1
|
Kalkan AT, Yorulmaz G, Akalin A, Dinleyici EC. Intestinal Microbiota Composition in Patients with Type 2 Diabetes and Effects of Oral Antidiabetics. J Clin Med 2025; 14:2786. [PMID: 40283615 PMCID: PMC12027695 DOI: 10.3390/jcm14082786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Introduction: The cause-effect relationships between microbiota composition changes and type 2 diabetes (T2D) are complex, likely involving two-way interactions, and require further elucidation. Few studies have examined the interactions of antidiabetic drugs with the gut microbiota. This study's goal was to evaluate the gut microbiota of patients with type 2 diabetes at first diagnosis and again after 12 weeks of taking oral antidiabetic drugs. Methods: We performed a fecal microbiota analysis of adult patients who recently received a T2D diagnosis and healthy adults. We compared the microbiota compositions between the T2D patients and healthy controls; we also evaluated changes from baseline to 12 weeks of treatment in the total group receiving oral antidiabetics, as well as in the subgroups receiving metformin and linagliptin. Results: The alpha diversity and beta diversity indices were different at baseline between patients with type 2 diabetes and healthy controls. The LEfSe analysis showed that, at the genus level, the Lactobacillus, Rothia, Collinsella, and Eubacterium genera increased in relative abundance in the T2D group while, at the species level, the Rothia mucilaginosa, Collinsella aerofaciens, and Eubacterium bioforme strains were found to be dominant in the T2D group. Faecalibacterium at the genus level and Faecalibacterium prausnitzii at the strain level increased in relative abundance in the T2D group after 12 weeks. After 12 weeks of intervention, the alpha diversity indices were significantly lower in the T2D group compared to the control group. At the end of the 12th week, the Gemmiger and Collinsella genera were dominant in the T2D group, with Gemmiger formicilis and Collinsella aerofaciens being dominant at the species level; in the control group, Bacteroides and Alistipes were dominant at the genus level, and Prevotella stercorea and Alistipes finegoldii were dominant. There was no difference in the LEfSe analysis results between baseline and 12 weeks of linagliptin treatment. At the strain level, Gemmiger formicilis, Ruminococcus bromii, Rothia mucilaginosa, and Lactobacillus ruminis were predominant at the start of metformin treatment; however, after 12 weeks, Collinsella aerofaciens became predominant. Conclusions: We report that there is a substantial change in the composition of the gut microbiota in patients with T2D. Oral antidiabetic treatments, especially metformin, have some beneficial effects on microbiota composition. Few studies have explored the interaction of antidiabetic drugs with the gut microbiota; further research will elucidate the clinical impact of these changes in gut microbiota composition in diabetes.
Collapse
Affiliation(s)
- Ahmet Toygar Kalkan
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Goknur Yorulmaz
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Aysen Akalin
- Faculty of Medicine, Department of Endocrinology, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye
| | - Ener Cagri Dinleyici
- Faculty of Medicine, Department of Pediatrics, Eskisehir Osmangazi University, Eskisehir 26040, Türkiye;
| |
Collapse
|
2
|
Neyrinck AM, Rodriguez J, Sánchez CR, Autuori M, Cani PD, Bindels LB, Bindelle J, Delzenne NM. Interest of inulin in obesity: comparison of the prebiotic effect of edible-food sources versus purified inulin from chicory root. Eur J Nutr 2025; 64:148. [PMID: 40186782 PMCID: PMC11972196 DOI: 10.1007/s00394-025-03640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/20/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Inulin-type fructans (ITF) are fermentable dietary fibres (DF) that can confer beneficial metabolic health effects through changes in the gut microbiota. Many papers suggest that complex food rich in DF could be more relevant than purified DF in terms of health effect. We compared the prebiotic effect of natural source of inulin (scorzonera) versus native inulin extracted from chicory root in a model of obesity. METHODS Mice were fed during 6 weeks a low-fat (LF), high-fat (HF) or high-fat diet enriched with either purified inulin from chicory root (Inu) or lyophilized scorzonera (Sco), with the same amount of ITF intake (10%) versus a non-fermentable fibre (cellulose). Metabolic parameters were correlated with the gut microbiome composition (16S rRNA gene sequencing). RESULTS Both inulin sources reduced food intake without significantly modifying body weight gain or adiposity compared to HF. Purified inulin and lyophilized scorzonera differentially modulate the gut physiology and microbiota. Both inulin and scorzonera shifted global gut microbial composition from HF group, decreased members of Desulfovibrionaceae and boosted bifidobacteria level. Some effects were specific to Sco group, such as the increase of Akkermansia and the decrease of Bacteroides, that correlated to biological outcomes. Inu improved hepatic steatosis whereas scorzonera boosted intestinal immunity markers and antimicrobial peptides expression, and increased intestinal crypt depth. CONCLUSION Differences occur between natural edible versus isolated sources of ITF. Both sources of inulin shifted the gut microbiota, but differently affected intestinal and lipid homeostasis. This study highlights the importance of food matrix and origins of fructans for their use in the context of metabolic disorders.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Candido Robles Sánchez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Manon Autuori
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| | - Jérôme Bindelle
- Gembloux Agro-Bio Tech, ULiège, Université de Liège, Gembloux, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, B-1200, Brussels, Belgium.
| |
Collapse
|
3
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Gomes SF, Valois A, Estevinho MM, Santiago M, Magro F. Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review. Int J Mol Sci 2024; 25:12852. [PMID: 39684563 PMCID: PMC11641704 DOI: 10.3390/ijms252312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD.
Collapse
Affiliation(s)
- Sandra F. Gomes
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Unit of Medical Education, Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
| | - André Valois
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
| | - Maria Manuela Estevinho
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal; (S.F.G.); (M.M.E.)
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal;
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Mangoura SA, Ahmed MA, Zaka AZ. New Insights into the Pleiotropic Actions of Dipeptidyl Peptidase-4 Inhibitors Beyond Glycaemic Control. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:19-29. [PMID: 39526061 PMCID: PMC11548370 DOI: 10.17925/ee.2024.20.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
Dipeptidyl peptidase-4 (DPP-4) is a multifunctional serine ectopeptidase that cleaves and modifies a plethora of substrates, including regulatory peptides, cytokines and chemokines. DPP-4 is implicated in the regulation of immune response, viral entry, cellular adhesion, metastasis and chemotaxis. Regarding its numerous substrates and extensive expression inside the body, multitasking DPP-4 has been assumed to participate in different pathophysiological mechanisms. DPP-4 inhibitors or gliptins are increasingly used for the treatment of type 2 diabetes mellitus. Several reports from experimental and clinical studies have clarified that DPP-4 inhibitors exert many beneficial pleiotropic effects beyond glycaemic control, which are mediated by anti-inflammatory, anti-oxidant, anti-fibrotic and anti-apoptotic actions. The present review will highlight the most recent findings in the literature about these pleiotropic effects and the potential mechanisms underlying these benefits, with a specific focus on the potential effectiveness of DPP-4 inhibitors in coronavirus disease-19 and diabetic kidney disease.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Kirtipal N, Seo Y, Son J, Lee S. Systems Biology of Human Microbiome for the Prediction of Personal Glycaemic Response. Diabetes Metab J 2024; 48:821-836. [PMID: 39313228 PMCID: PMC11449821 DOI: 10.4093/dmj.2024.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
The human gut microbiota is increasingly recognized as a pivotal factor in diabetes management, playing a significant role in the body's response to treatment. However, it is important to understand that long-term usage of medicines like metformin and other diabetic treatments can result in problems, gastrointestinal discomfort, and dysbiosis of the gut flora. Advanced sequencing technologies have improved our understanding of the gut microbiome's role in diabetes, uncovering complex interactions between microbial composition and metabolic health. We explore how the gut microbiota affects glucose metabolism and insulin sensitivity by examining a variety of -omics data, including genomics, transcriptomics, epigenomics, proteomics, metabolomics, and metagenomics. Machine learning algorithms and genome-scale modeling are now being applied to find microbiological biomarkers associated with diabetes risk, predicted disease progression, and guide customized therapy. This study holds promise for specialized diabetic therapy. Despite significant advances, some concerns remain unanswered, including understanding the complex relationship between diabetes etiology and gut microbiota, as well as developing user-friendly technological innovations. This mini-review explores the relationship between multiomics, precision medicine, and machine learning to improve our understanding of the gut microbiome's function in diabetes. In the era of precision medicine, the ultimate goal is to improve patient outcomes through personalized treatments.
Collapse
Affiliation(s)
- Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Youngchang Seo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jangwon Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
8
|
Xu Z, Chen M, Ng SC. Metabolic Regulation of Microbiota and Tissue Response. Gastroenterol Clin North Am 2024; 53:399-412. [PMID: 39068002 DOI: 10.1016/j.gtc.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The microbiota in our gut regulates the sophisticated metabolic system that the human body has, essentially converting food into energy and the building blocks for various bodily functions. In this review, we discuss the multifaceted impact of the microbiota on host nutritional status by producing short-chain fatty acids, influencing gut hormones and mediating bile acid metabolism, and the key role in maintaining intestinal barrier integrity and immune homeostasis. Understanding and leveraging the power of the gut microbiome holds tremendous potential for enhancing human health and preventing various diseases.
