1
|
Damtie Y, Dachew BA, Ayano G, Tadesse AW, Betts K, Alati R. The risk of intellectual disability in offspring of diabetic mothers: A systematic review and meta-analysis. J Psychosom Res 2025; 192:112115. [PMID: 40179603 DOI: 10.1016/j.jpsychores.2025.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/10/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Epidemiological evidence on association between maternal diabetes and intellectual disability (ID) in offspring is mixed. This systematic review and meta-analysis aimed to synthesise the existing evidence to determine the extent and nature of this association. We systematically searched Embase, Web of Science, Scopus, PubMed, PsycINFO, and CINAHL databases from inception to March 14, 2023. The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale. Effect estimates for each exposure-outcome association were synthesised using a random-effects model Sensitivity and subgroup analyses were performed to identify potential sources of heterogeneity. A total of ten studies, comprising 8,927,706 mother-child pairs, met the inclusion criteria. Our analyses revealed that children exposed to any form of maternal diabetes had higher odds of ID compared to unexposed counterparts. Specifically, we found a 61 % higher risk of ID in offspring of mothers with any pre-existing diabetes. However, no significant association was found between gestational diabetes mellitus (GDM) and ID risk in offspring. The present meta-analysis suggests that exposure to pre-existing type 1 diabetes (T1D) and type 2 diabetes (T2D), but not GDM, is associated with increased risks of ID in offspring. Further high-quality studies, adequately adjusted for potential confounders, are needed to confirm these findings.
Collapse
Affiliation(s)
- Yitayish Damtie
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia; Department of Public Health, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia.
| | - Berihun Assefa Dachew
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia; enAble Institute, Curtin University, Perth, Western Australia, Australia
| | - Getinet Ayano
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia
| | - Abay Woday Tadesse
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia
| | - Kim Betts
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia
| | - Rosa Alati
- School of Population Health, Faculty of Health Sciences, Curtin University, Australia; School of Public Health, The University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Huang H, Zhao T, Ma W. Omega-3 polyunsaturated fatty acids attenuates cognitive impairment via the gut-brain axis in diabetes-associated cognitive dysfunction rats. Brain Behav Immun 2025; 127:147-169. [PMID: 40068791 DOI: 10.1016/j.bbi.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Diabetes-related cognitive dysfunction (DACD) is a comorbidity of type 2 diabetes that has a negative effect on patients' quality of life. Research has indicated that disruption of the gut microbiota (GM) may be linked to dementia with altered cognitive performance. Conversely, omega-3 polyunsaturated fatty acids (n-3 PUFAs) may reverse DACD. The present study aimed to assess the effects of an n-3 PUFA intervention and fecal microbiota transplantation (FMT) on high-fat and streptozotocin-induced DACD model rats. In DACD rats, n-3 PUFA treatment restored fasting blood glucose (FBG) levels and cognitive function, increased the expression of anti-inflammatory cytokines and downregulated the expression of proinflammatory cytokines in the cortex and colon. Additionally, the expression of the postsynaptic density protein-95 mRNA and protein varied with n-3 PUFA treatment. Treatment with n-3 PUFAs also increased the expression of tight junction proteins. Beneficial and short-chain fatty acid-producing bacteria were more abundant when rats were exposed to n-3 PUFAs. After FMT from the rats with DACD symptoms that were improved by the n-3 PUFA dietary intervention into another batch of DACD rats, we observed recovery in recipient DACD rats. These results indicated that the alleviation of DACD symptoms by n-3 PUFAs was attributed to gut microbiota remodeling.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Nanchang Institute of Disease Control and Prevention, China Railway Nanchang Bureau Group Co., Ltd., Nanchang, 330003, People's Republic of China
| | - Tong Zhao
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China.
