1
|
Fu P, Zhai J, Yang X, Gao J, Ren Z, Guo B, Qi P. Distribution and influencing factors of antibiotic resistance genes in two mussel species along the coasts of the East China Sea and the Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137399. [PMID: 39889603 DOI: 10.1016/j.jhazmat.2025.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/08/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Antibiotic resistance genes (ARGs) raise a global public health concern. The ARGs profile in marine aquaculture environments was well reported, yet it is poorly revealed in marine bivalves. This study investigated the microbiota, resistome, and environmental factors within the digestive glands of two mussel species (Mytilus coruscus and Mytilus galloprovincialis) cultivated in the East China Sea and Yellow Sea. The microbial communities in the digestive glands of mussels exhibit significant variations across different sampling sites and between the two seas. The three bacterial phyla that predominated in all samples were Firmicutes, Bacteroidota, and Proteobacteria. A total of 88 ARGs were detected, with aminoglycoside resistance genes and multidrug resistance genes being the dominant categories. Analysis revealed that the quinolone resistance gene qnrB, associated with clinically relevant human pathogens, was ubiquitous in all samples. Members of the Enterobacteriaceae family may serve as a reservoir for qnrB within the investigated environment. The distribution of ARGs shows potential associations with the composition of microbial communities in the digestive glands, environmental factors, and mobile genetic elements (MGEs). These findings enhance the elucidation of microbial ecology and antibiotic resistance in marine aquaculture.
Collapse
Affiliation(s)
- Peipei Fu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Jiaying Zhai
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Xiaoao Yang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Jiaxin Gao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Zhongjie Ren
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Baoying Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China.
| |
Collapse
|
2
|
He D, Li J, Yu W, Zhang Y, Wang B, Wang T, Yang H, Zhang Y, Chen W, Li Y, Feng F, Hou LA. Deciphering the removal of antibiotics and the antibiotic resistome from typical hospital wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171806. [PMID: 38508266 DOI: 10.1016/j.scitotenv.2024.171806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Hospital wastewater treatment systems (HWTSs) are a significant source and reservoir of antibiotic resistance genes (ARGs) and a crucial hub for transmitting ARGs from clinical to natural environments. However, there is a lack of research on the antibiotic resistome of clinical wastewater in HWTSs. In this study, we used metagenomics to analyze the prevalence and abundance of ARGs in five typical HWTSs. A total of 17 antibiotics from six categories were detected in the five HWTSs; β-lactam antibiotics were found at the highest concentrations, with up to 4074.08 ng·L-1. We further found a total of 21 ARG types and 1106 subtypes of ARGs with the highest percentage of multi-drug resistance genes (evgS, msbA, arlS, and baeS). The most abundant last-resort ARGs were mcr, which were detected in 100 % of the samples. HWTSs effluent is a major pathway for the transmission of last-resort ARGs into urban wastewater networks. The removal of antibiotics, antibiotic-resistant bacteria, and ARGs from HWTSs was mainly achieved by tertiary treatment, i.e., chlorine disinfection, but antibiotics and ARGs were still present in the HWTSs effluent or even increased after treatment. Moreover, antibiotics and heavy metals (especially mercury) in hospital effluents can exert selective pressure for antibiotic resistance, even at low concentrations. Qualitative analyses based on metagenome-assembled genome analysis revealed that the putative hosts of the identified ARGs are widely distributed among Pseudomonas, Acidovorax, Flavobacterium, Polaromonas, and Arcobacter. Moreover, we further assessed the clinical availability of ARGs and found that multidrug ARGs had the highest clinical relevance values. This study provides new impulses for monitoring and removing antibiotics and ARGs in the hospital sewage treatment process.