Collapse
Affiliation(s)
- Zhilu Xu
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manman Chen
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siew Chien Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China; Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Ponce-España E, Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Fernández-Santos JM, Pedroche J, Millán-Linares MC, Bejarano I, Lardone PJ, Carrillo-Vico A. Anti-obesogenic effect of lupin-derived protein hydrolysate through modulation of adiposopathy, insulin resistance and gut dysbiosis in a diet-induced obese mouse. Biomed Pharmacother 2024; 178:117198. [PMID: 39059351 DOI: 10.1016/j.biopha.2024.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of obesity is increasingly widespread, resembling a global epidemic. Lifestyle changes, such as consumption of high-energy-dense diets and physical inactivity, are major contributors to obesity. Common features of this metabolic pathology involve an imbalance in lipid and glucose homeostasis including dyslipidemia, insulin resistance and adipose tissue dysfunction. Moreover, the importance of the gut microbiota in the development and susceptibility to obesity has recently been highlighted. In recent years, new strategies based on the use of functional foods, in particular bioactive peptides, have been proposed to counteract obesity outcomes. In this context, the present study examines the effects of a lupin protein hydrolysate (LPH) on obesity, dyslipidemia and gut dysbiosis in mice fed a high-fat diet (HFD). After 12 weeks of LPH treatment, mice gained less weight and showed decreased adipose dysfunction compared to the HFD-fed group. HFD-induced dyslipidemia (increased triglycerides, cholesterol and LDL concentration) and insulin resistance were both counteracted by LPH consumption. Discriminant analysis differentially distributed LPH-treated mice compared to non-treated mice. HFD reduced gut ecological parameters, promoted the blooming of deleterious taxa and reduced the abundance of commensal members. Some of these changes were corrected in the LPH group. Finally, correlation analysis suggested that changes in this microbial population could be responsible for the improvement in obesity outcomes. In conclusion, this is the first study to show the effect of LPH on improving weight gain, adiposopathy and gut dysbiosis in the context of diet-induced obesity, pointing to the therapeutic potential of bioactive peptides in metabolic diseases.
Collapse
Affiliation(s)
- Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - José María Fernández-Santos
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra Utrera Km 1, Seville 41013, Spain
| | | | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville 41013, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville 41009, Spain.
| |
Collapse
|
10
|
Olivares M, Hernández-Calderón P, Cárdenas-Brito S, Liébana-García R, Sanz Y, Benítez-Páez A. Gut microbiota DPP4-like enzymes are increased in type-2 diabetes and contribute to incretin inactivation. Genome Biol 2024; 25:174. [PMID: 38961511 PMCID: PMC11221189 DOI: 10.1186/s13059-024-03325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The gut microbiota controls broad aspects of human metabolism and feeding behavior, but the basis for this control remains largely unclear. Given the key role of human dipeptidyl peptidase 4 (DPP4) in host metabolism, we investigate whether microbiota DPP4-like counterparts perform the same function. RESULTS We identify novel functional homologs of human DPP4 in several bacterial species inhabiting the human gut, and specific associations between Parabacteroides and Porphyromonas DPP4-like genes and type 2 diabetes (T2D). We also find that the DPP4-like enzyme from the gut symbiont Parabacteroides merdae mimics the proteolytic activity of the human enzyme on peptide YY, neuropeptide Y, gastric inhibitory polypeptide (GIP), and glucagon-like peptide 1 (GLP-1) hormones in vitro. Importantly, administration of E. coli overexpressing the P. merdae DPP4-like enzyme to lipopolysaccharide-treated mice with impaired gut barrier function reduces active GIP and GLP-1 levels, which is attributed to increased DPP4 activity in the portal circulation and the cecal content. Finally, we observe that linagliptin, saxagliptin, sitagliptin, and vildagliptin, antidiabetic drugs with DPP4 inhibitory activity, differentially inhibit the activity of the DPP4-like enzyme from P. merdae. CONCLUSIONS Our findings confirm that proteolytic enzymes produced by the gut microbiota are likely to contribute to the glucose metabolic dysfunction that underlies T2D by inactivating incretins, which might inspire the development of improved antidiabetic therapies.
Collapse
Affiliation(s)
- Marta Olivares
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain
| | - Paula Hernández-Calderón
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain
| | - Sonia Cárdenas-Brito
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain
| | - Rebeca Liébana-García
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain.
| | - Alfonso Benítez-Páez
- Institute of Agrochemistry and Food Technology, Microbiome, Nutrition and Health Research Unit, Spanish National Research Council, IATA-CSIC, 46980, Paterna-Valencia, Spain.
- Principe Felipe Research Center (CIPF), Host-Microbe Interactions in Metabolic Health Laboratory, 46012, Valencia, Spain.
| |
Collapse
|
11
|
Carpio LE, Olivares M, Benítez-Paez A, Serrano-Candelas E, Barigye SJ, Sanz Y, Gozalbes R. Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM). Int J Mol Sci 2024; 25:5744. [PMID: 38891933 PMCID: PMC11171585 DOI: 10.3390/ijms25115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The role of the gut microbiota and its interplay with host metabolic health, particularly in the context of type 2 diabetes mellitus (T2DM) management, is garnering increasing attention. Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, constitute a class of drugs extensively used in T2DM treatment. However, their potential interactions with gut microbiota remain poorly understood. In this study, we employed computational methodologies to investigate the binding affinities of various gliptins to DPP4-like homologs produced by intestinal bacteria. The 3D structures of DPP4 homologs from gut microbiota species, including Segatella copri, Phocaeicola vulgatus, Bacteroides uniformis, Parabacteroides merdae, and Alistipes sp., were predicted using computational modeling techniques. Subsequently, molecular dynamics simulations were conducted for 200 ns to ensure the stability of the predicted structures. Stable structures were then utilized to predict the binding interactions with known gliptins through molecular docking algorithms. Our results revealed binding similarities of gliptins toward bacterial DPP4 homologs compared to human DPP4. Specifically, certain gliptins exhibited similar binding scores to bacterial DPP4 homologs as they did with human DPP4, suggesting a potential interaction of these drugs with gut microbiota. These findings could help in understanding the interplay between gliptins and gut microbiota DPP4 homologs, considering the intricate relationship between the host metabolism and microbial communities in the gut.
Collapse
Affiliation(s)
- Laureano E. Carpio
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (L.E.C.); (E.S.-C.)
- MolDrug AI Systems SL, 46018 Valencia, Spain
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.O.); (A.B.-P.); (Y.S.)
| | - Alfonso Benítez-Paez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.O.); (A.B.-P.); (Y.S.)
| | - Eva Serrano-Candelas
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (L.E.C.); (E.S.-C.)
| | | | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (M.O.); (A.B.-P.); (Y.S.)
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, 46980 Valencia, Spain; (L.E.C.); (E.S.-C.)
- MolDrug AI Systems SL, 46018 Valencia, Spain
| |
Collapse
|
12
|
Zeng L, Ma J, Wei T, Wang H, Yang G, Han C, Zhu T, Tian H, Zhang M. The effect of canagliflozin on gut microbiota and metabolites in type 2 diabetic mice. Genes Genomics 2024; 46:541-555. [PMID: 38483772 DOI: 10.1007/s13258-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Sodium glucose cotransporter 2 inhibitor (SGLT2i) represent a new type of hypoglycemic medicine that can cause massive loss of glucose from the urine, which have several benefits of reducing body weight and improving the prognosis of cardiovascular and kidney diseases. Although they are oral medicated hypoglycemic agents, their effects on the gut microbiome and function have been unclear. OBJECTIVE In order to describe the effects of canagliflozin on intestinal flora and metabolites, diabetic mice were randomized to receive canagliflozin or isoconcentration carboxymethylcellulose sodium by gavage for 8 weeks. Feces were collected for 16 S rRNA gene and LC-MS/MS analysis and enriched metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG). Liver, muscle, intestinal, fat were collected for qRT-PCR according to KEGG enriched metabolic pathways. RESULTS Our results showed that canagliflozin significantly increased GLP-1 level and impacted on the composition of gut microbiota and metabolites. It mainly increased Muribaculum, Ruminococcaceae_UCG_014, Lachnospiraceae-UCG-001, decreased ursodeoxycholic acids (UDCA) and hyodeoxycholic acids (HDCA), and increased fatty acids metabolites in feces. CONCLUSION In conclusion, we analyzed the changes of intestinal microbial composition and metabolites in diabetic mice after canagliflozin intervention and found that canagliflozin influenced intestinal fatty acid and bile acid (BA) metabolism. This study will provide reference for subsequent SGLT2i and intestinal related research.
Collapse
Affiliation(s)
- Li Zeng
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tiantian Wei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guitao Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongxiang Han
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
13
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio 2024; 15:e0203223. [PMID: 38055342 PMCID: PMC10790698 DOI: 10.1128/mbio.02032-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Gut microbiota exert influence on gastrointestinal mucosal permeability, bile acid metabolism, short-chain fatty acid synthesis, dietary fiber fermentation, and farnesoid X receptor/Takeda G protein-coupled receptor 5 (TGR5) signal transduction. The incretin glucagon-like peptide 1 (GLP-1) is mainly produced by L cells in the gut and regulates postprandial blood glucose. Changes in gut microbiota composition and function have been observed in obesity and type 2 diabetes (T2D). Meanwhile, the function and rhythm of GLP-1 have also been affected in subjects with obesity or T2D. Therefore, it is necessary to discuss the link between the gut microbiome and GLP-1. In this review, we describe the interaction between GLP-1 and the gut microbiota in metabolic diseases. On the one hand, gut microbiota metabolites stimulate GLP-1 secretion, and gut microbiota affect GLP-1 function and rhythm. On the other hand, the mechanism of action of GLP-1 on gut microbiota involves the inflammatory response. Additionally, we discuss the effects and mechanism of various interventions, such as prebiotics, probiotics, antidiabetic drugs, and bariatric surgery, on the crosstalk between gut microbiota and GLP-1. Finally, we stress that gut microbiota can be used as a target for metabolic diseases, and the clinical application of GLP-1 receptor agonists should be individualized.
