1
|
Opris RV, Baciu AM, Filip GA, Florea A, Costache C. The use of Galleria mellonella in metal nanoparticle development: A systematic review. Chem Biol Interact 2025; 415:111511. [PMID: 40246051 DOI: 10.1016/j.cbi.2025.111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Research on metal nanoparticles is crucial for their application in diverse fields, requiring detailed assessments of their effects and potential. Galleria mellonella larvae have emerged as a valuable model for studying the impacts of metal nanoparticles, offering ethical and logistical advantages over traditional models. This systematic review synthesizes evidence on the application of Galleria mellonella in evaluating the toxicity, distribution, and therapeutic potential of metal nanoparticles. Adhering to PRISMA guidelines, a comprehensive database search (MEDLINE, Embase, Cochrane, Scopus, Google Scholar, Science Citation Index Expanded) was conducted using keywords related to Galleria mellonella and metal nanoparticles. The SYRCLE's risk of bias tool (adapted for G. mellonella) was used for risk of bias assessment. Out of 1696 initially identified studies, 31 met the inclusion criteria, encompassing research from 2011 to 2024. The included studies effectively demonstrate G. mellonella's capacity to model the toxicity of metal nanoparticles, their therapeutic potential in treating infections, and the impact on the innate immune response, bridging the gap between simpler in vitro assays and more complex mammalian models. Galleria mellonella stands out as a critical model for the early-stage development and evaluation of metal nanoparticles, particularly in assessing toxicity, therapeutic efficacy in infection treatment, and interaction with immune systems. This review underscores the larvae's role in metal nanoparticle research, advocating for its broader use to streamline development processes while minimizing ethical concerns.
Collapse
Affiliation(s)
- Razvan Vlad Opris
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Alina Mihaela Baciu
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania; Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 1-3 Clinicilor Street, 400006, Cluj-Napoca, Romania.
| | - Adrian Florea
- Department of Cell & Molecular Biology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Carmen Costache
- Department of Microbiology, "Iuliu Hatieganu" University of Medicine & Pharmacy, 6 Louis Pasteur Street, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Sugecti S, Sefer NE, Tuncsoy B, Büyükgüzel E, Büyükgüzel K. Biochemical Effects of Dietary Piperazine on Galleria mellonella L. (Lepidoptera: Pyralidae) as a Model Organism. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:83. [PMID: 40372492 DOI: 10.1007/s00128-025-04058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Insecticides used to control pests are one of the most important causes of environmental pollution. Therefore, eco-friendly novel chemicals with low toxicity to mammals are investigated in pest management. In the present study, we investigated the effects of piperazine, a clinically important drug, on the model pest Galleria mellonella (Lepidoptera: Pyralidae). The experimental results showed that increasing concentrations of piperazine caused cell damage in G. mellonella hemolymph. Cell damage indicators, such as, aspartate transferase, alanine transferase, and lactate dehydrogenase levels were altered following exposure. Moreover, creatine kinase, alkaline phosphatase, amylase, gamma glutamyl transferase and acetylcholinesterase in larval hemolymph also were adversely affected. In overall, these findings demonstrate, these results show that well-adjusted piperazine concentrations as a potential alternative chemical for pest management.
Collapse
Affiliation(s)
- Serkan Sugecti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Nur Emine Sefer
- Department of Biology, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Benay Tuncsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey.
