1
|
Varakina Y, Lahmanov D, Aksenov A, Trofimova A, Korobitsyna R, Belova N, Sobolev N, Kotsur D, Sorokina T, Grjibovski AM, Chashchin V, Thomassen Y. Concentrations of Persistent Organic Pollutants in Women's Serum in the European Arctic Russia. TOXICS 2021; 9:6. [PMID: 33430444 PMCID: PMC7828080 DOI: 10.3390/toxics9010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
Persistent organic pollutants (POPs) are heterogeneous carbon-based compounds that can seriously affect human health. The aim of this study was to measure serum concentrations of POPs in women residing in the Euro-Arctic Region of Russia. A total of 204 women from seven rural settlements of the Nenets Autonomous Okrug (NAO) took part in the study. We measured serum concentrations of 11 polychlorinated biphenyls (PCBs) and 17 organochlorine pesticides (OCPs) across the study sites and among Nenets and non-Nenets residents. Measurement of POPs was performed using an Agilent 7890A gas chromatograph equipped with an Agilent 7000 series MS/MS triple quadrupole system. The concentrations of all POPs were low and similar to findings from other Arctic countries. However, significant geographic differences between the settlements were observed with exceptionally high concentrations of PCBs in Varnek located on Vaygach Island. Both ΣDDT (p = 0.011) and ΣPCB (p = 0.038) concentrations were significantly lower in Nenets. Our main findings suggest that the serum concentrations of the legacy POPs in women in the Euro-Arctic Region of Russia are low and similar to those in other Arctic countries. Significant variations between settlements, and between Nenets and non-Nenets residents, were found. Arctic biomonitoring research in Russia should include studies on the associations between nutrition and concentrations of POPs.
Collapse
Affiliation(s)
- Yulia Varakina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Lahmanov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrey Aksenov
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Anna Trofimova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Rimma Korobitsyna
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Natalia Belova
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
| | - Nikita Sobolev
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Dmitry Kotsur
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch of the Russian Academy of Sciences, Naberezhnaya Severnoy Dvini 23, 163000 Arkhangelsk, Russia
| | - Tatiana Sorokina
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
| | - Andrej M. Grjibovski
- Central Scientific Research Laboratory, Northern State Medical University of the Ministry of Healthcare of the Russian Federation, Troitskiy Ave. 51, 163000 Arkhangelsk, Russia;
- Department of Health Policy and Management, Al-Farabi Kazakh National University, Almay 050040, Kazakhstan
- Department of Epidemiology and Modern Vaccination Technologies, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- West Kazakhstan Marat Ospanov Medical University, Aktobe 0300190, Kazakhstan
| | - Valery Chashchin
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- North-Western State Medical University Named after I.I. Mechnikov, Kirochnaya ul. 41, 191015 Saint-Petersburg, Russia
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| | - Yngvar Thomassen
- Arctic Biomonitoring Laboratory, Northern (Arctic) Federal University Named after M. V. Lomonosov, Naberezhnaya Severnoy Dvini 17, 163002 Arkhangelsk, Russia; (D.L.); (A.A.); (A.T.); (R.K.); (N.B.); (N.S.); (D.K.); (T.S.); (V.C.); (Y.T.)
- Institute of Ecology, National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
- National Institute of Occupational Health, Gydas vei 8, N-0304 Oslo, Norway
| |
Collapse
|
2
|
Escamilla-López A, Ruiz-Piña HA, Rendón-von Osten J. Organochlorine Pesticides Residues in Blood of Peridomestic Populations of Virginia Opossum (Didelphis virginiana) from Ex-Henequen Rural Localities of Yucatan, Mexico. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:303-309. [PMID: 31701182 DOI: 10.1007/s00244-019-00685-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Organochlorine pesticides (OCPs) have been used for many decades, both for the control of pests in agriculture and for the control of vectors of human and animal diseases. Several recent studies have reported significant concentrations of these compounds in multiple environmental substrates due to their persistence, as well as the effect they have on ecosystem health, human health, and wildlife populations. In the present study, organochlorine pesticide residues were determined and quantified in 260 blood samples from different populations of the Virginia opossum (Didelphis virginiana) from 11 rural ex-henequen sites of the state of Yucatan, Mexico. The organochlorine groups detected, following an order of predominance and concentration, were: ΣDienes (0.0557 ppm) > ΣDDTs (0.0481 ppm) > ΣEndosulfans (0.0376 ppm) > and ΣHCHs (0.0319 ppm). The highest levels of OCPs were recorded in the opossums captured in the towns of Chicxulub and Cacalchen. In 6 of the 11 localities, the OCPs detected in the opossums showed significant differences in concentration, whereas the opossums in 4 of the 11 localities did not present this difference. The results confirm the presence and persistence of OCPs in the rural environmental of Yucatan due to both the misuse and abuse of the OCPs by rural populations. In addition, the synanthropic characteristics and abundant populations of D. virginiana in the Yucatecan region make it a good candidate to serve as a biomonitor of environmental pollution in the Yucatan Peninsula. This could aid in assessing the effects exposure to pesticides and other contaminants have on the health of the Yucatecan population, whether short, medium, or long term.
Collapse
Affiliation(s)
- Andrea Escamilla-López
- Laboratorio de Contaminantes Orgánicos Persistentes, Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Heroe de Nacozari 480, 24070, Campeche, Mexico
| | - Hugo A Ruiz-Piña
- Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Av. Iztaés x 59 #490, Col. Centro, C.P. 97000, Mérida, Yucatán, Mexico
| | - Jaime Rendón-von Osten
- Laboratorio de Contaminantes Orgánicos Persistentes, Instituto EPOMEX, Universidad Autónoma de Campeche, Campus VI, Av. Heroe de Nacozari 480, 24070, Campeche, Mexico.
| |
Collapse
|
3
|
Wang Y, Zhang X, Wang L, Wang C, Fan W, Wang M, Wang J. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109463. [PMID: 31351328 DOI: 10.1016/j.ecoenv.2019.109463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
To eliminate pentachloronitrobenzene (PCNB) residue in PCNB-contaminated environment, the degradation potential of Pseudomonas putida QTH3 to PCNB was evaluated in this study. Peudomonas putida QTH3 could grow well in mineral salt medium (MSM) containing PCNB as sole carbon and was able to degrade PCNB efficiently, whereas the degradation rate of P. putida QTH3 to PCNB increased gradually, and reached 49.84% in 35 days. The degradation rates of P. putida QTH3 to 13 tested organochlorine compounds found to be 10.85%-42.51% after 14 days. The metabolites during PCNB biodegradation by P. putida QTH3 were identified as catechol, 2, 3, 5, 6-tetrachloroaniline (TCA), 2, 3, 4, 5- TCA, 2, 3, 4, 5, 6-pentachloroaniline (PCA) and pentachlorothioanisole (PCTAs). Furthermore, possible degradation pathway of PCNB by P. putida QTH3 was proposed. The degradation rates of intracellular enzyme and extracellular enzyme were 44.73% and 8.93% after incubation with 100 mg L-1 PCNB for 30 min, respectively. Thus, intracellular enzyme is a major enzyme responsible for PCNB degradation. The results indicate that P. putida QTH3 can be a suitable organism for the degradation of PCNB, and facilitate its potential for the bioremediation of the environments contaminated with major organochlorine compounds used during this study.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xiqian Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lin Wang
- Yuncheng Sub-center, Shanxi Entry-Exit Inspection and Quarantine Bureau Technology Center, Yuncheng, Shanxi, 044600, China
| | - Chunwei Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Weixin Fan
- Experiment Teaching Center, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Meiqin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianming Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|