Collapse
Grants
- 81870545, 81870579, 82170854, 81570715, 81170736 MOST | National Natural Science Foundation of China (NSFC)
- 7202163 Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation)
- Z201100005520011 Beijing Municipal Science and Technology Commission, Adminitrative Commission of Zhongguancun Science Park
- 2017YFC1309603, 2021YFC2501700, 2016YFA0101002, 2018YFC2001100 MOST | National Key Research and Development Program of China (NKPs)
- 2019DCT-M-05 Beijing Municipal Human Resources and Social Security Bureau (BMHRSSB)
- 2017PT31036, 2018PT31021 Chinese Academy of Medical Sciences (CAMS)
- 2017PT32020, 2018PT32001 Chinese Academy of Medical Sciences (CAMS)
- CIFMS2017-I2M-1-008, CIFMS2021-I2M-1-002 Chinese Academy of Medical Sciences (CAMS)
- 2022-PUMCH- C-019, 2022-PUMCH-B-121 National High Level Hospital Clinical Research Funding
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Keller LJ, Nguyen TH, Liu LJ, Hurysz BM, Lakemeyer M, Guerra M, Gelsinger DJ, Chanin R, Ngo N, Lum KM, Faucher F, Ipock P, Niphakis MJ, Bhatt AS, O'Donoghue AJ, Huang KC, Bogyo M. Chemoproteomic identification of a DPP4 homolog in Bacteroides thetaiotaomicron. Nat Chem Biol 2023; 19:1469-1479. [PMID: 37349583 DOI: 10.1038/s41589-023-01357-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Serine hydrolases have important roles in signaling and human metabolism, yet little is known about their functions in gut commensal bacteria. Using bioinformatics and chemoproteomics, we identify serine hydrolases in the gut commensal Bacteroides thetaiotaomicron that are specific to the Bacteroidetes phylum. Two are predicted homologs of the human dipeptidyl peptidase 4 (hDPP4), a key enzyme that regulates insulin signaling. Our functional studies reveal that BT4193 is a true homolog of hDPP4 that can be inhibited by FDA-approved type 2 diabetes medications targeting hDPP4, while the other is a misannotated proline-specific triaminopeptidase. We demonstrate that BT4193 is important for envelope integrity and that loss of BT4193 reduces B. thetaiotaomicron fitness during in vitro growth within a diverse community. However, neither function is dependent on BT4193 proteolytic activity, suggesting a scaffolding or signaling function for this bacterial protease.
Collapse
Affiliation(s)
- Laura J Keller
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor H Nguyen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lawrence J Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Markus Lakemeyer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, Germany
| | - Matteo Guerra
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemical and Cellular Pharmacology, Genentech, San Francisco, CA, USA
| | - Danielle J Gelsinger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachael Chanin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Divisions of Hematology and Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nhi Ngo
- Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA
| | - Kenneth M Lum
- Lundbeck La Jolla Research Center, Inc., San Diego, CA, USA
| | - Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Phillip Ipock
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Divisions of Hematology and Blood and Marrow Transplantation, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Lagunas-Rangel FA, Liao S, Williams MJ, Trukhan V, Fredriksson R, Schiöth HB. Drosophila as a Rapid Screening Model to Evaluate the Hypoglycemic Effects of Dipeptidyl Peptidase 4 (DPP4) Inhibitors: High Evolutionary Conservation of DPP4. Biomedicines 2023; 11:3032. [PMID: 38002032 PMCID: PMC10669173 DOI: 10.3390/biomedicines11113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, have been an integral part of the treatment of type 2 diabetes mellitus (T2DM) for several years. Despite their remarkable efficacy in lowering glucose levels and their compatibility with other hypoglycemic drugs, recent studies have revealed adverse effects, prompting the search for improved drugs within this category, which has required the use of animal models to verify the hypoglycemic effects of these compounds. Currently, in many countries the use of mammals is being significantly restricted, as well as cost prohibitive, and alternative in vivo approaches have been encouraged. In this sense, Drosophila has emerged as a promising alternative for several compelling reasons: it is cost-effective, offers high experimental throughput, is genetically manipulable, and allows the assessment of multigenerational effects, among other advantages. In this study, we present evidence that diprotin A, a DPP4 inhibitor, effectively reduces glucose levels in Drosophila hemolymph. This discovery underscores the potential of Drosophila as an initial screening tool for novel compounds directed against DPP4 enzymatic activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Sifang Liao
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| | | | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden;
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden; (F.A.L.-R.); (S.L.); (M.J.W.)
| |
Collapse
|
16
|
Yin F, Shi Z, Ma X, Ding K, Zhang Y, Ma S. Impact of clozapine monotherapy on gut microbiota and metabolism in people with schizophrenia. Front Microbiol 2023; 14:1253156. [PMID: 37744899 PMCID: PMC10512059 DOI: 10.3389/fmicb.2023.1253156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background Clozapine is considered one of the most effective antipsychotic drugs, but it is most likely to cause metabolic abnormalities. Researchers have studied the causes of metabolic abnormalities caused by clozapine from multiple perspectives, but the reasons remain unclear. Purpose Characterize the gut microbiota of people with schizophrenia taking clozapine, exploring the association between gut microbiota and glucose lipid metabolic markers in schizophrenia patients taking clozapine. Research design Sixty-one long-term inpatients with schizophrenia in clozapine monotherapy were selected as study subjects. We got four subgroups by sex and the presence of metabolic syndrome. Data analysis 16s analysis technology was applied at the genus level to determine the classification of gut microbiota. Then we compared the characteristics of gut microbiota and the association of gut microbiota with glucose lipid metabolic markers in each group. Findings We found differences in the diversity of gut microbiota among groups. The association between gut microbiota and glucose lipid metabolic markers was complicated. Gender was an important differentiating factor. Oscillibacter has a low abundance. However, it was the only genus associated with glycemic or lipids in each group. Among metabolic syndromes, Gemmiger was positively correlated with most lipids in females but negatively correlated in males, showing gender differences. In female non-metabolic syndromes, Bifidobacterium lost its probiotic character; instead, showing pathogenicity, which has strong positive correlations with fasting blood glucose and low-density lipoprotein but negative correlations with Apolipoprotein A1. Maybe schizophrenia, taking clozapine, and gender factors influenced the gut microbiota, which complicated our findings. The significance of the results remains to be determined by in-depth studies.
Collapse
Affiliation(s)
- Feiyan Yin
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Zhidao Shi
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Xiquan Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Ding
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuan Zhang
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| | - Sha Ma
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Zhou J, Lu N, Lv X, Wang X, Li J, Ke L. Role of Huangqin Decoction in Intestinal Homeostasis and Colon Carcinogenesis Based on "SREBP1 Cholesterol Metabolism Treg Cell Differentiation". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6715978. [PMID: 37305690 PMCID: PMC10250094 DOI: 10.1155/2023/6715978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 06/13/2023]
Abstract
Objective To explore the role of Huangqin Decoction in intestinal homeostasis maintenance and colon carcinogenesis based on "sterol regulatory element binding protein-1c (SREBP-1)-cholesterol metabolism regulatory T cell (Treg) differentiation." Methods It was decided to utilize a total of 50 healthy Wistar rats for the study, 20 of which were chosen at random to serve as controls, and 30 of which were used to create an intestinal homeostasis imbalance model. It was determined whether or not the modeling was successful by killing 10 rats from each of the two groups. The remaining 10 rats in the normal group were then employed as the control group for the experiment. The random number table method was used to split the rats into two groups: the Huangqin Decoction (n = 10) and the Natural Recovery (n = 10) groups. For seven days, participants in the Huangqin Decoction group received the herb, whereas those in the natural healing group received normal saline. The relative density of SREBP1, the levels of cholesterol ester (CE), free cholesterol (FC), total cholesterol (TC), and Treg cells were detected and compared. Results When compared to the control group, the relative density of SREBP1 increased significantly before administration in the Huangqin Decoction group and the natural recovery group, but decreased significantly after administration, with statistical significance (P < 0.05) in the Huangqin Decoction group and the natural recovery group; the Huangqin Decoction group and natural recovery group had significantly higher levels of CE, FC, and TC than the control group before to administration, and these levels increased significantly after administration. CE, FC, and TC levels in Huangqin Decoction and natural recovery groups were much lower than those in natural recovery groups, and the difference was statistically significant (P < 0.05), according to the results; Prior to administration, Treg cell levels in Huangqin Decoction group and the natural recovery group were significantly higher, and Treg cell levels in the Huangqin Decoction group and natural recovery group were significantly lower after administration; the decrease in the Huangqin Decoction group was significantly greater than that in natural recovery group. P < 0.05 indicated that the difference was significant. Conclusion Using Huangqin Decoction, one may efficiently regulate SREBP1, cholesterol metabolism, and Treg cell development, all of which play an important role in maintaining intestinal stability and minimizing the incidence of colon cancer.