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
3
|
Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:67. [PMID: 39791825 PMCID: PMC11723170 DOI: 10.3390/nano15010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
The spread of multidrug-resistant microbes has made it necessary and urgent to develop new strategies to deal with the infections they cause. Some of these are based on nanotechnology, which has revolutionized many fields in medicine. Evaluating the safety and efficacy of these new antimicrobial strategies requires testing in animal models before being tested in clinical trials. In this context, Galleria mellonella could represent a valid alternative to traditional mammalian and non-mammalian animal models, due to its low cost, ease of handling, and valuable biological properties to investigate host-pathogen interactions. The purpose of this review is to provide an updated overview of the literature concerning the use of G. mellonella larvae as an animal model to evaluate safety and efficacy of nanoparticles and nanomaterials, particularly, of those that are used or are under investigation to combat microbial pathogens.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Matteo Calcagnile
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Demirtürk Z, Uçkan F, Mert S. Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug Chem Toxicol 2024; 47:483-495. [PMID: 37259574 DOI: 10.1080/01480545.2023.2217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
Nowadays, particularly metallic, and polymeric nanoparticles (NPs) are widely produced and used in many fields. Due to the increase in both their usage and diversity, their release and accumulation in the environment are also accelerating. Therefore, their interactions with cells, especially immune cells, and their health risks are not fully understood. The impacts of metallic alumina (Al) NPs and polystyrene (PS) NPs obtained after the polymerization of carcinogenic styrene on living organisms have not yet been elucidated. Galleria mellonella larvae can biodegrade plastics. While biodegradation and solving the waste problem have attracted much attention, the interactions of this distinctive property of G. mellonella larvae in the immune system and ecosystem are not yet completely understood. Al and PS NPs were applied to G. mellonella separately. Al NPs were purchased and PS NPs were prepared from PS by single-emulsion technique and characterized. Then LC50 values of these NPs on G. mellonella were determined. The interactions of these NPs with encapsulation, melanization, and phenoloxidase activity, which express innate immune responses in G. mellonella larvae, were revealed. NP exposure resulted in suppression of the immune response, probably because it affects the functions of hemocytes such as enzymatic activation, hemocyte division, and populations. In this context, our data suggest that Al and PS NPs induce toxic impacts and negatively alter the physiological status of G. mellonella. It is also shown that G. mellonella has the potential to be an impactful alternative model for biosafety and nanotoxicology studies.
Collapse
Affiliation(s)
| | - Fevzi Uçkan
- Department of Biology, Kocaeli University, Kocaeli, Türkiye
| | - Serap Mert
- Department of Polymer Science and Technology, Kocaeli University, Kocaeli, Türkiye
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Chemistry and Chemical Processing Technology, Kocaeli University, Türkiye
| |
Collapse
|
5
|
Borase HP, Singhal RS, Patil SV. Copper oxide nanoparticles exhibit variable response against enzymatic toxicity biomarkers of Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54325-54337. [PMID: 37821732 DOI: 10.1007/s11356-023-30145-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Growing toxicity of nanomaterials to aquatic organisms is a major area of concern as it is destroying the carefully evolved aquatic ecosystem and food web. Copper oxide nanoparticles (CuONPs) are among the top industrially manufactured nanomaterials having multifaceted applications in medicine, agriculture, energy, water technology, and other areas. However, reports on detailed scientific understanding behind toxic effects of CuONPs on aquatic organisms are scant. The present work reports on the interaction of CuONPs of 10 ± 05 nm with an ecologically significant aquatic species, Moina macrocopa, at morphological and enzymatic levels. CuONPs were found to be severely toxic just within 48 h of exposure as seen from the lethal value (48 h LC50) of 0.137 ± 0.002 ppm. Profiling of enzymatic toxicity biomarkers indicated variable response of CuONPs on selected enzymes of M. macrocopa at two sub-lethal concentrations (0.013 to 0.039 ppm). While the activities of acetyl cholinesterase and digestive enzymes (trypsin, amylase) were found to be significantly (p < 0.001) lowered after exposure to CuONPs, the β-galactosidase activity was completely inhibited. Among the antioxidant enzymes that were assayed, superoxide dismutase and glutathione-S-transferase activity was found to increase (p > 0.001), while that of catalase decreased (p > 0.001, < 0.05) with increase in exposure to CuONPs. An upsurge of several folds was seen in the activity of alkaline phosphatase after exposure to CuONPs as compared to the control group. CuONPs accumulated in the gut region of M. macrocopa which provided an ideal environment for CuONP to interact and alter the enzymes in M. macrocopa. This report highlights the use of enzymes as sensitive biomarker to detect toxicity of trace amount of CuONPs in a very sensitive non-target crustacean species found in water bodies.
