1
|
Ou G, Mou L, Luo Y, Feng Y, Wu L, Lu P, Hu D, Zhang Y. Chiral Herbicide 2,4-D Ethylhexyl Ester: Absolute Configuration, Stereoselective Herbicidal Activity, Crop Safety, and Metabolic Behavior on Maize and Flixweed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14592-14600. [PMID: 38914518 DOI: 10.1021/acs.jafc.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
This study represents the initial examination of the herbicidal efficacy, crop safety, and degradation patterns of 2,4-D ethylhexyl ester (2,4-D EHE) at the enantiomeric level. Baseline separation of 2,4-D EHE enantiomers was achieved using a superchiral R-AD column, with their absolute configurations determined through chemical reaction techniques. Evaluation of weed control efficacy against sensitive species such as sun spurge and flixweed demonstrated significantly higher inhibition rates for S-2,4-D EHE compared to R-2,4-D EHE. Conversely, no stereoselectivity was observed in the fresh-weight inhibition rates of both enantiomers on crops or nonsensitive weeds. A sensitive HPLC-MS/MS method was developed to simultaneously detect two enantiomers and the metabolite 2,4-D in plants. Investigation into degradation kinetics revealed no substantial difference in the half-lives of R- and S-2,4-D EHE in maize and flixweed. Notably, the metabolite 2,4-D exhibited prolonged persistence at elevated levels on flixweed, while it degraded rapidly on maize.
Collapse
Affiliation(s)
- Guipeng Ou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Lianhong Mou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yuanqiang Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yanping Feng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ling Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yuping Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Peña B, Sosa D, Hilber I, Escobar A, Bucheli TD. Validation of a modified QuEChERS method for the quantification of residues of currently used pesticides in Cuban agricultural soils, using gas chromatography tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33623-33637. [PMID: 38684615 PMCID: PMC11136849 DOI: 10.1007/s11356-024-33237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
We present an analytical method to detect and quantify residues of currently used pesticides (CUPs), which include 31 active ingredients (ai) and seven transformation products (TPs) in tropical and agricultural soils of Cuba. Ten isotopically labeled analogous compounds served as internal standards (IL-IS). The novelty of this research is the inclusion of different tropical soils type scarcely studied for CUPs and TPs, based on the QuEChERS (quick, easy, cheap, effective, rugged and safe) method, followed by chromatography tandem mass spectrometry. All figures of merit proved to be satisfactory according to SANTE guidelines 2020 and 2021. Matrix effects (ME) calculated by the external standard method were significant (|ME| > 20% for almost all compounds; grand mean ± standard deviation (STD) 104 ± 108%) in all soils. The internal standard method compensated ME to non-significant levels (8 ± 50%), even for analytes with a non-structure identical IL-IS (STD, 13 ± 57%). Repeatability (relative standard deviation, RSDr) and reproducibility (RSDR) for skeletic regosol (SR) were 7.5 ± 2.8% and 11.7 ± 4.7%, respectively. Absolute (quantified for 11 analytes with structure identical IL-IS) and relative recovery from SR was 92 ± 13% (mean ± STD) and 90 ± 12%, respectively. Limits of quantification for SR ranged from 0.1 to 10 ng/g, except metalaxyl and oxyfluorfen (25 ng/g each). Linearity of matrix-matched (MM) calibration curves (5 to 100 ng/g) had an R2 of ≥ 0.99 for all soils and almost all analytes. The method was successfully applied to 30 real soil samples.
Collapse
Affiliation(s)
- Brizeidi Peña
- Analytical Unit of Residues and Contaminants, National Center for Animal and Plant Health (CENSA), San José de las Lajas, P.O. Box 10, 32700, Mayabeque, Cuba
| | - Dayana Sosa
- Analytical Unit of Residues and Contaminants, National Center for Animal and Plant Health (CENSA), San José de las Lajas, P.O. Box 10, 32700, Mayabeque, Cuba
- Agroscope Environmental Analytics, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Isabel Hilber
- Agroscope Environmental Analytics, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Arturo Escobar
- Analytical Unit of Residues and Contaminants, National Center for Animal and Plant Health (CENSA), San José de las Lajas, P.O. Box 10, 32700, Mayabeque, Cuba
| | - Thomas Daniel Bucheli
- Agroscope Environmental Analytics, Reckenholzstrasse 191, 8046, Zurich, Switzerland.