Collapse
Affiliation(s)
- Junde Zhou
- Ward 3 of General Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China
| | - Nannan Lu
- Department of Pathology, Bei'an First People's Hospital, No. 222, Longjiang Road, Bei'an 164099, China
| | - Xinxin Lv
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Xin Wang
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Jing Li
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| | - Lixia Ke
- Department of Oncology, Beidahuang Industry Group General Hospital, No. 235, Hashuang Road, Nangang District, Harbin 150001, China
| |
Collapse
|
18
|
Zeb F, Osaili T, Obaid RS, Naja F, Radwan H, Cheikh Ismail L, Hasan H, Hashim M, Alam I, Sehar B, Faris ME. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023; 15:259. [PMID: 36678130 PMCID: PMC9863108 DOI: 10.3390/nu15020259] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Each individual has a unique gut microbiota; therefore, the genes in our microbiome outnumber the genes in our genome by about 150 to 1. Perturbation in host nutritional status influences gut microbiome composition and vice versa. The gut microbiome can help in producing vitamins, hormones, and other active metabolites that support the immune system; harvest energy from food; aid in digestion; protect against pathogens; improve gut transit and function; send signals to the brain and other organs; oscillate the circadian rhythm; and coordinate with the host metabolism through multiple cellular pathways. Gut microbiota can be influenced by host genetics, medications, diet, and lifestyle factors from preterm to aging. Aligning with precision nutrition, identifying a personalized microbiome mandates the provision of the right nutrients at the right time to the right patient. Thus, before prescribing a personalized treatment, it is crucial to monitor and count the gut flora as a focused biomarker. Many nutritional approaches that have been developed help in maintaining and restoring an optimal microbiome such as specific diet therapy, nutrition interventions, and customized eating patterns. One of these approaches is time-restricted feeding/eating (TRF/E), a type of intermittent fasting (IF) in which a subject abstains from food intake for a specific time window. Such a dietary modification might alter and restore the gut microbiome for proper alignment of cellular and molecular pathways throughout the lifespan. In this review, we have highlighted that the gut microbiota would be a targeted biomarker and TRF/E would be a targeted approach for restoring the gut-microbiome-associated molecular pathways such as hormonal signaling, the circadian system, metabolic regulators, neural responses, and immune-inflammatory pathways. Consequently, modulation of the gut microbiota through TRF/E could contribute to proper utilization and availability of the nutrients and in this way confer protection against diseases for harnessing personalized nutrition approaches to improve human health.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Reyad Shakir Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Peshawar 24540, KP, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Luton LU1 3JU, UK
| | - MoezAllslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
19
|
Wang G, He X, Wang Q. Intratumoral bacteria are an important "accomplice" in tumor development and metastasis. Biochim Biophys Acta Rev Cancer 2023; 1878:188846. [PMID: 36496095 DOI: 10.1016/j.bbcan.2022.188846] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
As emerging tumor components, intratumoral bacteria have been found in many solid tumors. Several studies have demonstrated that different cancer subtypes have distinct microbial compositions, and mechanistic studies have shown that intratumoral bacteria may promote cancer initiation and progression through DNA damage, epigenetic modification, inflammatory responses, modulation of host immunity and activation of oncogenes or oncogenic pathways. Moreover, intratumoral bacteria have been shown to modulate tumor metastasis and chemotherapy response. A better understanding of the tumor microenvironment and its associated microbiota will facilitate the design of new metabolically engineered species, opening up a new era of intratumoral bacteria-based cancer therapy. However, many questions remain to be resolved, such as where intratumoral bacteria originate and whether there is a direct causal relationship between intratumoral bacteria and tumor susceptibility. In addition, suitable preclinical models and more advanced detection techniques are crucial for studying the biological functions of intratumoral bacteria. In this review, we summarize the complicated role of intratumoral bacteria in the regulation of cancer development and metastasis and discuss their carcinogenic mechanisms and potential therapeutic aspects.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China; Department of General Surgery, The 74th Group Army Hospital, Guangzhou 510318, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Qian Wang
- Department of General Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Jia L, Huang S, Sun B, Shang Y, Zhu C. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne) 2023; 14:1149256. [PMID: 37033254 PMCID: PMC10076675 DOI: 10.3389/fendo.2023.1149256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a major driver of mortality worldwide, is more likely to develop other cardiometabolic risk factors, ultimately leading to diabetes-related mortality. Although a set of measures including lifestyle intervention and antidiabetic drugs have been proposed to manage T2DM, problems associated with potential side-effects and drug resistance are still unresolved. Pharmacomicrobiomics is an emerging field that investigates the interactions between the gut microbiome and drug response variability or drug toxicity. In recent years, increasing evidence supports that the gut microbiome, as the second genome, can serve as an attractive target for improving drug efficacy and safety by manipulating its composition. In this review, we outline the different composition of gut microbiome in T2DM and highlight how these microbiomes actually play a vital role in its development. Furthermore, we also investigate current state-of-the-art knowledge on pharmacomicrobiomics and microbiome's role in modulating the response to antidiabetic drugs, as well as provide innovative potential personalized treatments, including approaches for predicting response to treatment and for modulating the microbiome to improve drug efficacy or reduce drug toxicity.
Collapse
Affiliation(s)
- Liyang Jia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Boyu Sun
- Department of Pharmacy, The Third People’s Hospital of Qingdao, Qingdao, China
| | - Yongguang Shang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| |
Collapse
|
21
|
Sohn M, Jung H, Lee WS, Kim TH, Lim S. Effect of Lactobacillus plantarum LMT1-48 on Body Fat in Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab J 2023; 47:92-103. [PMID: 35487505 PMCID: PMC9925147 DOI: 10.4093/dmj.2021.0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We investigated whether Lactobacillus plantarum strain LMT1-48, isolated from Korean fermented foods and newborn feces, is a suitable probiotic supplement to treat overweight subjects. METHODS In this randomized, double-blind, placebo-controlled clinical trial, 100 volunteers with a body mass index of 25 to 30 kg/m2 were assigned randomly (1:1) to receive 2×1010 colony forming units of LMT1-48 or to a placebo treatment group. Body composition was measured by dual-energy X-ray absorptiometry, and abdominal visceral fat area (VFA) and subcutaneous fat area were measured by computed tomography scanning. Changes in body fat, VFA, anthropometric parameters, and biomarkers were compared between the two treatment groups (ClinicalTrials.gov number: NCT03759743). RESULTS After 12 weeks of treatment, the body weight decreased significantly from 76.6±9.4 to 75.7±9.2 kg in the LMT1-48 group but did not change in the placebo group (P=0.022 between groups). A similar pattern was found in abdominal VFA between the two groups (P=0.041). Serum insulin levels, the corresponding homeostasis model assessment of insulin resistance, and leptin levels decreased in the LMT1-48 group but increased in the placebo group (all P<0.05). Decrease in body weight and body mass index by treatment with LMT1-48 was correlated with increase in Lactobacillus levels significantly. LMT1-48 also increased Oscillibacter levels significantly, which were negatively correlated with triglyceride and alanine transaminase levels. CONCLUSION Administration of LMT1-48 decreased body weight, abdominal VFA, insulin resistance, and leptin levels in these subjects with overweight, suggesting its anti-obesogenic therapeutic potential.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyeyoung Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Corresponding author: Soo Lim https://orcid.org/0000-0002-4137-1671 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea E-mail:
| |
Collapse
|
22
|
Zhang X, Ren H, Zhao C, Shi Z, Qiu L, Yang F, Zhou X, Han X, Wu K, Zhong H, Li Y, Li J, Ji L. Metagenomic analysis reveals crosstalk between gut microbiota and glucose-lowering drugs targeting the gastrointestinal tract in Chinese patients with type 2 diabetes: a 6 month, two-arm randomised trial. Diabetologia 2022; 65:1613-1626. [PMID: 35930018 PMCID: PMC9477956 DOI: 10.1007/s00125-022-05768-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The use of oral glucose-lowering drugs, particularly those designed to target the gut ecosystem, is often observed in association with altered gut microbial composition or functional capacity in individuals with type 2 diabetes. The gut microbiota, in turn, plays crucial roles in the modulation of drug efficacy. We aimed to assess the impacts of acarbose and vildagliptin on human gut microbiota and the relationships between pre-treatment gut microbiota and therapeutic responses. METHODS This was a randomised, open-labelled, two-arm trial in treatment-naive type 2 diabetes patients conducted in Beijing between December 2016 and December 2017. One hundred participants with overweight/obesity and newly diagnosed type 2 diabetes were recruited from the Pinggu Hospital and randomly assigned to the acarbose (n=50) or vildagliptin (n=50) group using sealed envelopes. The treatment period was 6 months. Blood, faecal samples and visceral fat data from computed tomography images were collected before and after treatments to measure therapeutic outcomes and gut microbiota. Metagenomic datasets from a previous type 2 diabetes cohort receiving acarbose or glipizide for 3 months were downloaded and processed. Statistical analyses were applied to identify the treatment-related changes in clinical variables, gut microbiota and associations. RESULTS Ninety-two participants were analysed. After 6 months of acarbose (n=44) or vildagliptin (n=48) monotherapy, both groups achieved significant reductions in HbA1c (from 60 to 46 mmol/mol [from 7.65% to 6.40%] in the acarbose group and from 59 to 44 mmol/mol [from 7.55% to 6.20%] in the vildagliptin group) and visceral fat areas (all adjusted p values for pre-post comparisons <0.05). Both arms showed drug-specific and shared changes in relative abundances of multiple gut microbial species and pathways, especially the common reductions in Bacteroidetes species. Three months and 6 months of acarbose-induced changes in microbial composition were highly similar in type 2 diabetes patients from the two independent studies. Vildagliptin treatment significantly enhanced fasting active glucagon-like peptide-1 (GLP-1) levels. Baseline gut microbiota, rather than baseline GLP-1 levels, were strongly associated with GLP-1 response to vildagliptin, and to a lesser extent with GLP-1 response to acarbose. CONCLUSIONS/INTERPRETATION This study reveals common microbial responses in type 2 diabetes patients treated with two glucose-lowering drugs targeting the gut differently and acceptable performance of baseline gut microbiota in classifying individuals with different GLP-1 responses to vildagliptin. Our findings highlight bidirectional interactions between gut microbiota and glucose-lowering drugs. TRIAL REGISTRATION ClinicalTrials.gov NCT02999841 FUNDING: National Key Research and Development Project: 2016YFC1304901.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cuiling Zhao
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | | | - Li Qiu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | | | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Yufeng Li
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China.
| |
Collapse
|
23
|
Nelli RK, Roth JA, Gimenez-Lirola LG. Distribution of Coronavirus Receptors in the Swine Respiratory and Intestinal Tract. Vet Sci 2022; 9:vetsci9090500. [PMID: 36136717 PMCID: PMC9504008 DOI: 10.3390/vetsci9090500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coronaviruses use a broad range of host receptors for binding and cell entry, essential steps in establishing viral infections. This pilot study evaluated the overall distribution of angiotensin-converting enzyme 2 (ACE2), aminopeptidase N (APN), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), and dipeptidyl peptidase 4 (DPP4) receptors in the pig respiratory and intestinal tract. All the receptors evaluated in this study were expressed and differentially distributed through the respiratory and intestinal tract. The presence and expression levels of these receptors could determine susceptibility to coronavirus infections. This study may have important implications for the development of research models and the assessment of the potential risk and introduction of novel coronaviruses into the swine population.
