1
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
2
|
Truong DA, Trinh HT, Le GT, Phan TQ, Duong HT, Tran TTL, Nguyen TQ, Hoang MTT, Nguyen TV. Occurrence and ecological risk assessment of organophosphate esters in surface water from rivers and lakes in urban Hanoi, Vietnam. CHEMOSPHERE 2023; 331:138805. [PMID: 37121286 DOI: 10.1016/j.chemosphere.2023.138805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/06/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
In this study, an investigation on the pollution status, distribution, and ecological risk to the aquatic organisms of six organophosphate tri-esters (tri-OPEs) and two organophosphate tri-esters (di-OPEs) in surface water in urban Hanoi, Vietnam were conducted. In 37 surveyed water samples (6 rivers and 17 lakes), all eight targeted OPEs were discovered with a detection frequency (DF) of 41-100% and the concentration varied largely from below the method detection limit (<MDL) to 6138 ng L-1. The total concentrations of six tri-OPEs (Ʃ6tri-OPEs) were 46-3644 ng L-1 (average 1409 ng L-1) and the total concentrations of two di-OPEs (Ʃ2di-OPEs) ranged from 2.6 to 6138 ng L-1 (average 351 ng L-1). In general, the Ʃ6tri-OPEs in water samples collected in rivers (average 2262 ng L-1) were higher than those in lakes (average 1000 ng L-1). The most dominant chemical was tris(2-chloro-1-methyl ethyl) phosphate (TCPP) with a DF of 100% and took up 75% (on average) of Ʃ6tri-OPEs. Principal component analysis showed that most of the tri- and di-OPEs in lakes may come from similar emission sources. While, there were at least four different origins of organophosphate esters (OPEs) in rivers in urban Hanoi. The risk quotient (RQ) was estimated for the detected concentration of tri- and di-OPEs in water samples and the toxicological relevant concentration for three trophic groups of algae, crustaceans, and fish. The RQs and the total of RQs for each group were lower than 1, indicating that the effects of each OPE and their OPEs' combined effects on the aquatic environment in Hanoi were at low to medium levels.
Collapse
Affiliation(s)
- Dung Anh Truong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Ha Thu Trinh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam.
| | - Giang Truong Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Thang Quang Phan
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Hanh Thi Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Thien Thanh Lam Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| | - Trung Quang Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 10000, Viet Nam
| | - Minh Tue Thi Hoang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Tuyen Van Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Viet Nam
| |
Collapse
|