1
|
Lin Z, Li M, Yan P, Zhang J, Xie H, Wu H. Constructed wetlands for wastewater treatment and reuse: Two decades of experience from China. ENVIRONMENTAL RESEARCH 2025; 279:121781. [PMID: 40335010 DOI: 10.1016/j.envres.2025.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Constructed wetlands (CWs) can be used for water purification and ecological restoration through the synergistic effects of substrates, aquatic plants, and microorganisms. This study explored a bibliometric approach to quantitatively evaluate the recent research progress and applications of CWs in China by synthetically analyzing publication output characteristics, research hotspots and quantified China's unique contributions to global CW applications. The results indicated that the number of papers published in the field of CWs has shown an overall upward trend in the past two decades, and the research hotspots mainly focus on the nitrogen and phosphorus removal, microbial community. China has actively supported the investigation and application of CWs for wastewater treatment and reuse. More than 40 species of plants and over 30 types of substrates have been employed in CWs for treating different types of wastewater, such as domestic sewage, industrial effluents, river water, and drinking water. Several successful case studies of full-scale CWs have been selected and summarized to highlight the extensive application of CWs in China and provided a CW localized design framework.
Collapse
Affiliation(s)
- Zhiyi Lin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Mingjun Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Peihao Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, PR China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266247, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Donato MA, de Oliveira Souza A, Pacheco A, de Carvalho Silva L, Svenar S, Nagalli A, Passig FH, Brasil Bernardelli JK, Querne de Carvalho K. Intensifying intermittent aeration for optimizing nutrient and hormone removal in vertical-flow constructed wetlands filled with aerated concrete. CHEMOSPHERE 2025; 370:143941. [PMID: 39681191 DOI: 10.1016/j.chemosphere.2024.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.4 LO2 min-1) and CW-2 (1.4 LO2 min-1) were fed with synthetic wastewater in sequencing-batch mode (cycles 48-48-72 h) and intermittently aerated for 1 h, followed by 7 h without aeration for 377 days. Combined with the intensification strategy, the use of planted free-floating macrophytes and concrete-based material (emergent) as filtering media stand out as the innovation and originality aspects of this study. Despite the hormone addition, intensifying aeration enhanced the efficiencies since CW-1 achieved the highest removals with 91% COD, 77% TN, 74% TAN, 60% nitrate, and 97% TP in Stage I (no hormone addition) and 90% COD, 80% TN, 93% TAN, 63% nitrate, and 82% TP in Stage II (with hormone addition). CW-1 achieved the highest removal efficiencies of E1 (84%), E2 (95%), and EE2 (73%). Conversely, the efficiencies decreased under the lower aeration rate (in CW-2) for all parameters. Macrophyte uptake and adsorption stood out for TN (>60.25%) and TP (>27.6%) removal as the main mechanisms in the VFCWs. The characteristics of AC favored ion exchange and precipitation, reinforcing the potential of this material as filtering media in VFCWs. Intensification of intermittent aeration combined with hormone addition diverse and riched the microbial community with the presence of Thauera, Lentimicrobium (denitrification), Candidatus Accumulibacter (phosphorus removal), Pseudomonas, Fusibacter, and Azoarcus (EE2 degradation). Intensifying intermittent aeration was an important strategy to enhance the simultaneous removal of nutrients and hormones in the VFCWs under the evaluated operational conditions.
