1
|
Swamy SL, Mishra A, Mukherjee P, Sahoo GR, Thakur TK. Modeling land-degradation vulnerability in coal-mined environs through geospatial and AHP techniques: potential strategies for eco-restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35721-5. [PMID: 39668269 DOI: 10.1007/s11356-024-35721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/01/2024] [Indexed: 12/14/2024]
Abstract
Coal is the most important and abundant source of energy in India, where 66% of the thermal power is generated from the combustion of coal. Therefore, understanding how coal-mining activities increase land-degradation risks and vulnerabilities in different land uses is essential to devise site-specific restoration plans for complementing the national targets of land degradation neutrality (LDN). This study was carried out in the Chirimiri coal-mining region of Chhattisgarh, India, employing geospatial methods. The Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) data corresponding to 2000, 2010, and 2020 were digitally classified using maximum-likelihood algorithm in ERDAS IMAGINE and ArcGIS platforms. Spatio-temporal satellite data analysis revealed that an area encompassing ~ 112 km2 (48.9%) of forests and 6.63 km2 (37.6%) of waterbodies was lost due to the expanse of mining between 2000 and 2020. Consequently, the degraded land and built-up areas rapidly expanded during the same period accounting for a net increase of 101.1 km2 (47%) and 9.13 km2 (322%). The mining disturbances degenerated the soil health, drastically reducing soil pH, soil organic carbon (SOC), and available nitrogen (N) in the mined area exacerbating the region's vulnerability to degraded lands. Land Degradation Vulnerability Index (LDVI) map shows that mined area was highly vulnerable, followed by barren wasteland, agriculture, and forest area, while destructive mining and other associated activities in the past 20 years made 52% of the landscape vulnerable. The study discusses the implications of effective eco-restoration for minimizing the land degradation processes and building resilient ecosystems for mitigating land degradation in coal-mined landscapes.
Collapse
Affiliation(s)
| | - Alka Mishra
- Guru Ghasidas University, Bilaspur, 495001, (CG), India
| | - Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM-4, Sector V, Salt Lake, Kolkata, 700091, India
| | - Gyana Ranjan Sahoo
- Krishi Vigyan Kendra Angul, Orissa University of Agriculture and Technology, Bhubaneshwar, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University (IGNTU), Amarkantak, 484887, (MP), India.
| |
Collapse
|
2
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
3
|
Villagrasa E, Bonet-Garcia N, Solé A. Ultrastructural evidences for chromium(III) immobilization by Escherichia coli K-12 depending on metal concentration and exposure time. CHEMOSPHERE 2021; 285:131500. [PMID: 34265708 DOI: 10.1016/j.chemosphere.2021.131500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms can mediate in heavy metal sequestration through several cellular strategies and pathways. This offers an efficient way to remediate heavy metal polluted environments. This paper describes the ability of Escherichia coli K-12 to capture chromium(III) (Cr(III)) and the ultrastructural effects of this metal on cells, as well as the cellular metal localization and the possible sequestration strategy uses for it. The study was mainly performed by using several electron microscopy techniques and is based on the chromium trivalent concentration and the related exposure time. Transmission electron microscopy (TEM) assay was performed along with field emission scanning electron microscopy (FESEM) for morphological responses. Furthermore, TEM was coupled with an energy dispersive X-ray (TEM-EDX) and TEM with selected area electron diffraction (TEM-SAED) to conduct analytical assays. The exposed cultures to 10 and 12 mM Cr(III) at 12 h and to 5, 7, 10, 12, 13, and 15 mM of Cr(III) at 24 h indicated the presence of multiple electrodense granules that were significantly enriched in chromium and phosphorus content via EDX analysis. Moreover, these granules were observed to be attached to external membrane and/or surrounding cells in the respective ultrathin sections analyzed under TEM. According to these results, E. coli K-12 possesses the ability to immobilize Cr(III) in external polyphosphate granules through a strategy of accumulation, where cell response to Cr(III) toxicity seems to have a dose-dependent and time-dependent relation, thereby offering significant potential for bioremediation in Cr(III)-contaminated areas.
Collapse
Affiliation(s)
- Eduard Villagrasa
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Neus Bonet-Garcia
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Solé
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
4
|
Princy S, Sathish SS, Cibichakravarthy B, Prabagaran SR. Hexavalent chromium reduction by Morganella morganii (1Ab1) isolated from tannery effluent contaminated sites of Tamil Nadu, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Arch Microbiol 2020; 202:887-894. [PMID: 31893290 DOI: 10.1007/s00203-019-01801-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/03/2023]
Abstract
In this study, chromium (Cr)-tolerant bacteria were test for their efficiency in alleviating Cr stress in Cicer arietinum plants. On the basis of 16S rRNA gene analysis, the isolates were identified belonging to genus Stenotrophomonas maltophilia, Bacillus thuringiensis B. cereus, and B. subtilis. The strains produced a considerable amount of indole-3-acetic acid in a medium supplemented with tryptophan. The strains also showed siderophore production (S2VWR5 and S3VKR17), phosphorus production (S1VKR11, S3VKR2, S3VKR16, and S2VWR5), and potassium solubilization (S3VKR2, S2VWR5, and S3VKR17). Furthermore, the strains were evaluated in pot experiments to assess the growth promotion of C. arietinum in the presence of chromium salts. Bacterization improved higher root and shoot length considerably to 6.25%-60.41% and 11.3%-59.6% over the control. The plants also showed increase in their fresh weight and dry weight in response to inoculation with Cr-tolerant strains. The accumulation of Cr was higher in roots compared to shoots in both control and inoculated plants, indicating phytostabilization of Cr by C. arietinum. However, phytostabilization was found to be improved manifold in inoculated plants. Apart from the plant attributes, the amendment of soil with Cr and Cr-tolerant bacteria significantly increased the content of total chlorophyll and carotenoids, suggesting the inoculant's role in protecting plants from deleterious effects. This work suggests that the combined activity of Cr-tolerant and plant growth-promoting (PGP) properties of the tested strains could be exploited for bioremediation of Cr and to enhance the C. arietinum cultivation in Cr-contaminated soils.