Collapse
Affiliation(s)
- Dahai He
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Weihai Yu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yingyuan Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Academy of Testing and Analysis, Guiyang 550000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang 550025, China
| | - Tao Wang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Huaikai Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yuntao Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Weijie Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Faming Feng
- Chutian Liangjiang Environment Co., LTD, Guiyang 550000, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Fang GY, Wu FH, Mu XJ, Jiang YJ, Liu XQ. Monitoring longitudinal antimicrobial resistance trends of Staphylococcus aureus strains worldwide over the past 100 years to decipher its evolution and transmission. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133136. [PMID: 38056258 DOI: 10.1016/j.jhazmat.2023.133136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Staphylococcus aureus inhabits diverse habitats including food waste and wastewater treatment plants. Cases of S. aureus-induced infection are commonly reported worldwide. The emergence of antimicrobial resistance (AMR) of S. aureus is a growing public health threat worldwide. Here, we longitudinally monitored global trends in antibiotic resistance genes (ARGs) of 586 S. aureus strains, isolated between 1884 and 2022. The ARGs in S. aureus exhibited a significant increase over time (P < 0.0001). Mobile genetic elements play a crucial role in the transfer of ARGs in S. aureus strains. The structural equation model results revealed a significant correlation between the human development index and rising antibiotic consumption, which subsequently leads to an indirect escalation of AMR in S. aureus strains. Lastly, a machine learning algorithm successfully predicted the AMR risk of global terrestrial S. aureus with over 70% accuracy. Overall, these findings provided valuable insights for managing AMR in S. aureus.
Collapse
Affiliation(s)
- Guan-Yu Fang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| | - Feng-Hua Wu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Xiao-Jing Mu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yu-Jian Jiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xing-Quan Liu
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, PR China; National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
4
|
Duarte DJ, Zillien C, Kox M, Oldenkamp R, van der Zaan B, Roex E, Ragas AMJ. Characterization of urban sources of antibiotics and antibiotic-resistance genes in a Dutch sewer catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167439. [PMID: 37774886 DOI: 10.1016/j.scitotenv.2023.167439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
A one year study was conducted in the city of Nijmegen, The Netherlands, to characterize various urban sources of antibiotics and antibiotic resistant genes (ARGs) in wastewater within a single sewer catchment. Prevalence of ermB, tet(W), sul1, sul2, intl1, and 16S rRNA gene was determined at 10 locations within the city. Sampling locations included a nursing home, a student residence, a hospital and an industrial area, among others. Wastewater concentrations of 23 antibiotics were measured using passive sampling. Additionally, excreted loads of 22 antibiotics were estimated based on ambulatory prescription and clinical usage data. Genes sul1 and intl1 were most abundant across most locations. Ciprofloxacin and amoxicillin together contributed over 92 % of the total estimated antibiotic selective pressure at all sampling points. The present study highlights the prominent role that hospitals can have in the prevalence and proliferation of ARGs in urban wastewater. Furthermore, results suggest that even short-term changes in the therapeutic regimen prescribed in hospitals may translate into shifting ARG abundance patterns in hospital wastewater. The methods applied present an opportunity to identify emission hotspots and prioritize intervention options to limit ARG spread from urban wastewater to the environment.
Collapse
Affiliation(s)
- Daniel J Duarte
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| | - Caterina Zillien
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands.