Collapse
Affiliation(s)
- Mayra Alves Donato
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Amanda Pacheco
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Lucas de Carvalho Silva
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Silvana Svenar
- Federal University of Tecnhology - Paraná (UTFPR) - Environmental Sciences and Technology Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Tecnhology - Paraná (UTFPR) - Biology and Chemistry Academic Department. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Engineering Graduate Program. Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Tecnhology - Paraná (UTFPR) - Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Malinowski P, Dąbrowski W, Karolinczak B. Application of New Filling Material Based on Combined Heat and Power Waste for Sewage Treatment in Constructed Wetlands. MATERIALS (BASEL, SWITZERLAND) 2024; 17:389. [PMID: 38255557 PMCID: PMC10821246 DOI: 10.3390/ma17020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The filling of constructed wetlands (CWs) affects the efficiency of sewage treatment and proper operation. Mineral aggregates are most often used as filling materials. Significant environmental burdens from mineral mining operations justify the search for waste fill. This study aimed to determine the possibility of increasing the efficiency of CW by using a Certyd aggregate as a new filling. Certyd is produced in the sintering process of coal ash, a waste from combined heat and power (CHP) plant operation. Comprehensive two-year studies were conducted using two real-scale subsurface vertical flow (SS VF) CWs supplied with domestic sewage. One bed was filled with a Certyd and the other was filled with appropriate fractions of a mineral aggregate. Both beds worked in parallel, and to compare their effectiveness, account seasonality was taken into account. The SS-VF Certyd-filled bed achieved an average efficiency of 88.0% for biological oxygen demand (BOD5), 80.2% for chemical oxygen demand (COD), 80.4% for suspended solids (SSs), 80.2 for ammonia nitrogen (N-NH4), 72.2% for total nitrogen (TN), and 55.3% for total phosphorus (TP), while the gravel-filled bed achieved 84.5%, 77.0%, 86.9%, 74.2%, 69.4%, and 57.8% for the whole research period, respectively. A higher effect of the removed unit load was achieved in the bed filled with Certyd (36.2 g BOD5 m-2 d-1, 50.0 g COD m-2 d-1, 5.88 g SS m-2 d-1, 7.1 g TN m-2 d-1, 7.9 g N-NH4 m-2 d-1, 0.79 g TP m-2 d-1) compared to the gravel-filled bed (34.7 g BOD5 m-2 d-1, 47.0 g COD, 6.35 g SS m-2 d-1, 6.9 g TN m-2 d-1, 7.3 g m-2 d-1 N-NH4, 0.83 g TP m-2 d-1).
Collapse
Affiliation(s)
- Paweł Malinowski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, 37 Szpitalna St., 15-295 Bialystok, Poland;
| | - Wojciech Dąbrowski
- Faculty of Building and Environmental Sciences, Bialystok University of Technology, Wiejska St. 45E, 15-351 Białystok, Poland
| | - Beata Karolinczak
- Faculty of Building Services Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska St., 00-653 Warsaw, Poland;
| |
Collapse
|
4
|
Silva LDC, Bernardelli JKB, Souza ADO, Lafay CBB, Nagalli A, Passig FH, Kreutz C, Carvalho KQD. Biodegradation and sorption of nutrients and endocrine disruptors in a novel concrete-based substrate in vertical-flow constructed wetlands. CHEMOSPHERE 2024; 346:140531. [PMID: 37918529 DOI: 10.1016/j.chemosphere.2023.140531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Removing phosphorus and endocrine-disruptors (EDC) is still challenging for low-cost sewage treatment systems. This study investigated the efficiency of three vertical-flow constructed wetlands (VFCW) vegetated with Eichhornia crassipes onto red clay (CW-RC), autoclaved aerated concrete (CW-AC), and composite from the chemical activation of autoclaved aerated concrete with white cement (CW-AAC) in the removal of organic matter, nutrients, and estrone, 17β-estradiol, and 17α-ethinylestradiol. The novelty aspect of this study is related to selecting these clay and cementitious-based materials in removing endocrine disruptors and nutrients in VFCW. The subsurface VFCW were operated in sequencing-batch mode (cycles of 48-48-72 h), treating synthetic wastewater for 308 days. The operation consisted of Stages I and II, different by adding EDC in Stage II. The presence of EDC increased the competition for dissolved oxygen (DO) and reduced the active sites available for adsorption, diminishing the removal efficiencies of TKN and TAN and total phosphorus in the systems. CW-RC showed a significant increase in COD removal from 65% to 91%, while CW-AC and CW-AAC maintained stable COD removal (84%-82% and 78%-81%, respectively). Overall, the substrates proved effective in removing EDC, with CW-AC and CW-AAC achieving >60% of removal. Bacteria Candidatus Brocadia and Candidatus Jettenia, responsible for carrying out the Anammox process, were identified in assessing the microbial community structure. According to the mass balance analysis, adsorption is the main mechanism for removing TP in CW-AC and CW-AAC, while other losses were predominant in CW-RC. Conversely, for TN removal, the adsorption is more representative in CW-RC, and the different metabolic routes of microorganisms, biofilm assimilation, and partial ammonia volatilization in CW-AC and CW-AAC. The results suggest that the composite AAC is the most suitable material for enhancing the simultaneous removal of organic matter, nutrients, and EDC in VFCW under the evaluated operational conditions.