Collapse
|
24
|
Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. MICROBIAL ECOLOGY 2022:1-15. [PMID: 35869999 PMCID: PMC9308113 DOI: 10.1007/s00248-022-02081-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Collapse
Affiliation(s)
- Archana Pant
- Molecular Genetics Lab, National Institute of Immunology, New Delhi, Delhi-110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India
| | - Tushar K Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad-121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Bhabatosh Das
- Molecular Genetics Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, PO box, Gurgaon Expressway, #04 Faridabad-121001, Haryana, India.
| |
Collapse
|
25
|
Kant R, Chandra L, Verma V, Nain P, Bello D, Patel S, Ala S, Chandra R, Antony MA. Gut microbiota interactions with anti-diabetic medications and pathogenesis of type 2 diabetes mellitus. World J Methodol 2022; 12:246-257. [PMID: 36159100 PMCID: PMC9350729 DOI: 10.5662/wjm.v12.i4.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Microorganisms including bacteria, viruses, protozoa, and fungi living in the gastrointestinal tract are collectively known as the gut microbiota. Dysbiosis is the imbalance in microbial composition on or inside the body relative to healthy state. Altered Firmicutes to Bacteroidetes ratio and decreased abundance of Akkermansia muciniphila are the predominant gut dysbiosis associated with the pathogenesis of type 2 diabetes mellitus (T2DM) and metabolic syndrome. Pathophysiological mechanisms linking gut dysbiosis, and metabolic diseases and their complications include altered metabolism of short-chain fatty acids and bile acids, interaction with gut hormones, increased gut microbial metabolite trimethylamine-N-oxide, bacterial translocation/Leaky gut syndrome, and endotoxin production such as lipopolysaccharides. The association between the gut microbiota and glycemic agents, however, is much less understood and is the growing focus of research and conversation. Recent studies suggest that the gut microbiota and anti-diabetic medications are interdependent on each other, meaning that while anti-diabetic medications alter the gut microbiota, the gut microbiota also alters the efficacy of anti-diabetic medications. With increasing evidence regarding the significance of gut microbiota, it is imperative to review the role of gut microbiota in the pathogenesis of T2DM. This review also discusses the interaction between gut microbiota and the various medications used in the treatment of T2DM.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, SC 29621, United States
- Department of Endocrinology, Diabetes and Metabolism, AnMed Health, Anderson, SC 29621, United States
| | - Lakshya Chandra
- Department of Internal Medicine, St Francis Hospital, Greenville, SC 29601, United States
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina, Anderson, SC 29621, United States
- Department of Internal Medicine, AnMed Health, Anderson, SC 29621, United States
| | - Priyanshu Nain
- Department of Graduate Medical Education, Maulana Azad Medical College, Delhi 110002, India
| | - Diego Bello
- Department of Surgery, AnMed Health, Anderson, SC 29621, United States
| | - Siddharth Patel
- Department of Internal Medicine, Decatur Morgan Hospital, Decatur, AL 35601, United States
| | - Subash Ala
- Department of Internal Medicine, St Francis Hospital, Greenville, SC 29601, United States
| | - Rashmi Chandra
- Department of Internal Medicine, Medical University of South Carolina, Anderson, SC 29621, United States
| | - Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina, Anderson, SC 29621, United States
- Department of Endocrinology, Diabetes and Metabolism, AnMed Health, Anderson, SC 29621, United States
| |
Collapse
|
26
|
Zhang Y, Fu Y, Yang Y, Ke J, Zhao D. Assessment of serum dipeptidyl peptidase-IV levels in autoimmune thyroid disease. J Int Med Res 2022; 50:3000605221112031. [PMID: 35903860 PMCID: PMC9340981 DOI: 10.1177/03000605221112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Decreased serum dipeptidyl peptidase-IV (sDPPIV) levels have been reported in patients with autoimmune diseases. However, few studies have analyzed the association between sDPPIV levels and autoimmune thyroid disease (AITD). This study aimed to evaluate the association between sDPPIV levels and three types of AITD: Graves' disease (GD), Graves' ophthalmopathy (GO), and Hashimoto's thyroiditis (HT). METHODS Patients newly diagnosed with GD (n = 65), GO (n = 22), and HT (n = 27) and healthy individuals (n = 30) were recruited. Clinical characteristics and thyroid function data were collected. sDPPIV was measured using enzyme-linked immunosorbent assays. RESULTS Compared with controls (786.3 ± 46.95), patients with GD and GO had significantly lower sDPPIV levels (662.2 ± 38.81 and 438.4 ± 31.78). Additionally, sDPPIV levels were negatively associated with antithyroid peroxidase antibody (r = -0.20) and antithyroglobulin antibody (r = -0.19), but there was no significant relationship between thyroid hormone and sDPPIV levels. GO cases were divided by proptosis with and without muscle thickening; sDPPIV levels were lower in the muscle thickening group than those in the without muscle thickening group. Logistic regression analysis showed that sDPPIV was negatively correlated with GO and GD. CONCLUSIONS sDPPIV concentrations were abnormal in patients with GD and GO, and reduced sDPPIV expression may be involved in the progression of GO and GD.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing, China
| | - Ying Fu
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing, China
| | - Yuxian Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing, China
| | - Jing Ke
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Endocrinology Center, Lu He Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Chen R, Zhu D, Yang R, Wu Z, Xu N, Chen F, Zhang S, Chen H, Li M, Hou K. Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:750. [PMID: 35957707 PMCID: PMC9358493 DOI: 10.21037/atm-22-2926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD), but the mechanism between DKD and ESRD remains unclear. Some experts have put forward the "microbial-centered ESRD development theory", believing that the bacterial load caused by gut microecological imbalance and uremia toxin transfer are the core pathogenic links. The purpose of this study was to analyze the genomic characteristics of gut microbiota in patients with ESRD, specifically DKD or non-diabetic kidney disease (NDKD). METHODS In this cross-sectional study, patients with ESRD were recruited in a community, including 22 DKD patients and 22 NDKD patients matched using gender and age. Fecal samples of patients were collected for 16S rDNA sequencing and gut microbiota analysis. The distribution structure, diversity, and abundance of microflora in DKD patients were analyzed by constructing species evolutionary trees and analyzing alpha diversity, beta diversity, and linear discriminant analysis effect size (LEfSe). RESULTS The results of our study showed that there were statistically significant differences in the richness and species of gut microbiota at the total level between DKD patients and NDKD patients. The analysis of genus level between the two groups showed significant differences in 16 bacterial genera. Among them, Oscillibacter, Bilophila, UBA1819, Ruminococcaceae UCG-004, Anaerotruncus, Ruminococcaceae, and Ruminococcaceae NK4A214 bacteria in DKD patients were higher than those in NDKD patients. CONCLUSIONS 16S rDNA sequencing technology was used in this study to analyze the characteristics of intestinal flora in ESRD patients with or without diabetes. We found that there was a significant difference in the intestinal flora of ESRD patients caused by DKD and NDKD, suggesting that these may be potential causative bacteria for the development of ERSD in DKD patients.
Collapse
Affiliation(s)
- Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rui Yang
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ningning Xu
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hong Chen
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Ming Li
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Jinxia Community Health Service Centre, Shantou, China
| |
Collapse
|
28
|
Liu W, Luo Z, Zhou J, Sun B. Gut Microbiota and Antidiabetic Drugs: Perspectives of Personalized Treatment in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:853771. [PMID: 35711668 PMCID: PMC9194476 DOI: 10.3389/fcimb.2022.853771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
Alterations in the composition and function of the gut microbiota have been reported in patients with type 2 diabetes mellitus (T2DM). Emerging studies show that prescribed antidiabetic drugs distort the gut microbiota signature associated with T2DM. Even more importantly, accumulated evidence provides support for the notion that gut microbiota, in turn, mediates the efficacy and safety of antidiabetic drugs. In this review, we highlight the current state-of-the-art knowledge on the crosstalk and interactions between gut microbiota and antidiabetic drugs, including metformin, α-glucosidase inhibitors, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors, traditional Chinese medicines and other antidiabetic drugs, as well as address corresponding microbial-based therapeutics, aiming to provide novel preventative strategies and personalized therapeutic targets in T2DM.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
29
|
Feng Y, Cao H, Hua J, Zhang F. Anti-Diabetic Intestinal Mechanisms: Foods, Herbs, and Western Medicines. Mol Nutr Food Res 2022; 66:e2200106. [PMID: 35481618 DOI: 10.1002/mnfr.202200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/16/2022] [Indexed: 12/12/2022]
Abstract
The role of intestinal factors in the pathogenesis of diabetes, such as a decrease in the incretin effect, has recently attracted considerable attention. An imbalance in the gut microbiota inhibits the secretion of incretins, which are metabolic hormones can reduce blood glucose levels, and promotes the occurrence and development of diabetes. Numerous studies have demonstrated that foods are environmental factors that are important in the modulation of gut microbial-mediated glucose metabolism. In general, functional foods trigger the gut microbiota to produce beneficial metabolites or reduce harmful products through metabolic pathways and then regulate glucose and lipid metabolism. Recent studies have shown that similar to functional foods, the regulatory effects of some herbs and Western medicines are closely related to alterations in the gut microbiota. In this review, the intestinal mechanism of foods, herbs, and Western medicine in affecting the process of glucose metabolism is summarized.