| | - Martine Kox
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Rik Oldenkamp
- Department of Global Health-Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Paasheuvelweg 25, 1105 BP Amsterdam, the Netherlands
| | - Bas van der Zaan
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 KB Utrecht, the Netherlands
| | - Erwin Roex
- National Institute for Public Health and the Environment (RIVM), Centre for Zoonoses and Environmental Microbiology, 3721 MA Bilthoven, the Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Radboud Institute for Biological and Environmental Sciences, Department of Environmental Science, 6500 GL Nijmegen, Netherlands
| |
Collapse
|
5
|
Xin R, Zhang K, Yu D, Zhang Y, Ma Y, Niu Z. Cyanobacterial extracellular antibacterial substances could promote the spread of antibiotic resistance: impacts and reasons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2139-2147. [PMID: 37947439 DOI: 10.1039/d3em00306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Many studies have shown that antibiotic resistance genes (ARGs) can be facilitated by a variety of antibacterial substances. Cyanobacteria are photosynthetic bacteria that are widely distributed in the ocean. Some extracellular substances produced by marine cyanobacteria have been found to possess antibacterial activity. However, the impact of these extracellular substances on ARGs is unclear. Therefore, we established groups of seawater microcosms that contained different concentrations (1000, 100, 10, 1, 0.1, 0.01, and 0 μg mL-1) of cyanobacterial extracellular substances (CES), and tracked the changes of 17 types of ARGs, the integron gene (intI1), as well as the bacterial community at different time points. The results showed that CES could enrich most ARGs (15/17) in the initial stage, particularly at low concentrations (10 and 100 μg mL-1). The correlation analysis showed a positive correlation between several ARGs and intI1. It is suggested that the abundance of intI1 increased with CES may contribute to the changes of these ARGs, and co-resistance of CES may be the underlying reason for the similar variation pattern of some ARGs. Moreover, the results of qPCR and high-throughput sequencing of 16S rRNA showed that CES had an inhibitory impact on the growth of bacterial communities. High concentrations of CES were found to alter the structure of bacterial communities. Co-occurrence networks showed that bacteria elevated in the high concentration group of CES and might serve as the potential hosts for a variety of ARGs. In general, marine cyanobacteria could play an important role in the global dissemination of ARGs and antibiotic-resistant bacteria (ARBs).
Collapse
Affiliation(s)
- Rui Xin
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Kai Zhang
- Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Dongjin Yu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yongzheng Ma
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhiguang Niu
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
- The International Joint Institute of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
6
|
Zhao L, Lv Z, Lin L, Li X, Xu J, Huang S, Chen Y, Fu Y, Peng C, Cao T, Ke Y, Xia X. Impact of COVID-19 pandemic on profiles of antibiotic-resistant genes and bacteria in hospital wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122133. [PMID: 37399936 DOI: 10.1016/j.envpol.2023.122133] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/05/2023]
Abstract
The COVID-19 pandemic has severely affected healthcare worldwide and has led to the excessive use of disinfectants and antimicrobial agents. However, the impact of excessive disinfection measures and specific medication prescriptions on the development and dissemination of bacterial drug resistance during the pandemic remains unclear. This study investigated the influence of the pandemic on the composition of antibiotics, antibiotic resistance genes (ARGs), and pathogenic communities in hospital wastewater using ultra-performance liquid chromatography-tandem mass spectrometry and metagenome sequencing. The overall level of antibiotics decreased after the COVID-19 outbreak, whereas the abundance of various ARGs increased in hospital wastewater. After COVID-19 outbreak, blaOXA, sul2, tetX, and qnrS had higher concentrations in winter than in summer. Seasonal factors and the COVID-19 pandemic have affected the microbial structure in wastewater, especially of Klebsiella, Escherichia, Aeromonas, and Acinetobacter. Further analysis revealed the co-existence of qnrS, blaNDM, and blaKPC during the pandemic. Various ARGs significantly correlated with mobile genetic elements, implying their potential mobility. A network analysis revealed that many pathogenic bacteria (Klebsiella, Escherichia, and Vibrio) were correlated with ARGs, indicating the existence of multi-drug resistant pathogens. Although the calculated resistome risk score did not change significantly, our results suggest that the COVID-19 pandemic shifted the composition of residual antibiotics and ARGs in hospital wastewater and contributed to the dissemination of bacterial drug resistance.
Collapse
Affiliation(s)
- Liang Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Liangqiang Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuhua Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yulin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Changfeng Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Tingting Cao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Stege PB, Hordijk J, Sandholt AKS, Zomer AL, Viveen MC, Rogers MRC, Salomons M, Wagenaar JA, Mughini-Gras L, Willems RJL, Paganelli FL. Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition. Microbiol Spectr 2023; 11:e0006323. [PMID: 37404183 PMCID: PMC10434115 DOI: 10.1128/spectrum.00063-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.