Collapse
Affiliation(s)
- Hemant Pandit Borase
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, 400019, Maharashtra, India
| | - Satish Vitthal Patil
- School of Life Sciences, Kavayitri Bahinabai Chaudhari, North Maharashtra University, Jalgaon, 425001, Maharashtra, India.
| |
Collapse
|
6
|
Meddeb ER, Trea F, Djekoun A, Nasri H, Ouali K. Subchronic toxicity of iron-selenium nanoparticles on oxidative stress response, histopathological, and nuclear damage in amphibian larvae Rana saharica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112321-112335. [PMID: 37831248 DOI: 10.1007/s11356-023-30063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
In this work, we evaluated the subchronic toxicity of FeSe nanoparticles (NPs) in tadpoles of Rana saharica. Tadpoles were exposed for 1-3 weeks to FeSe NPs at 5 mg/L and 100 mg/L rates. Parameters of oxidative stress were measured in whole larvae, and the micronucleus test was performed on circulating blood erythrocytes. We noted a disturbance of the detoxification systems. Enzymatic and non-enzymatic data showed that exposure to FeSe NPs involved a highly significant depletion of GSH, a significant increase in GST activity, and a lipid peroxidation associated with a highly significant increase in MDA. We also noted a neurotoxic effect characterized by a significant inhibition of AChE activity. A micronucleus test showed concentration-dependent DNA damage. This research reveals that these trace elements, in their nanoform, can cause significant neurotoxicity, histopathologic degeneration, cellular and metabolic activity, and genotoxic consequences in Rana larvae.
Collapse
Affiliation(s)
- El Rym Meddeb
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Fouzia Trea
- Faculty of Sciences, Laboratory of Environmental Biomonitoring, Badji-Mokhtar University, Annaba, Algeria
| | - Abdelmalik Djekoun
- Faculty of Sciences, Materials Physics Laboratory, Badji-Mokhtar University, Annaba, Algeria
| | - Hichem Nasri
- Faculty of Natural and Life Sciences, Ecotoxicology Laboratory, Chadli Bendjedid University, ElTarf, Algeria
| | - Kheireddine Ouali
- Environmental Bio Surveillance, Department of Biology, Faculty of Sciences, Laboratory of Environmental Biomonitoring Badji-Mokhtar University, BP 12 Sidi Amar, Annaba, Algeria.
| |
Collapse
|
7
|
Sugeçti S, Akbayrak S, Büyükgüzel E, Büyükgüzel K. Ecotoxicological Effects of Titanium Aluminum Carbide Composites on Biochemical and Metabolic Parameters of Galleria mellonella. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:52. [PMID: 37776340 DOI: 10.1007/s00128-023-03807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Metal composites have been extensively used in various fields such as automotive industry, medicine and pharmacy. However, the high exposure of these chemicals may have an adverse effect on the living organisms. In this study, the effect of titanium aluminum carbide (Ti3AlC2) on the model organism Galleria mellonella was investigated. The change in the metabolic enzymes such as alanine transferase, aspartate transferase, gamma-glutamyl transferase, lactate dehydrogenase, amylase, creatine kinase, alkaline phosphatase in the hemolymph of G. mellonella which was exposed to Ti3AlC2 was determined. The contents of the bilirubin, albumin, uric acid and the total protein were also measured after the Ti3AlC2 exposure on the model organism. The results of our study clearly indicate that Ti3AlC2 has adverse effects on the model organism G. mellonella.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Serdar Akbayrak
- Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, Konya, Turkey
| | - Ender Büyükgüzel
- Department of Molecular Biology and Genetic, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Science and Art Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
8
|
Arafat EA, El-Sayed DS, Hussein HK, Flaven-Pouchon J, Moussian B, El-Samad LM, El Wakil A, Hassan MA. Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts ( Locusta migratoria) as an Ecotoxicological Model. Antioxidants (Basel) 2023; 12:653. [PMID: 36978901 PMCID: PMC10045266 DOI: 10.3390/antiox12030653] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, we shed light for the first time on the usage of migratory locusts (Locusta migratoria) as an insect model to investigate the nanotoxicological influence of aluminum oxide (Al2O3) nanoparticles at low doses on testes, and evaluate the capacity of a whole-body extract of American cockroaches (Periplaneta americana) (PAE) to attenuate Al2O3 NPs-induced toxicity. Energy dispersive X-ray microanalyzer (EDX) analysis verified the bioaccumulation of Al in testicular tissues due to its liberation from Al2O3 NPs, implying their penetration into the blood-testis barrier. Remarkably, toxicity with Al engendered disorders of antioxidant and stress biomarkers associated with substantial DNA damage and cell apoptosis. Furthermore, histopathological and ultrastructural analyses manifested significant aberrations in the testicular tissues from the group exposed to Al2O3 NPs, indicating the overproduction of reactive oxygen species (ROS). Molecular docking analysis emphasized the antioxidant capacity of some compounds derived from PAE. Thus, pretreatment with PAE counteracted the detrimental effects of Al in the testes, revealing antioxidant properties and thwarting DNA impairment and cell apoptosis. Moreover, histological and ultrastructural examinations revealed no anomalies in the testes. Overall, these findings substantiate the potential applications of PAE in preventing the testicular impairment of L. migratoria and the conceivable utilization of locusts for nanotoxicology studies.