Collapse
Affiliation(s)
- Yuwei Feng
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hong Cao
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Jiao Hua
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Hospital Infection-Control Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Feng Zhang
- Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China.,Chinese Society of Nutritional Oncology, Beijing, 100022, China
| |
Collapse
|
30
|
Craciun CI, Neag MA, Catinean A, Mitre AO, Rusu A, Bala C, Roman G, Buzoianu AD, Muntean DM, Craciun AE. The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines 2022; 10:308. [PMID: 35203519 PMCID: PMC8869176 DOI: 10.3390/biomedicines10020308] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus is considered to be a global epidemic. The combination of genetic susceptibility and an unhealthy lifestyle is considered to be the main trigger of this metabolic disorder. Recently, there has been increased interest in the roles of gut microbiota as a new potential contributor to this epidemic. Research, in recent years, has contributed to an in-depth characterization of the human microbiome and its associations with various diseases, including metabolic diseases and diabetes mellitus. It is known that diet can change the composition of gut microbiota, but it is unclear how this, in turn, may influence metabolism. The main objective of this review is to evaluate the pathogenetic association between microbiota and diabetes and to explore any new therapeutic agents, including nutraceuticals that may modulate the microbiota. We also look at several mechanisms involved in this process. There is a clear, bidirectional relationship between microbiota and diabetes. Current treatments for diabetes influence microbiota in various ways, some beneficial, but others with still unclear effects. Microbiota-aimed treatments have seen no real-world significant effects on the progression of diabetes and its complications, with more studies needed in order to find a really beneficial agent.
Collapse
Affiliation(s)
- Cristian-Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Rusu
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Cornelia Bala
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Gabriela Roman
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (C.-I.C.); (A.-D.B.)
| | - Dana-Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Anca-Elena Craciun
- Department of Diabetes, Nutrition, Metabolic Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.R.); (C.B.); (G.R.); (A.-E.C.)
| |
Collapse
|
31
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
32
|
Riedel S, Pheiffer C, Johnson R, Louw J, Muller CJF. Intestinal Barrier Function and Immune Homeostasis Are Missing Links in Obesity and Type 2 Diabetes Development. Front Endocrinol (Lausanne) 2022; 12:833544. [PMID: 35145486 PMCID: PMC8821109 DOI: 10.3389/fendo.2021.833544] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Noncommunicable diseases, such as type 2 diabetes (T2D), place a burden on healthcare systems worldwide. The rising prevalence of obesity, a major risk factor for T2D, is mainly attributed to the adoption of Westernized diets and lifestyle, which cause metabolic dysfunction and insulin resistance. Moreover, diet may also induce changes in the microbiota composition, thereby affecting intestinal immunity. The critical role of intestinal immunity and intestinal barrier function in the development of T2D is increasingly acknowledged, however, limited studies have investigated the link between intestinal function and metabolic disease. In this review, studies reporting specific roles of the intestinal immune system and intestinal epithelial cells (IECs) in metabolic disease are highlighted. Innate chemokine signaling, eosinophils, immunoglobulin A (IgA), T helper (Th) 17 cells and their cytokines were associated with obesity and/or dysregulated glucose homeostasis. Intestinal epithelial cells (IECs) emerged as critical modulators of obesity and glucose homeostasis through their effect on lipopolysaccharide (LPS) signaling and decontamination. Furthermore, IECs create a link between microbial metabolites and whole-body metabolic function. Future in depth studies of the intestinal immune system and IECs may provide new opportunities and targets to develop treatments and prevention strategies for obesity and T2D.
Collapse
Affiliation(s)
- Sylvia Riedel
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Obstetrics and Gynaecology, University of Pretoria, Pretoria, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Christo J. F. Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
33
|
Буйваленко АВ, Покровская ЕВ. [Interaction between the gut microbiota and oral antihyperglycemic drugs]. PROBLEMY ENDOKRINOLOGII 2022; 68:66-71. [PMID: 35488758 PMCID: PMC9764270 DOI: 10.14341/probl12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The gut microbiome is the largest microbial habitat in the human body. The main functions include obtaining energy from complex food fibers, maturation and formation of the immune system, intestinal angiogenesis, restoration of epithelial damage to the intestine, development of the nervous system, protection against pathogens, etc. It is also known that a number of drugs can cause changes in the composition of the intestinal microflora, and intestinal bacteria, in turn, produce a number of enzymes and metabolites that can chemically change the structure of drugs, leading to more side effects, and in some cases to positive changes. In this review we present current evidence supporting the effects of microbiota in host-drug interactions, in particular, the reciprocal effects of gut microbiota and oral hypoglycemic drugs on each other. Gaining and evaluating knowledge in this area will help pave the way for the development of new microbiota-based strategies that can be used in the future to improve treatment outcomes for type 2 diabetes mellitus (T2D).
Collapse
|
34
|
Su M, Hu R, Tang T, Tang W, Huang C. Review of the correlation between Chinese medicine and intestinal microbiota on the efficacy of diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1085092. [PMID: 36760813 PMCID: PMC9905712 DOI: 10.3389/fendo.2022.1085092] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetes mellitus is a serious metabolic disorder that can lead to a number of life-threatening complications. Studies have shown that intestinal microbiota is closely related to the development of diabetes, making it a potential target for the treatment of diabetes. In recent years, research on the active ingredients of traditional Chinese medicine (TCM), TCM compounds, and prepared Chinese medicines to regulate intestinal microbiota and improve the symptoms of diabetes mellitus is very extensive. We focus on the research progress of TCM active ingredients, herbal compounds, and prepared Chinese medicines in the treatment of diabetes mellitus in this paper. When diabetes occurs, changes in the abundance and function of the intestinal microbiota disrupt the intestinal environment by disrupting the intestinal barrier and fermentation. TCM and its components can increase the abundance of beneficial bacteria while decreasing the abundance of harmful bacteria, regulate the concentration of microbial metabolites, improve insulin sensitivity, regulate lipid metabolism and blood glucose, and reduce inflammation. TCM can be converted into active substances with pharmacological effects by intestinal microbiota, and these active substances can reverse intestinal microecological disorders and improve diabetes symptoms. This can be used as a reference for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Min Su
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Rao Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Ting Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Weiwei Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
| | - Chunxia Huang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparation, Changsha Medical University, Changsha, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Changsha Medical University, Changsha, China
- *Correspondence: Chunxia Huang,
| |
Collapse
|
35
|
Chu N, Chan JCN, Chow E. Pharmacomicrobiomics in Western Medicine and Traditional Chinese Medicine in Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:857090. [PMID: 35600606 PMCID: PMC9114736 DOI: 10.3389/fendo.2022.857090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Pharmacomicrobiomics refers to the interactions between foreign compounds and the gut microbiome resulting in heterogeneous efficacy, side effects, and toxicity of the compound concerned. Glucose lowering drugs reduce blood glucose by modulating insulin secretion and its actions as well as redistributing energy disposal. Apart from genetic, ecological, and lifestyle factors, maintaining an equilibrium of the whole gut microbiome has been shown to improve human health. Microbial fingerprinting using faecal samples indicated an 'invisible phenotype' due to different compositions of microbiota which might orchestrate the interactions between patients' phenotypes and their responses to glucose-lowering drugs. In this article, we summarize the current evidence on differences in composition of gut microbiota between individuals with type 2 diabetes (T2D) and healthy individuals, the disruption of the balance of beneficial and pathogenic microbiota was shown in patients with T2D and how Western Medicine (WM) and Traditional Chinese Medicine (TCM) might re-shape the gut microbiota with benefits to the host immunity and metabolic health. We particularly highlighted the effects of both WM and TCM increase the relative abundance of health promoting bacteria, such as, Akkermansia muciniphila, Blautia, and Bifidobacterium adolescentis, and which have been implicated in type 2 diabetes (T2D). Several lines of evidence suggested that TCM might complement the efficacy of WM through alteration of microbiota which warrants further investigation in our pursuit of prevention and control of T2D.