Collapse
Affiliation(s)
- Paul B. Stege
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost Hordijk
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Arnar K. S. Sandholt
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Marco C. Viveen
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Malbert R. C. Rogers
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernanda L. Paganelli
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Ye S, Li S, Su C, Shi Z, Li H, Hong J, Wang S, Zhao J, Zheng W, Dong S, Ye S, Lou Y, Zhou Z, Du J. Characterization of microbial community and antibiotic resistome in intra urban water, Wenzhou China. Front Microbiol 2023; 14:1169476. [PMID: 37396356 PMCID: PMC10311006 DOI: 10.3389/fmicb.2023.1169476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The present study investigated the water quality index, microbial composition and antimicrobial resistance genes in urban water habitats. Combined chemicals testing, metagenomic analyses and qualitative PCR (qPCR) were conducted on 20 locations, including rivers from hospital surrounds (n = 7), community surrounds (n = 7), and natural wetlands (n = 6). Results showed that the indexes of total nitrogen, phosphorus, and ammonia nitrogen of hospital waters were 2-3 folds high than that of water from wetlands. Bioinformatics analysis revealed a total of 1,594 bacterial species from 479 genera from the three groups of water samples. The hospital-related samples had the greatest number of unique genera, followed by those from wetlands and communities. The hospital-related samples contained a large number of bacteria associated with the gut microbiome, including Alistipes, Prevotella, Klebsiella, Escherichia, Bacteroides, and Faecalibacterium, which were all significantly enriched compared to samples from the wetlands. Nevertheless, the wetland waters enriched bacteria from Nanopelagicus, Mycolicibacterium and Gemmatimonas, which are typically associated with aquatic environments. The presence of antimicrobial resistance genes (ARGs) that were associated with different species origins in each water sample was observed. The majority of ARGs from hospital-related samples were carried by bacteria from Acinetobacter, Aeromonas and various genera from Enterobacteriaceae, which each was associated with multiple ARGs. In contrast, the ARGs that were exclusively in samples from communities and wetlands were carried by species that encoded only 1 to 2 ARGs each and were not normally associated with human infections. The qPCR showed that water samples of hospital surrounds had higher concentrations of intI1 and antimicrobial resistance genes such as tetA, ermA, ermB, qnrB, sul1, sul2 and other beta-lactam genes. Further genes of functional metabolism reported that the enrichment of genes associated with the degradation/utilization of nitrate and organic phosphodiester were detected in water samples around hospitals and communities compared to those from wetlands. Finally, correlations between the water quality indicators and the number of ARGs were evaluated. The presence of total nitrogen, phosphorus, and ammonia nitrogen were significantly correlated with the presence of ermA and sul1. Furthermore, intI1 exhibited a significant correlation with ermB, sul1, and blaSHV, indicating a prevalence of ARGs in urban water environments might be due to the integron intI1's diffusion-promoting effect. However, the high abundance of ARGs was limited to the waters around the hospital, and we did not observe the geographical transfer of ARGs along with the river flow. This may be related to water purifying capacity of natural riverine wetlands. Taken together, continued surveillance is required to assess the risk of bacterial horizontal transmission and its potential impact on public health in the current region.