Collapse
Affiliation(s)
- Esraa A. Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Doaa S. El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Hussein K. Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Justin Flaven-Pouchon
- Interfaculty Institute for Cell Biology, Eberhard-Karls Universität Tübingen, 37073 Tübingen, Germany
| | | | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 21526, Egypt
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
- University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
9
|
Murthy MK, Khandayataray P, Mohanty CS, Pattanayak R. Ecotoxicity risk assessment of copper oxide nanoparticles in Duttaphrynus melanostictus tadpoles. CHEMOSPHERE 2023; 314:137754. [PMID: 36608887 DOI: 10.1016/j.chemosphere.2023.137754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In recent years, copper oxide nanoparticles (CONPs) have gained considerable importance in ecotoxicology studies. CONP ecotoxicity studies on amphibians are limited, particularly on Duttaphrynus melanostictus (D. melanostictus) tadpoles, and most CONP ecotoxicity studies have shown developmental effects on amphibians. Therefore, the present study aimed to determine the ecotoxicity of CONPs in D. melanostictus tadpoles by assessing multi-biomarkers including bioaccumulation, antioxidants, biochemical, haematological, immunological and oxidative stress biomarkers. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the morphology and physicochemical properties of CONPs. After 30 d of the experiment, blood and organs were collected to measure the levels of multiple biomarkers. The dissolution rate of copper ions in exposed media was observed in all studied groups. According to the results, significant (p < 0.05) increase in copper ion bioaccumulation (blood, liver and kidney), oxidative stress and biochemical biomarkers in the blood serum of CONPs exposed tadpoles compared to control tadpoles, which was accompanied by significant variations in morphological and haematological parameters. In contrast to the untreated tadpoles, the CONPs-exposed tadpoles showed statistically significant (p < 0.05) decreases in antioxidants and immunological indices of blood serum. Based on our results, we concluded that the ecotoxicity of CONPs is due to the production of reactive oxygen species (ROS), which can cause oxidative stress in tadpoles, resulting in impairments. According to our knowledge, the present study was the first to use a multi-biomarker ecotoxicity approach on D. melanostictus tadpoles that could be used as an ecological bioindicator to assess aquatic toxicity.
Collapse
Affiliation(s)
- Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India
| | - Pratima Khandayataray
- Department of Zoology, School of Life Science, Mizoram University, Aizawl, Mizoram, 796004, India
| | - Chandra Sekhar Mohanty
- Plant Genomic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, Uttar Pradesh, India
| | - Rojalin Pattanayak
- Department of Zoology, College of Basic Science, Odisha University of Agriculture and Technology, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
10
|
Sugeçti S, Kepekçi AB, Büyükgüzel K. Effects of Midazolam on Antioxidant Levels, Biochemical and Metabolic Parameters in Eurygaster integriceps Puton (Hemiptera: Scutelleridae) Eggs Parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:4. [PMID: 36495324 DOI: 10.1007/s00128-022-03648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is among the most important insect pests of wheat (Triticum sativum L.) and barley (Hordeum vulgare L.) grown in the Middle East. Biological and chemical methods are insufficient to control E. integriceps populations below economic thresholds. In this study, we investigated the effects of midazolam, a clinical drug, on selected metabolic enzyme activity, antioxidant levels, and biochemical parameters in E. integriceps eggs parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). Increasing concentrations of midazolam caused cell damage in the parasitized eggs due to its oxidative effects. Transferase enzymes, such as, aspartate transferase, alanine transferase, and gamma glutamyl transferase activities were altered following exposure. Metabolic enzymes, such as, creatine kinase, alkaline phosphatase, amylase, and lactate dehydrogenase also were adversely affected. Levels of the non-enzymatic antioxidants uric acid, bilirubin, and albumin also were altered.