Collapse
Affiliation(s)
- Natural Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Elaine Chow,
| |
Collapse
|
36
|
Wang D, Liu J, Zhou L, Zhang Q, Li M, Xiao X. Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Front Endocrinol (Lausanne) 2022; 13:905171. [PMID: 35909556 PMCID: PMC9326154 DOI: 10.3389/fendo.2022.905171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The current research and existing facts indicate that type 2 diabetes mellitus (T2DM) is characterized by gut microbiota dysbiosis and disturbed microbial metabolites. Oral glucose-lowering drugs are reported with pleiotropic beneficial effects, including not only a decrease in glucose level but also weight loss, antihypertension, anti-inflammation, and cardiovascular protection, but the underlying mechanisms are still not clear. Evidence can be found showing that oral glucose-lowering drugs might modify the gut microbiome and thereby alter gastrointestinal metabolites to improve host health. Although the connections among gut microbial communities, microbial metabolites, and T2DM are complex, figuring out how antidiabetic agents shape the gut microbiome is vital for optimizing the treatment, meaningful for the instruction for probiotic therapy and gut microbiota transplantation in T2DM. In this review, we focused on the literatures in gut microbiota and its metabolite profile alterations beneficial from oral antidiabetic drugs, trying to provide implications for future study in the developing field of these drugs, such as combination therapies, pre- and probiotics intervention in T2DM, and subjects with pregestational diabetes and gestational diabetes mellitus.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Ming Li
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, National Health Commission (NHC) Key Laboratory of Endocrinology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
- *Correspondence: Xinhua Xiao,
| |
Collapse
|
37
|
Chen Y, Wang M. New Insights of Anti-Hyperglycemic Agents and Traditional Chinese Medicine on Gut Microbiota in Type 2 Diabetes. Drug Des Devel Ther 2021; 15:4849-4863. [PMID: 34876807 PMCID: PMC8643148 DOI: 10.2147/dddt.s334325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic disease characterized by chronic hyperglycemia. Human microbiota, which is regarded as a “hidden organ”, plays an important role in the initiation and development of T2DM. In addition, anti-hyperglycemic agents and traditional Chinese medicine may affect the composition of gut microbiota and consequently improve glucose metabolism. However, the relationship between gut microbiota, T2DM and anti-hyperglycemic agents or traditional Chinese medicine is poorly understood. In this review, we summarized pre-clinical and clinical studies to elucidate the possible underlying mechanism. Some anti-hyperglycemic agents and traditional Chinese medicine may partly exert hypoglycemic effects by altering the gut microbiota composition in ways that reduce metabolic endotoxemia, maintain the integrity of intestinal mucosal barrier, promote the production of short-chain fatty acids (SCFAs), decrease trimethylamine-N-oxide (TMAO) and regulate bile acid metabolism. In conclusion, gut microbiota may provide some new therapeutic targets for treatment of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Mian Wang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|
38
|
Xi Y, Xu PF. Diabetes and gut microbiota. World J Diabetes 2021; 12:1693-1703. [PMID: 34754371 PMCID: PMC8554376 DOI: 10.4239/wjd.v12.i10.1693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent years. Currently, approximately 463 million people are living with diabetes, and the number has tripled over the last two decades. Here, we describe the global epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in China, India, USA, and the globally. The gut microbiota plays a major role in metabolic diseases, especially diabetes. In this review, we describe the interaction between diabetes and gut microbiota in three aspects: probiotics, antidiabetic medication, and diet. Recent findings indicate that probiotics, antidiabetic medications, or dietary interventions treat diabetes by shifting the gut microbiome, particularly by raising beneficial bacteria and reducing harmful bacteria. We conclude that targeting the gut microbiota is becoming a novel therapeutic strategy for diabetes.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng-Fei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Key Laboratory for Cell Proliferation and Regulation Biology of State Education Ministry, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
39
|
Bovine β-Casomorphins: Friends or Foes? A comprehensive assessment of evidence from in vitro and ex vivo studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Smits MM, Fluitman KS, Herrema H, Davids M, Kramer MH, Groen AK, Belzer C, de Vos WM, Cahen DL, Nieuwdorp M, van Raalte DH. Liraglutide and sitagliptin have no effect on intestinal microbiota composition: A 12-week randomized placebo-controlled trial in adults with type 2 diabetes. DIABETES & METABOLISM 2021; 47:101223. [DOI: 10.1016/j.diabet.2021.101223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
|
41
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
42
|
Leyrolle Q, Cserjesi R, D G H Mulders M, Zamariola G, Hiel S, Gianfrancesco MA, Portheault D, Amadieu C, Bindels LB, Leclercq S, Rodriguez J, Neyrinck AM, Cani PD, Lanthier N, Trefois P, Bindelle J, Paquot N, Cnop M, Thissen JP, Klein O, Luminet O, Delzenne NM. Prebiotic effect on mood in obese patients is determined by the initial gut microbiota composition: A randomized, controlled trial. Brain Behav Immun 2021; 94:289-298. [PMID: 33515740 DOI: 10.1016/j.bbi.2021.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic and behavioural diseases, which are often related to obesity, have been associated to alterations of the gut microbiota considered as an interesting therapeutic target. We have analyzed in a cohort of obese patients treated with prebiotic inulin versus placebo the potential link between gut microbiota changes occurring upon intervention and their effect on psychological parameters (mood and cognition). METHODS A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in 106 obese patients assigned to two groups: prebiotic versus placebo, who received respectively 16 g/d of native inulin or maltodextrin combined with dietary advice to consume inulin-rich or -poor vegetables for 3 months as well as to restrict caloric intake. Anthropometric measurements, food intake, psychological questionnaires, serum measures, and fecal microbiome sequencing were performed before and after the intervention. RESULTS Inulin supplementation in obese subjects had moderate beneficial effect on emotional competence and cognitive flexibility. However, an exploratory analysis revealed that some patients exhibiting specific microbial signature -elevated Coprococcus levels at baseline- were more prone to benefit from prebiotic supplementation in terms of mood. Positive responders toward inulin intervention in term of mood also displayed worse metabolic and inflammatory profiles at baseline (increased levels of IL-8, insulin resistance and adiposity). CONCLUSION This study shows that inulin intake can be helpful to improve mood in obese subjects exhibiting a specific microbial profile. The present work highlights some microbial, metabolic and inflammatory features (IL-8, insulin resistance) which can predict or mediate the beneficial effects of inulin on behaviour in obesity. Food4gut, clinicaltrial.gov: NCT03852069, https://clinicaltrials.gov/ct2/show/NCT03852069.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Renata Cserjesi
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Maria D G H Mulders
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Giorgia Zamariola
- Research Institute for Psychological Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Sophie Hiel
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Daphné Portheault
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Brussels, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Institut de recherche expérimentale et Clinique, UCLouvain, Brussels, Belgium; Service d'Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pierre Trefois
- Medical Imaging Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Jérome Bindelle
- Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique IREC, UCLouvain, Brussels, Belgium
| | - Olivier Klein
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Olivier Luminet
- Research Institute for Psychological Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
43
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
44
|
Frost F, Kacprowski T, Rühlemann M, Pietzner M, Bang C, Franke A, Nauck M, Völker U, Völzke H, Dörr M, Baumbach J, Sendler M, Schulz C, Mayerle J, Weiss FU, Homuth G, Lerch MM. Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function. Gut 2021; 70:522-530. [PMID: 33168600 PMCID: PMC7873430 DOI: 10.1136/gutjnl-2020-322753] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.
Collapse
Affiliation(s)
- Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Tim Kacprowski
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany,DZHK (German Centre for Cardiovascular Research), partner site, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site, Greifswald, Germany,Department of Internal Medicine B, University of Greifswald, Greifswald, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany,Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Peterson CT, Iablokov SN, Uchitel S, Chopra D, Perez-Santiago J, Rodionov DA, Peterson SN. Community Metabolic Interactions, Vitamin Production and Prebiotic Potential of Medicinal Herbs Used for Immunomodulation. Front Genet 2021; 12:584197. [PMID: 33613632 PMCID: PMC7886795 DOI: 10.3389/fgene.2021.584197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Historically, the health benefits and immunomodulatory potential of medicinal herbs have been considered an intrinsic quality of the herb itself. We have hypothesized that the health benefits of medicinal herbs may be partially due to their prebiotic potential that alter gut microbiota leading to changes in short chain fatty acids and vitamin production or biotransformation of herb encoded molecules and secondary metabolites. Accumulating studies emphasize the relationship between the gut microbiota and host immune function. While largely unknown, these interactions are mediated by secreted microbial products that activate or repress a variety of immune cell types. Here we evaluated the effect of immunomodulatory, medicinal Ayurvedic herbs on gut microbiota in vitro using 16S rRNA sequencing to assess changes in community composition and functional potential. All immunomodulatory herbs displayed substantial prebiotic potential, targeting unique taxonomic groups. Application of genome reconstruction and analysis of biosynthetic capacity of herb selected communities suggests that many of the 11 herbs tested altered the community metabolism as the result of differential glycan harvest and sugar utilization and secreted products including multiple vitamins, butyrate, and propionate that may impact host physiology and immune function. Taken together, these results provide a useful framework for the further evaluation of these immunomodulatory herbs in vivo to maintain immune homeostasis or achieve desired regulation of immune components in the context of disease.