| |
Collapse
|
3
|
Cui Y, Xu Z, Tang S, Wang Y, Jiang G. Organochlorine pesticides and other pesticides in peanut oil: Residue level, source, household processing factor and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128272. [PMID: 35066221 DOI: 10.1016/j.jhazmat.2022.128272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Peanut oil, edible vegetable oil largely consumed in China, may be polluted with pesticides during both peanut cultivation and processing. In this study, we analyzed organochlorine pesticides, five currently used pesticides and two degradation products, in soils, seeds, peanuts, oil and dregs and systematically tracked variations of their levels in field soils and during the pressing process. The results showed that the application of metolachlor, pirimicarb and quizalofop-p-ethyl pesticides during peanut cultivation caused their concentrations in peanuts to increase. In most samples, the concentration of 3-phenoxybenzoic acid was higher than that of λ-cyhalothrin, and the variation trends of λ-cyhalothrin and 3-phenoxybenzoic acid in soil samples were similar, which indicate that after application, most λ-cyhalothrin may rapidly be degraded to 3-phenoxybenzoic acid. Regarding the pressing process of peanut oil, the sum of mass of oil and shells was less than the mass of the corresponding raw peanut. Compared with that in peanuts, the total mass of most pesticides in oil and shells was lower, while that of two degradation products was higher, an indication that the degradation products were still generated during the pressing process. Finally, the assessment of health risk of different age groups consuming the studied peanuts and peanut oil showed that the risk was very low.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenlan Xu
- Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shanshan Tang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
4
|
Simultaneous Determination of Pyridate, Quizalofop-ethyl, and Cyhalofop-butyl Residues in Agricultural Products Using Liquid Chromatography-Tandem Mass Spectrometry. Foods 2022; 11:foods11070899. [PMID: 35406986 PMCID: PMC8998043 DOI: 10.3390/foods11070899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
An analytical method was developed to simultaneously determine pyridate, quizalofop-ethyl, and cyhalofop-butyl in brown rice, soybean, potato, pepper, and mandarin using LC-MS/MS. Purification was optimized using various sorbents: primary−secondary amine, octadecyl (C18) silica gel, graphitized carbon black, zirconium dioxide-modified silica particles, zirconium dioxide-modified silica particles (Z-SEP), and multi-walled carbon nanotubes (MWCNTs). Three versions of QuECHERS methods were then tested using the optimal purification agent. Finally, samples were extracted using acetonitrile and QuEChERS EN salts and purified using the Z-SEP sorbent. A six-point matrix-matched external calibration curve was constructed for the analytes. Good linearity was achieved with a determination coefficient ≥0.999. The limits of detection and quantification were 0.0075 mg/kg and 0.01 mg/kg, respectively. The method was validated after fortifying the target standards to the blank matrices at three concentration levels with five replicates for each concentration. The average recovery was within an acceptable range (70−120%), with a relative standard deviation <20%. The applicability of the developed method was evaluated with real-world market samples, all of which tested negative for these three herbicide residues. Therefore, this method can be used for the routine analysis of pyridate, quizalofop-ethyl, and cyhalofop-butyl in agricultural products.
Collapse
|
5
|
Dynamics of the Degradation of Acetyl-CoA Carboxylase Herbicides in Vegetables. Foods 2021; 10:foods10020405. [PMID: 33673116 PMCID: PMC7918062 DOI: 10.3390/foods10020405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Aryloxyphenoxy-propionates and cyclohexanediones are herbicides most widely used in dicot crops worldwide. The main objective of the study was to determine the dynamics of herbicide residues in carrot, lettuce, cauliflower, and onion in order to suggest a low level of residues in harvested vegetables. (2) Methods: Small plot field trials were carried out in four vegetables in the Czech Republic. The samples of vegetables were collected continuously during the growing season. Multiresidue methods for the determination of herbicide residues by LC-MS/MS were used. Non-linear models of degradation of individual herbicides in vegetables were calculated using the exponential decay formula. Action GAP pre-harvest intervals for the 25% and 50% maximum residue limit (MRL) and 10 µg kg−1 limit (baby food) were established for all tested herbicides. (3) Results: The degradation dynamics of fluazifop in carrot, onion, and cauliflower was significantly slower compared to quizalofop and haloxyfop. The highest amount (2796 µg kg−1) of fluazifop residues was detected in cauliflower 11 days after application. No residue of propaquizafop and cycloxydim was detected in any vegetable samples. (4) Conclusions: Aryloxyphenoxy-propionate herbicide (except propaquizafop) could contaminate vegetables easily, especially vegetables with a short growing season. Vegetables treated with fluazifop are not suitable for baby food. Lettuce and cauliflower treated by quizalofop are not suitable for baby food, but in onion and carrot, quizalofop could be used. Propaquizafop and cycloxydim are prospective herbicides for non-residual (baby food) vegetable production.
Collapse
|