| |
Collapse
|
3
|
Huang H, Zhao T, Li J, Shen J, Xiao R, Ma W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl Microbiol Biotechnol 2023; 107:7251-7267. [PMID: 37733050 DOI: 10.1007/s00253-023-12754-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has a major comorbidity known as diabetes-associated cognitive dysfunction (DACD). Studies have demonstrated that the gut microbiota is crucial in mediating the cognitive abnormalities that occur in diabetic individuals. Additionally, changes in dietary fatty acid intake levels, inflammatory cytokines, and microRNAs (miRs) have an effect on cognitive performance. However, further studies are needed to identify the link between gut microbiota and cognition in T2DM patients and the role that the above indicators play in this process. In order to provide a new rationale for the treatment of cognitive dysfunction in diabetes, this study was conducted in the middle-aged and elderly Beijing population to examine the differences in gut microbiota between DACD and T2DM patients as well as to further explore the role of erythrocyte membrane fatty acids, inflammatory cytokines, and miRs in gut microbiota-mediated cognitive impairment. According to the results, the abundance of norank_f_Eubacterium_coprostanoligenes_group, Acidaminococcus, Enterorhabdus, and norank_f_Clostridium_methylpentosum_group was higher in DACD patients compared to T2DM patients at the genus level. Compared with T2DM patients, plasma interleukin-12 (IL-12) concentrations were significantly higher in DACD patients than in T2DM patients, and IL-12 was significantly positively correlated with norank_f_Eubacterium_coprostanoligenes_group. In addition, plasma miR-142-5p was significantly positively correlated with Enterorhabdus and norank_f_Eubacterium_coprostanoligenes_group. We therefore hypothesize that cognitive impairment in T2DM patients is associated with altered gut microbial composition and that the effect of microbiota on cognition may be mediated through IL-12 and miR-142-5p. KEY POINTS: • Type 2 diabetes with or without cognitive impairment differs in gut microbiota. • Differential genera of gut microbiota were associated with inflammatory cytokines. • Differential genera of gut microbiota were associated with plasma microRNAs.
Collapse
Affiliation(s)
- Hongying Huang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Tong Zhao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jinchen Li
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Weiwei Ma
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
4
|
Ma F, Zhang Q, Shi J, Li S, Wu L, Zhang H. Risk factors for cognitive dysfunction and glycemic management in older adults with type 2 diabetes mellitus: a retrospective study. BMC Endocr Disord 2023; 23:220. [PMID: 37821909 PMCID: PMC10565992 DOI: 10.1186/s12902-023-01476-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Epidemiological evidence shows a robust relationship between cognitive dysfunction and type 2 diabetes mellitus (T2DM). This study identified major risk factors that might prevent or ameliorate T2DM-associated cognitive dysfunction in the realm of clinical practice. METHODS Using Mini-mental State Examination (MMSE) in the light of education level, we identified older adults with T2DM on admission aged 50 and above. We conducted this case-control study when eligible participants were divided into Cognitively Normal (CN) group and Cognitively Impaired (CI) group. Analytical data referred to demographic characteristics, clinical features, fluid biomarkers, and scale tests. RESULTS Of 596 records screened, 504 cases were included in the final analysis. Modified multivariate logistic regression analysis verified that homocysteine (OR = 2.048, 95%CI = 1.129-3.713), brain infarction (OR = 1.963, 95%CI = 1.197-3.218), dementia (OR = 9.430, 95%CI = 2.113-42.093), education level (OR = 0.605, 95%CI = 0.367-0.997), severity of dependence (OR = 1.996, 95%CI = 1.397-2.851), creatine kinase (OR = 0.514, 95%CI = 0.271-0.974) were significant risk factors of incident T2DM-related cognitive dysfunction in patients of advanced age. CONCLUSION Our study supported a robust relationship between T2DM and cognitive dysfunction. Our results provide clinicians with major risk factors for T2DM-related cognitive dysfunction, in particular the protective role of creatine kinase.