Collapse
Affiliation(s)
- Christine T Peterson
- Department of Family Medicine and Public Health, Center of Excellence for Research and Training in Integrative Health, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Stanislav N Iablokov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Department of Theoretical Physics, P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Sasha Uchitel
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Deepak Chopra
- Department of Family Medicine and Public Health, Center of Excellence for Research and Training in Integrative Health, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Ayurveda and Yoga Research, Chopra Foundation, Carlsbad, CA, United States
| | - Josue Perez-Santiago
- Puerto Rico Omic Center Genomics Core Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Scott N Peterson
- Puerto Rico Omic Center Genomics Core Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico.,Bioinformatics and Structural Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
46
|
Wang Z, Wang J, Hu J, Chen Y, Dong B, Wang Y. A comparative study of acarbose, vildagliptin and saxagliptin intended for better efficacy and safety on type 2 diabetes mellitus treatment. Life Sci 2021; 274:119069. [PMID: 33460667 DOI: 10.1016/j.lfs.2021.119069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
As a complicated metabolic disorder, type 2 diabetes mellitus (T2DM) is becoming a major health concern worldwide. Drugs including acarbose, saxagliptin and vildagliptin are applied, but their efficacy is still required to be compared. Therefore, the study aimed to evaluate the efficacy and safety of acarbose, saxagliptin and vildagliptin in the treatment of T2DM. Ninety patients diagnosed with T2DM were treated with acarbose, saxagliptin and vildagliptin, respectively (30 patients for each drug). All patients were examined at 0, 4 and 12 weeks after treatment with vital signs recorded. Fasting blood glucose and blood biochemical indices were analyzed. In addition, fecal samples were taken for microbial macrogenome sequencing and safety evaluation within 12 weeks after treatment. Blood glucose level decreased at 4 and 12 weeks after treatment, and the total cholesterol (TC) and high-density lipoprotein (HDL) levels at 12 weeks were different. Genus abundance of intestinal flora was altered at different time points. Acarbose increased Butyricimonas level first and then decreased it during drug treatment. Saxagliptin increased Megamonas and decreased Turicibacter genus level gradually. Pseudomonas, Klebsiella, Blautia, Faecalibacterium and Roseburia levels fluctuated after Vildagliptin treatment, which increased fasting C-peptide level greater than the other two drugs. Saxagliptin showed higher adverse reactions than acarbose and vildagliptin. Collectively, acarbose, vildagliptin, and saxagliptin can effectively reduce the HbA1c level and affect the intestinal flora distribution in T2DM patients, and the adverse reactions of acarbose and vildagliptin are less than saxagliptin, providing alternative strategies for the treatment of T2DM.
Collapse
Affiliation(s)
- Zhongchao Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Jing Wang
- Department of Cancer Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Jianxia Hu
- Lab of Thyroid Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Ying Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China.
| |
Collapse
|
47
|
Link between gut microbiota and health outcomes in inulin -treated obese patients: Lessons from the Food4Gut multicenter randomized placebo-controlled trial. Clin Nutr 2020; 39:3618-3628. [DOI: 10.1016/j.clnu.2020.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/06/2023]
|
48
|
Dipeptidyl peptidase-4 inhibitor protects against non-alcoholic steatohepatitis in mice by targeting TRAIL receptor-mediated lipoapoptosis via modulating hepatic dipeptidyl peptidase-4 expression. Sci Rep 2020; 10:19429. [PMID: 33173107 PMCID: PMC7655829 DOI: 10.1038/s41598-020-75288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4i) are antidiabetic medications that prevent cleavage of incretin hormones by dipeptidyl peptidase-4 (DPP4). DPP4 is ubiquitously expressed, and its hepatic DPP4 expression is upregulated under non-alcoholic steatohepatitis (NASH) conditions. We investigated the effect of DPP4i treatment on NASH pathogenesis, as well as its potential underlying molecular mechanisms. Mice were randomly divided into three groups: Group 1, chow-fed mice treated with vehicle for 20 weeks; Group 2, high-fat, high-fructose, and high-cholesterol Amylin liver NASH (AMLN) diet-fed mice treated with vehicle for 20 weeks; Group 3, AMLN diet-fed mice treated with vehicle for the first 10 weeks, followed by the DPP4i teneligliptin (20 mg/kg/day) for additional 10 weeks. DPP4i administration reduced serum liver enzyme and hepatic triglyceride levels and markedly improved hepatic steatosis and fibrosis in the AMLN diet-induced NASH model. In vivo, NASH alleviation significantly correlated with the suppression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis and downregulated hepatic DPP4 expression. In vitro, DPP4i treatment significantly decreased the markers of TRAIL receptor-mediated lipoapoptosis and suppressed DPP4 expression in palmitate-treated hepatocytes. In conclusion, DPP4i may efficiently attenuate the pathogenesis of AMLN diet-induced NASH in mice by suppressing lipotoxicity-induced apoptosis, possibly by modulating hepatic DPP4 expression.
Collapse
|
49
|
Leyrolle Q, Cserjesi R, Mulders MDGH, Zamariola G, Hiel S, Gianfrancesco MA, Rodriguez J, Portheault D, Amadieu C, Leclercq S, Bindels LB, Neyrinck AM, Cani PD, Karkkainen O, Hanhineva K, Lanthier N, Trefois P, Paquot N, Cnop M, Thissen JP, Klein O, Luminet O, Delzenne NM. Specific gut microbial, biological, and psychiatric profiling related to binge eating disorders: A cross-sectional study in obese patients. Clin Nutr 2020; 40:2035-2044. [PMID: 33023763 DOI: 10.1016/j.clnu.2020.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Binge eating disorder (BED) is a frequent eating disorder associated with obesity and co-morbidities including psychiatric pathologies, which represent a big health burden on the society. The biological processes related to BED remain unknown. Based on psychological testing, anthropometry, clinical biology, gut microbiota analysis and metabolomic assessment, we aimed to examine the complex biological and psychiatric profile of obese patients with and without BED. METHODS Psychological and biological characteristics (anthropometry, plasma biology, gut microbiota, blood pressure) of 101 obese subjects from the Food4Gut cohort were analysed to decipher the differences between BED and Non BED patients, classified based on the Questionnaire for Eating Disorder Diagnosis (Q-EDD). Microbial 16S rDNA sequencing and plasma non-targeted metabolomics (liquid chromatography-mass spectrometry) were performed in a subcohort of 91 and 39 patients respectively. RESULTS BED subjects exhibited an impaired affect balance, deficits in inhibition and self-regulation together with marked alterations of eating behaviour (increased emotional and external eating). BED subjects displayed a lower blood pressure and hip circumference. A decrease in Akkermansia and Intestimonas as well as an increase in Bifidobacterium and Anaerostipes characterized BED subjects. Interestingly, metabolomics analysis revealed that BED subjects displayed a higher level of one food contaminants, Bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE.2H(2)O) and a food derived-metabolite the Isovalerylcarnitine. CONCLUSIONS Non-targeted omics approaches allow to select specific microbial genera and two plasma metabolites that characterize BED obese patients. Further studies are needed to confirm their potential role as drivers or biomarkers of binge eating disorder. Food4gut, clinicaltrial.gov:NCT03852069, https://clinicaltrials.gov/ct2/show/NCT03852069.
Collapse
Affiliation(s)
- Quentin Leyrolle
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Renata Cserjesi
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Maria D G H Mulders
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Giorgia Zamariola
- Research Institute for Psychological Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Sophie Hiel
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Marco A Gianfrancesco
- Laboratory of Immunometabolism and Nutrition, GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Daphnée Portheault
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Camille Amadieu
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; Institute of Neuroscience, UClouvain, Brussels, Belgium
| | - Sophie Leclercq
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; Institute of Neuroscience, UClouvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium; WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Brussels, Belgium
| | - Olli Karkkainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland; Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Institut de recherche expérimentale et Clinique, UCLouvain, Brussels, Belgium; Service d'Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Pierre Trefois
- Medical Imaging Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-Inflammation, Infection & Immunity, University of Liège, Liège, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique IREC, UCLouvain, Brussels, Belgium
| | - Olivier Klein
- Center for Social and Cultural Psychology, Université libre de Bruxelles, Belgium
| | - Olivier Luminet
- Research Institute for Psychological Sciences, UCLouvain, Louvain-La-Neuve, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium.
| |
Collapse
|
50
|
Nakajima H, Takewaki F, Hashimoto Y, Kajiyama S, Majima S, Okada H, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Yamazaki M, Tanaka Y, Oikawa Y, Nakajima S, Ohno H, Fukui M. The Effects of Metformin on the Gut Microbiota of Patients with Type 2 Diabetes: A Two-Center, Quasi-Experimental Study. Life (Basel) 2020; 10:life10090195. [PMID: 32932871 PMCID: PMC7555986 DOI: 10.3390/life10090195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin is reported to affect human gut microbiota; however, the nature of this association in Japanese patients with type 2 diabetes mellitus (T2DM) is unknown. We enrolled 31 patients with T2DM who took metformin for the first time in this study. We compared them before and after four weeks of taking metformin. Fecal samples were collected and 16S rDNA sequences were performed to identify the gut microbiota. Blood samples and Gastrointestinal Symptom Rating Scale (GSRS) questionnaire results, denoting gastro-intestinal symptoms, were also collected. In the whole-group analysis, no significant differences were found at the phylum level. In a subgroup of 21 patients that excluding those using medications affecting gut microbiota, there was a significant decrease of the phylum Firmicutes (p = 0.042) and of the ratio of the Firmicutes and Bacteroidetes abundances (p = 0.04) after taking metformin. Changes in abdominal pain (r = −0.56, p = 0.008) and regurgitation (r = −0.53, p = 0.01) were associated with Parabacteroides. Despite there being no direct association with abdominal symptoms, our study revealed that the composition of gut microbiota in Japanese individuals with T2DM partially changed after starting metformin.
Collapse
Affiliation(s)
- Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Fumie Takewaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Correspondence:
| | - Shizuo Kajiyama
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Kajiyama Clinic, Kyoto 600-8898, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
- Department of Internal Medicine, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Yousuke Oikawa
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Shunji Nakajima
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co., Ltd., Kobe 650-0021, Japan; (Y.T.); (Y.O.); (S.N.); (H.O.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (H.N.); (F.T.); (S.K.); (S.M.); (H.O.); (T.S.); (E.U.); (N.N.); (M.H.); (M.Y.); (M.F.)
| |
Collapse
|