Collapse
Affiliation(s)
- Lucas de Carvalho Silva
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Jossy Karla Brasil Bernardelli
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Adelania de Oliveira Souza
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cíntia Boeira Batista Lafay
- Federal University of Technology - Paraná (UTFPR), Chemistry Academic Department. Via do Conhecimento, s/n - Km 01, Fraron, 85503-390. Pato Branco, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| | - Cristiane Kreutz
- Federal University of Technology - Paraná (UTFPR), Environmental Academic Department, Rosalina Maria dos Santos St., 1233, 87301-899, Campo Mourão, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340. Curitiba, Paraná, Brazil.
| |
Collapse
|
5
|
Yang L, Jin X, Hu Y, Zhang M, Wang H, Jia Q, Yang Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:271-289. [PMID: 39219130 PMCID: wst_2023_414 DOI: 10.2166/wst.2023.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.
Collapse
Affiliation(s)
- Lei Yang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China E-mail:
| | - Xiaohui Jin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Yawei Hu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Mingqi Zhang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Huihui Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Qian Jia
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Yafei Yang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
| |
Collapse
|
6
|
Feng M, Liang J, Wang P, Wang Y, Li J. Use of sponge iron dosing in baffled subsurface-flow constructed wetlands for treatment of wastewater treatment plant effluents during autumn and winter. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1405-1417. [PMID: 35570740 DOI: 10.1080/15226514.2022.2031866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sponge iron (SI) is widely used in water treatment. As effluents from wastewater treatment plant (WWTP) require advanced treatment methodology, three forms of constructed wetlands (CWs): wetlands with sponge iron (SI), copper sulfate modified sponge iron (Cu/SI), and sponge iron coupled with solid carbon sources (C/SI), have been investigated in this paper for the removal effects of organic matter and nutrients in WWTP effluents, and the corresponding mechanisms have been analyzed. The results showed the effect of baffled subsurface-flow constructed wetland (BSFCW) with SI dosing to purify the WWTP effluents after the stable operation. The water flow of this BSFCW is the repeated combination of upward flow and downward flow, which can provide a longer treatment pathway and microbial exposure time. The average removal rates of total inorganic nitrogen (TIN) were 27.80%, 30.17%, and 44.83%, and the average removal rates of chemical oxygen demand (COD) were 19.96%, 23.73%, and 18.38%. The average removal rates of total phosphorus (TP) were 85.94%, 82.14%, and 83.95%. Cu/SI improved the dissolution of iron, C/SI improved denitrification, and a winter indoor temperature retention measure was adopted to increase the effectiveness of wetland treatment during the winter months. After comprehensively analyzing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and two-dimensional numerical simulation diagrams, a plausible conjecture that microbes use electrons from SI for autotrophic denitrification is presented. Moreover, the stress effect of wetlands dosed with SI on plants decreased stepwise along the course since C/SI used on wetlands had less impact on plant stress.
