rats. This effect warrants in vivo evaluation in T2D-related inflammation.
Collapse
|
5
|
Bonhomme S, Belabed L, Blanc MC, Neveux N, Cynober L, Darquy S. Arginine-supplemented enteral nutrition in critically ill diabetic and obese rats: A dose-ranging study evaluating nutritional status and macrophage function. Nutrition 2013; 29:305-12. [DOI: 10.1016/j.nut.2012.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 06/20/2012] [Accepted: 07/05/2012] [Indexed: 12/30/2022]
|
6
|
Raynaud-Simon A, Belabed L, Le Naour G, Marc J, Capron F, Cynober L, Darquy S. Arginine plus proline supplementation elicits metabolic adaptation that favors wound healing in diabetic rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1053-61. [PMID: 23034717 DOI: 10.1152/ajpregu.00003.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diabetic patients with wounds are at risk of protein malnutrition, have low arginine plasma levels, and suffer from delayed wound healing. We sought to determine the efficacy of arginine plus proline supplementation on protein and amino acid metabolism and on wound repair in a model of diabetic rats. Eighteen 11-wk-old Zucker diabetic fatty fa/fa male rats underwent a 7-cm abdominal skin incision with implantation of sponges and daily excision of full-thickness round sections of dorsal skin for 5 days. They were randomized to be fed with either a standard formula (S group, Clinutren Iso), a high-protein and arginine (ARG) plus proline (PRO)-enriched formula (ARG+PRO group, Clinutren Repair), or an isonitrogenous isoenergetic control formula (IC group). Nitrogen balance was calculated daily. The rats were euthanized on day 5, and plasma glucose, insulin, amino acids, skin epithelialization, and angiogenesis were measured. In macrophages, we assessed inducible nitric oxide synthase (iNOS) and arginase expression, production of nitric oxide (NO) and amino acid metabolism. Both the ARG+PRO and IC groups showed improved nitrogen balance. ARG plus PRO supplementation increased proline and branched-chain amino acid plasma concentrations and improved angiogenesis. Arginase and iNOS expressions in macrophages were reduced, together with NO and citrulline production. In diabetic rats, ARG plus PRO supplementation improves wound angiogenesis and favors whole body protein metabolism. Low macrophage iNOS expression at day 5 may reflect a low inflammatory state in the wounds, favoring wound closure.
Collapse
Affiliation(s)
- A Raynaud-Simon
- Department of Experimental, Metabolic and Clinical Biology, EA 4466, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Effects of a diabetes-specific enteral nutrition on nutritional and immune status of diabetic, obese, and endotoxemic rats: interest of a graded arginine supply. Crit Care Med 2012; 40:2423-30. [PMID: 22622404 DOI: 10.1097/ccm.0b013e31825334da] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Obese and type 2 diabetic patients present metabolic disturbance-related alterations in nonspecific immunity, to which the decrease in their plasma arginine contributes. Although diabetes-specific formulas have been developed, they have never been tested in the context of an acute infectious situation as can be seen in intensive care unit patients. Our aim was to investigate the effects of a diabetes-specific diet enriched or not with arginine in a model of infectious stress in a diabetes and obesity situation. As a large intake of arginine may be deleterious, this amino acid was given in graded fashion. DESIGN Randomized, controlled experimental study. SETTING University research laboratory. SUBJECTS Zucker diabetic fatty rats. INTERVENTIONS Gastrostomized Zucker diabetic fatty rats were submitted to intraperitoneal lipopolysaccharide administration and fed for 7 days with either a diabetes-specific enteral nutrition without (G group, n=7) or with graded arginine supply (1-5 g/kg/day) (GA group, n=7) or a standard enteral nutrition (HP group, n=10). MEASUREMENTS AND MAIN RESULTS Survival rate was better in G and GA groups than in the HP group. On day 7, plasma insulin to glucose ratio tended to be lower in the same G and GA groups. Macrophage tumor necrosis factor-α (G: 5.0±1.1 ng/2×10⁶ cells·hr⁻¹; GA: 3.7±0.8 ng/2×10⁶ cells·hr⁻¹; and HP: 1.7±0.6 ng/2×10⁶ cells·hr⁻¹; p<.05 G vs. HP) and nitric oxide (G: 4.5±1.1 ng/2×10⁶ cells·hr⁻¹; GA: 5.1±1.0 ng/2×10⁶ cells·hr⁻¹; and HP: 1.0±0.5 nmol/2×10⁶ cells·hr⁻¹; p<.05 G and GA vs. HP) productions were higher in the G and GA groups compared to the HP group. Macrophages from the G and GA groups exhibited increased arginine consumption. CONCLUSIONS In diabetic obese and endotoxemic rats, a diabetes-specific formula leads to a lower mortality, a decreased insulin resistance, and an improvement in peritoneal macrophage function. Arginine supplementation has no additional effect. These data support the use of such disease-specific diets in critically ill diabetic and obese patients.
Collapse
|
8
|
Breuillard C, Belabed L, Bonhomme S, Blanc-Quintin MC, Neveux N, Couderc R, De Bandt JP, Cynober L, Darquy S. Arginine availability modulates arginine metabolism and TNFα production in peritoneal macrophages from Zucker Diabetic Fatty rats. Clin Nutr 2012; 31:415-21. [DOI: 10.1016/j.clnu.2011.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
9
|
Clarke MA, Stefanidis A, Spencer SJ. Postnatal overfeeding leads to obesity and exacerbated febrile responses to lipopolysaccharide throughout life. J Neuroendocrinol 2012; 24:511-24. [PMID: 22175701 DOI: 10.1111/j.1365-2826.2011.02269.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The perinatal environment can be crucial for programming long-term physiology, including the mechanisms regulating body weight, and postnatal overfeeding can lead to obesity throughout life. Inflammation-related complications are of particular concern in the obese. However, little is known about how postnatal overfeeding contributes to changes in the ability to respond to inflammation. In the present study, we investigate changes in the febrile and neurochemical response to immune challenge with lipopolysaccharide (LPS), in juvenile and adult, male and female Wistar rats made obese by overfeeding during the postnatal period. We demonstrate that febrile responses to LPS are exacerbated in these rats, with peak core temperatures being up to 0.5 °C higher compared to those in controls, and this is associated with an enhanced pro-inflammatory cytokine profile and enhanced hypothalamic-pituitary-adrenal (HPA) axis activation. Plasma pro-inflammatory cytokines concentrations were approximately three-fold greater in neonatally overfed rats after LPS and there were approximately twice as many neurones activated in the paraventricular nucleus of the hypothalamus as in controls, with a prolonged corticosterone response. We also observed elevated expression of toll-like receptors (TLR) 2 and 4 in adipose tissue and greater inhibitory factor κB phosphorylation in these obese animals. Despite similar changes in expression of adipose TLR3, there was no corresponding alteration in the response to a viral mimetic that acts at this receptor. We suggest that an elevated febrile response to LPS therefore occurs in cases of obesity and this is associated with altered HPA axis function and enhanced TLR2/4 expression in adipose tissue and an up-regulated downstream pro-inflammatory cascade.
Collapse
Affiliation(s)
- M A Clarke
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
10
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas. Curr Opin Endocrinol Diabetes Obes 2007; 14:170-96. [PMID: 17940437 DOI: 10.1097/med.0b013e3280d5f7e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|