Collapse
Affiliation(s)
- Fanyuan Ma
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Juan Shi
- Department of Anatomy, Histology and Embryology, Air Force Medical University, Xi'an, 710032, China
| | - Shuaifeng Li
- Department of Spine Surgery, General Hospital of PLA Tibet Military Area Command, Lhasa, 850007, China
| | - Liping Wu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Hua Zhang
- Department of Geriatrics, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
5
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
6
|
Rodrigue AL, Mathias SR, Knowles EEM, Mollon J, Almasy L, Schultz L, Turner J, Calhoun V, Glahn DC. Specificity of Psychiatric Polygenic Risk Scores and their Effects on Associated Risk Phenotypes. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519455 PMCID: PMC10382704 DOI: 10.1016/j.bpsgos.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Polygenic risk scores (PRSs) are indices of genetic liability for illness, but their clinical utility for predicting risk for a specific psychiatric disorder is limited. Genetic overlap among disorders and their effects on allied phenotypes may be a possible explanation, but this has been difficult to quantify given focus on singular disorders and/or allied phenotypes. Methods We constructed PRSs for 5 psychiatric disorders (schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, attention-deficit/hyperactivity disorder) and 3 nonpsychiatric control traits (height, type II diabetes, irritable bowel disease) in the UK Biobank (N = 31,616) and quantified associations between PRSs and phenotypes allied with mental illness: behavioral (symptoms, cognition, trauma) and brain measures from magnetic resonance imaging. We then evaluated the extent of specificity among PRSs and their effects on these allied phenotypes. Results Correlations among psychiatric PRSs replicated previous work, with overlap between schizophrenia and bipolar disorder, which was distinct from overlap between autism spectrum disorder and attention-deficit/hyperactivity disorder; overlap between psychiatric and control PRSs was minimal. There was, however, substantial overlap of PRS effects on allied phenotypes among psychiatric disorders and among psychiatric disorders and control traits, where the extent and pattern of overlap was phenotype specific. Conclusions Results show that genetic distinctions between psychiatric disorders and between psychiatric disorders and control traits exist, but this does not extend to their effects on allied phenotypes. Although overlap can be informative, work is needed to construct PRSs that will function at the level of specificity needed for clinical application.
Collapse
|
7
|
Senko AN, Overall RW, Silhavy J, Mlejnek P, Malínská H, Hüttl M, Marková I, Fabel KS, Lu L, Stuchlik A, Williams RW, Pravenec M, Kempermann G. Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose. PLoS Genet 2022; 18:e1009638. [PMID: 35377872 PMCID: PMC9060359 DOI: 10.1371/journal.pgen.1009638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/02/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
Collapse
Affiliation(s)
- Anna N. Senko
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Rupert W. Overall
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Klaus S. Fabel
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Germany
- CRTD–Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| |
Collapse
|
8
|
Song X, Zhu Z, Qian X, Liu X, Chen S, Tang H. Multi-Omics Characterization of Type 2 Diabetes Mellitus-Induced Cognitive Impairment in the db/db Mouse Model. Molecules 2022; 27:1904. [PMID: 35335269 PMCID: PMC8951264 DOI: 10.3390/molecules27061904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder frequently accompanied by cognitive impairment. Contributing factors such as modern lifestyle, genetic predisposition, and gene environmental interactions have been postulated, but the pathogenesis remains unclear. In this study, we attempt to investigate the potential mechanisms and interventions underlying T2DM-induced cognitive deficits from the brain-gut axis perspective. A combined analysis of the brain transcriptome, plasma metabolome, and gut microbiota in db/db mice with cognitive decline was conducted. Transcriptome analysis identified 222 upregulated gene sets and 85 downregulated gene sets, mainly related to mitochondrial respiratory, glycolytic, and inflammation. In metabolomic analysis, a total of 75 significantly altered metabolites were identified, correlated with disturbances of glucose, lipid, bile acid, and steroid metabolism under disease state. Gut microbiota analysis suggested that the species abundance and diversity of db/db mice were significantly increased, with 23 significantly altered genus detected. Using the multi-omics integration, significant correlations among key genes (n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified. Our findings suggest that disturbed circulation and brain energy metabolism, especially mitochondrial-related disturbances, may contribute to cognitive impairment in db/db mice. This study provides novel insights into the functional interactions among the brain, circulating metabolites, and gut microbiota.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Zeyu Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaohang Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201400, China;
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
- Department of Neurology, Shanghai Guangci Memorial Hospital, Shanghai 200025, China
| |
Collapse
|