1
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
2
|
Sun X, Li Z, Niu Y, Zhao L, Huang Y, Li Q, Zhang S, Chen T, Fu T, Yang T, An X, Jiang Y, Zhang J. Jarid1b promotes epidermal differentiation by mediating the repression of Ship1 and activation of the AKT/Ovol1 pathway. Cell Prolif 2019; 52:e12638. [PMID: 31152465 PMCID: PMC6797505 DOI: 10.1111/cpr.12638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Terminally differentiated stratified squamous epithelial cells play an important role in barrier protection of the skin. The integrity of epidermal cells is maintained by tight regulation of proliferation and differentiation. The aim of this study was to investigate the role of epigenetic regulator H3K4me3 and its demethylase Jarid1b in the control of epithelial cell differentiation. Materials and methods RT‐qPCR, Western blotting and IHC were used to detect mRNA and protein levels. We analysed cell proliferation by CCK8 assay and cell migration by wound healing assay. ChIP was used to measure H3K4me3 enrichment. A chamber graft model was established for epidermal development. Results Our studies showed that H3K4me3 was decreased during epidermal differentiation. The H3K4me3 demethylase Jarid1b positively controlled epidermal cell differentiation in vitro and in vivo. Mechanistically, we found that Jarid1b substantially increased the expression of mesenchymal‐epithelial transition (MET)‐related genes, among which Ovol1 positively regulated differentiation gene expression. In addition, Ovol1 expression was repressed by PI3K‐AKT pathway inhibitors and overexpression (O/E) of the PI3K‐AKT pathway suppressor Ship1. Knockdown (KD) of Ship1 activated downstream PI3K‐AKT pathway and enhanced Ovol1 expression in HaCaT. Importantly, we found that Jarid1b negatively regulated Ship1 expression, but not that of Pten, by directly binding to its promoter to modulate H3K4me3 enrichment. Conclusion Our results identify an essential role of Jarid1b in the regulation of the Ship1/AKT/Ovol1 pathway to promote epithelial cell differentiation.
Collapse
Affiliation(s)
- Xuewei Sun
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhiyuan Li
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yanfang Niu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lijuan Zhao
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiang Li
- Department of Andrology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shengnan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ting Chen
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Fu
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jisheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Key Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao, China.,Shandong College Collaborative Innovation Center of Digital Medicine in Clinical Treatment and Nutrition Health, Qingdao, China
| |
Collapse
|
3
|
Sequence and epigenetic determinants in the regulation of the Math6 gene by Neurogenin3. Differentiation 2011; 82:66-76. [PMID: 21676531 DOI: 10.1016/j.diff.2011.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 11/22/2022]
Abstract
The bHLH factor Neurogenin3 initiates the differentiation program that leads to formation of pancreatic endocrine cells. Math6 is a closely related bHLH factor transiently activated downstream of Neurogenin3 in endocrine progenitors. Here we characterize the Math6 promoter and locate the Neurogenin3 binding site, thus confirming that Math6 is a genuine Neurogenin3 target. We also show that Math6 activation rates are largely controlled by epigenetic mechanisms involving the balance between activating H3K4 and repressive H3K27 methylation marks. High Math6 expression in the embryonic pancreas associates with an H3K4me3-only state, whereas low Math6 expression in differentiated endocrine cells correlates with chromatin dually marked with H3K4me3/H3K27me3, a feature originally associated with developmental genes that are repressed but poised for activation in ES cells. Importantly, we show that Neurogenin3 can trigger the conversion of Math6 from a poorly transcribed bivalent to an active monovalent state in vitro, hence providing a mechanism whereby Neurogenin3 may activate Math6 in endocrine progenitors. Finally, because Neurogenin3-induced changes in histone methylation are observed at other endocrine gene promoters, we propose that this mechanism may contribute to the determination of endocrine cell fate by Neurogenin3 in the pancreas.
Collapse
|