Collapse
Affiliation(s)
- Sheng Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chenjun Su
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhuqing Shi
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Heng Li
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiawen Hong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
- Taizhou Hospital of Zhejiang Province, Taizhou, China
| | - Shengke Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jingyan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weiji Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shixuan Dong
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shuhan Ye
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Fan S, Jiang S, Luo L, Zhou Z, Wang L, Huang X, Liu H, Zhang S, Luo Y, Ren Z, Ma X, Cao S, Shen L, Wang Y, Gou L, Geng Y, Peng G, Zhu Y, Li W, Zhong Y, Shi X, Zhu Z, Shi K, Zhong Z. Antibiotic-Resistant Escherichia coli Strains Isolated from Captive Giant Pandas: A Reservoir of Antibiotic Resistance Genes and Virulence-Associated Genes. Vet Sci 2022; 9:vetsci9120705. [PMID: 36548866 PMCID: PMC9786197 DOI: 10.3390/vetsci9120705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Recent studies showed that Escherichia coli (E. coli) strains isolated from captive giant pandas have serious resistance to antibiotics and carry various antibiotic resistance genes (ARGs). ARGs or virulence-associated genes (VAGs) carried by antibiotic-resistant E. coli are considered as a potential health threat to giant pandas, humans, other animals and the environment. In this study, we screened ARGs and VAGs in 84 antibiotic-resistant E. coli strains isolated from clinically healthy captive giant pandas, identified the association between ARGs and VAGs and analyzed the phylogenetic clustering of E. coli isolates. Our results showed that the most prevalent ARG in E. coli strains isolated from giant pandas is blaTEM (100.00%, 84/84), while the most prevalent VAG is fimC (91.67%, 77/84). There was a significant positive association among 30 pairs of ARGs, of which the strongest was observed for sul1/tetC (OR, 133.33). A significant positive association was demonstrated among 14 pairs of VAGs, and the strongest was observed for fyuA/iroN (OR, 294.40). A positive association was also observed among 45 pairs of ARGs and VAGs, of which the strongest was sul1/eaeA (OR, 23.06). The association of ARGs and mobile gene elements (MGEs) was further analyzed, and the strongest was found for flor and intI1 (OR, 79.86). The result of phylogenetic clustering showed that the most prevalent group was group B2 (67.86%, 57/84), followed by group A (16.67%, 14/84), group D (9.52%, 8/84) and group B1 (5.95%, 5/84). This study implied that antibiotic-resistant E. coli isolated from captive giant pandas is a reservoir of ARGs and VAGs, and significant associations exist among ARGs, VAGs and MGEs. Monitoring ARGs, VAGs and MGEs carried by E. coli from giant pandas is beneficial for controlling the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Siping Fan
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaoqi Jiang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Leshan Vocational and Technical College, Leshan 614000, China
| | - Lijun Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu 610081, China
| | - Xiangming Huang
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Suizhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liuhong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanqiu Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yalin Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xianpeng Shi
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqi Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing 214200, China
- Correspondence: (K.S.); (Z.Z.)
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (K.S.); (Z.Z.)
| |
Collapse
|
10
|
Xie J, Gu J, Wang X, Hu T, Sun W, Lei L, Zhang R, Guo H. Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting. BIORESOURCE TECHNOLOGY 2021; 342:125903. [PMID: 34534940 DOI: 10.1016/j.biortech.2021.125903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance genes (ARGs) in manure endangered human health, while heavy metals in manure will pose selective pressure on ARGs. This study explored the effects on ARGs of adding woody peat during composting at different ratios (0 (CK), 5% (T1), and 15% (T2)). After composting, the relative abundances of 8/11 ARGs were 6.97-38.09% and 10.73-54.31% lower in T1 and T2, respectively, than CK. The bioavailable Cu content was 1.40% and 18.40% lower in T1 and T2, respectively, than CK. Network analysis showed that ARGs, mobile genetic elements (MGEs), and metal resistance genes possessed common potential host bacteria, such as Streptococcus, Dietzia, and Corynebacterium_1. Environmental factors, especially bioavailable Cu, and MGEs accounted for 80.75% of the changes in the abundances of ARGs. In conclusion, 15% Woody peat is beneficial to decrease the bioavailable Cu content and weaken horizontal gene transfer for controlling the spread of ARGs during composting.
Collapse
Affiliation(s)
- Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ranran Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|