Collapse
Affiliation(s)
- Muyu Feng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Jinming Liang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Peng Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| | - Jie Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, China
| |
Collapse
|
7
|
Man Q, Li H, Ma X, Gao P, Ren G, Zhou B, Liu H. Distribution coefficients of nitrogen pollutants between water and sediment and their environmental risks in Lingang hybrid constructed wetland fed by industrial tailwater, Tianjin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26312-26321. [PMID: 34853995 DOI: 10.1007/s11356-021-17741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Exploring the fate of nitrogen pollutants in constructed wetlands (CWs) fed by industrial tailwater is significant to strengthen its pollution control and promoting the development of CWs in the field of micro-polluted water treatment. In this study, the distribution coefficients and the environmental risks of nitrogen pollutants between water and sediment of the hybrid CW in Tianjin were systematically investigated. From a spatial perspective, the nitrogen pollutants could be removed in this hybrid CW, and subsurface flow wetland played a key role in nitrogen pollutant removal. From a temporal perspective, the concentration of nitrogen pollutants was largely affected by the dissolved oxygen (DO) and temperature. The distribution coefficient of nitrogen pollutants between water and sediment was further clarified, suggesting that NH4+-N was more likely to be enriched in sediments due to microbial process. The overall level of pollution in hybrid CW was moderate according to the nutritional pollution index (NPI) analysis. The risk assessment indicated that timely dredging control measures should be considered to maintain the performance of hybrid CW.
Collapse
Affiliation(s)
- Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongrui Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Peng Gao
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Bin Zhou
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Honglei Liu
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| |
Collapse
|
8
|
Koli MM, Munavalli GR. Field-scale baffled and biorack hybrid constructed wetland: effect of fluctuating loading rates and recirculation for domestic wastewater treatment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1342-1355. [PMID: 33705669 DOI: 10.1080/15226514.2021.1895720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conventionally used constructed wetlands require modification/s to minimize clogging problems and space requirement. In this study, a field-scale baffled and biorack hybrid constructed wetland (BBHCW) was developed as a part of 42 KLD decentralized wastewater treatment (DWT) system at Walchand College of Engineering, Sangli (M.S.), India for domestic wastewater. Brickbats were used as support medium in the baffled portion and corrugated sheets in biorack. Mixed vegetation of Typha angustifolia and Canna indica was used in both baffled and biorack portions. BBHCW was operated under the dynamic conditions of flow (0.60-9.89 m3/m2 day) and strength (0.12-2.12 kg COD/m2 day) for 8 months. The performance was assessed for the removal of organic carbon and nitrogen with and without recirculation of treated effluent. Tracer studies showed that the hydraulic efficiency was satisfactory. COD, BOD3, and TKN removal is possible to an extent of 26.30 ± 1.36, 29.08 ± 2.43, and 19.39 ± 2.27%, respectively, under dynamic conditions. Recirculation enhances the removal efficiency of COD by 5.00-10.00%. However, TKN removal was not significant with or without recirculation. Morphological study showed that vegetation growth was well supported in BBHCW. The discarded corrugated sheets in BR and brickbats in BSFW are the most appropriate low-cost options. The clogging problem is reduced significantly. BBHCW is sturdy enough to absorb shock loading and space requirement can be reduced by judicious choice of HLR and OLR. BBHCW is an alternative to conventionally used sub-surface constructed wetland as a part of DWT. Novelty statementDevelopment of newly configured baffled and biorack hybrid dual-species constructed wetland (BBHCW) for field scale application.Use of discarded brickbat and cement sheets as a new support medium and bioracks.Performance assessment of field-scale BBHCW for the removal of organic carbon (expressed as COD and BOD3), and nitrogen (expressed as TKN) from domestic wastewater under highly dynamic conditions induced by fluctuating hydraulic loading rate (0.60-9.89 m3/m2 day) and organic loading rate (0.12-2.12 kg COD/m2 day).
Collapse
Affiliation(s)
- Mitil M Koli
- Department of Civil Engineering, Walchand College of Engineering, Sangli, Maharashtra, India
| | - Guru R Munavalli
- Department of Civil Engineering, Walchand College of Engineering, Sangli, Maharashtra, India
| |
Collapse
|