Collapse
|
6
|
Tamindžija D, Chromikova Z, Spaić A, Barak I, Bernier-Latmani R, Radnović D. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. World J Microbiol Biotechnol 2019; 35:56. [PMID: 30900044 DOI: 10.1007/s11274-019-2638-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.
Collapse
Affiliation(s)
- Dragana Tamindžija
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Zuzana Chromikova
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Andrea Spaić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Imrich Barak
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dragan Radnović
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| |
Collapse
|
7
|
Roy S, Roy M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:531-540. [PMID: 30648405 DOI: 10.1080/15226514.2018.1537238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new facultative chemolithoautotrophic heavy metal resistant sulfur-oxidizing bacterium was isolated from spoil sample of an open cast coal mine. FESEM demonstrated that the bacterium from Delftia genus was rod-shaped mucoid and motile. It autotrophically oxidized 20 mM thiosulfate and 1 g l-1 elemental sulfur to 220 mg l-1 and 203 mg l-1 of sulfate, respectively in 7 days under oxic condition and was also able to grow heterotrophically. The strain showed many plant growth promoting properties like production of IAA (23 ug ml-1), ammonia (6 umol ml-1), siderophore (55% siderophore unit), and HCN (30 ppm) upon 48 hours of incubation. In Pikovskaya's agar, the strain showed phosphate solubilization index of 2.0 and solubilized tri-calcium phosphate (232 ug ml-1) and lowered pH from 8.0 to 4.5 within 18 days. The strain yielded promising results on Brassica juncea growth and sulfur, phosphorus, and lead uptake. Where sulfur and phosphorous accumulation was 52 and 116% higher in whole treated plants (derived from microbe-coated seeds), lead accumulation were 81 and 50% higher in shoot and root of the treated plants than control plants (derived from untreated seeds) . These results point that this multifunctional strain can be proposed for phytorestoration of heavy metal contaminated sites.
Collapse
Affiliation(s)
- Satarupa Roy
- a Department of Biotechnology , Techno India University , Kolkata , WB , India
| | - Madhumita Roy
- a Department of Biotechnology , Techno India University , Kolkata , WB , India
| |
Collapse
|
8
|
Roychowdhury R, Roy M, Rakshit A, Sarkar S, Mukherjee P. Arsenic Bioremediation by Indigenous Heavy Metal Resistant Bacteria of Fly Ash Pond. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:527-535. [PMID: 30203177 DOI: 10.1007/s00128-018-2428-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Fly ash (FA), the major by-product of coal-fired thermal power plants, causes significant environmental degradation owing to its injurious heavy metal contents. Leaching of arsenic (As) from ash ponds is especially significant as As released from FA can increase As concentration of drinking water above maximum contaminant level of 10 ppb. The aim of this paper was demonstration of As bioremediation potential of indigenous As resistant bacteria present in the weathered pond ash sample. Ten isolates belonging to Bacillus, Micrococcus, Kytococcus and Staphylococcus genera were characterized. Biochemical tests showed reduction of relatively non toxic arsenate to more toxic arsenite by two strains while four strains showed oxidation of arsenite to arsenate. Two exoplolysaccharide producing strains were shown to absorb As within their biomass. Total heterotrophs versus As resistant heterotrophs counting performed showed that FA was enriched with As resistant heterotrophs. Column leaching based microcosm study revealed overall As detoxification potential of the isolated microbes.
Collapse
Affiliation(s)
- Roopali Roychowdhury
- Department of Biotechnology, Techno India University, EM 4/1 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Madhumita Roy
- Department of Biotechnology, Techno India University, EM 4/1 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India.
| | - Annanya Rakshit
- Department of Biotechnology, Techno India University, EM 4/1 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Sangita Sarkar
- Department of Biotechnology, Techno India University, EM 4/1 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Pritam Mukherjee
- Department of Biotechnology, Techno India University, EM 4/1 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| |
Collapse
|
9
|
Hu J, Zhao F, Zhang XX, Li K, Li C, Ye L, Li M. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1332-1340. [PMID: 29751438 DOI: 10.1016/j.scitotenv.2017.09.222] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 06/08/2023]
Abstract
Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM2.5 samples, and from 7.61 to 38.49ppm in PM10 samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.
Collapse
Affiliation(s)
- Jialin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chaoran Li
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Environmental Health Research Center, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|