Collapse
Affiliation(s)
- Serkan Sugeçti
- Department of Veterinary Medicine, Çaycuma Food and Agriculture Vocational School, Zonguldak Bülent Ecevit University, Zonguldak, Turkey.
| | - Ali Bestemi Kepekçi
- Department of Anesthesia, Vocational School of Health Services, İstanbul Yeni Yüzyıl University, İstanbul, Turkey
| | - Kemal Büyükgüzel
- Department of Biology, Faculty of Science and Art, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
11
|
Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Sci Rep 2022; 12:12843. [PMID: 35902676 PMCID: PMC9334594 DOI: 10.1038/s41598-022-16878-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
In the present study, a method for the synthesis of gelatin-stabilized copper oxide nanoparticles was developed. Synthesis was carried out by direct chemical precipitation. Copper sulfate, chloride, and acetate were used as precursors for the copper oxide synthesis. Gelatin was used as a stabilizer. It was found that the formation of monophase copper oxide II only occurred when copper acetate was used as a precursor. Our results showed that particles of the smallest diameter are formed in an aqueous medium (18 ± 6 nm), and those of th largest diameter—in an isobutanol medium (370 ± 131 nm). According to the photon correlation spectroscopy data, copper oxide nanoparticles synthesized in an aqueous medium were highly stable and had a monomodal size distribution with an average hydrodynamic radius of 61 nm. The study of the pH effect on the colloidal stability of copper oxide nanoparticles showed that the sample was stable in the pH range of 6.8 to 11.98. A possible mechanism for the pH influence on the stability of copper oxide nanoparticles is described. The effect of the ionic strength of the solution on the stability of the CuO nanoparticles sol was also studied, and the results showed that Ca2+ ions had the greatest effect on the sample stability. IR spectroscopy showed that the interaction of CuO nanoparticles with gelatin occurred through the hydroxyl group. It was found that CuO nanoparticles stabilized with gelatin have a fungicidal activity at concentration equivalent 2.5 · 10−3 mol/L and as a material for food nanopackaging can provide an increase in the shelf life of products on the example of strawberries and tomatoes. We investigated the possibility of using methylcellulose films modified with CuO nanoparticles for packaging and storage of hard cheese “Holland”. The distribution of CuO nanoparticles in the methylcellulose film was uniform. We found that methylcellulose films modified with CuO nanoparticles inhibited the growth and development of QMAFAM, coliforms, yeast and mold in experimental cheese sa mples. Our research has shown that during the cheese storage in thermostat at 35 ± 1 °C for 7 days, CuO nanoparticles migrated to the product from the film. Nevertheless, it is worth noting that the maximum change in the concentration of copper in the experimental samples was only 0.12 µg/mg, which is not a toxic concentration. In general, the small value of migration of CuO nanoparticles confirms the high stability of the developed preparation. Our results indicated that the CuO nanoparticles stabilized with gelatin have a high potential for use in food packaging – both as an independent nanofilm and as part of other packaging materials.
Collapse
|
12
|
Duman Erbaş E, Gwokyalya R, Altuntaş H, Kutrup B. Screening the immunotoxicity of different food preservative agents on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Drug Chem Toxicol 2022:1-11. [PMID: 35758106 DOI: 10.1080/01480545.2022.2091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunotoxic effects of sodium benzoate (SB, E211), sodium nitrate (SNa, E251), and sodium nitrite (SNi, E250), a few of the most common food preservatives, on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae were investigated in this study. The last instar larvae were used for all experimental analyses. For this purpose, median lethal doses of SB, SNa, and SNi were applied to the larvae by the force-feeding method. We found that force-feeding G. mellonella larvae with SB, SNa, and SNi significantly reduced the larval total hemocyte counts, prohemocyte, and granulocyte ratios but increased plasmatocyte, spherulocyte, and oenocyte ratios, as well as the hemocyte mitotic indices and micronucleus frequency. The spreading ability of hemocytes and hemocyte-mediated immune responses were lower in the SB, SNa-, and SNi-treated larval groups compared to controls. Apoptotic indices were higher in all larval groups treated with food preservatives, but increments in necrotic indices were only significantly higher in SNi-treated larvae compared to controls. Our research shows that SB, SNa, and SNi have immunotoxic and cytotoxic potential on G. mellonella larvae. Thus, we suggest that G. mellonella larvae can be used as preliminary in vivo models to screen the immunotoxic effects of food preservative agents.
Collapse
Affiliation(s)
- Emine Duman Erbaş
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Bilal Kutrup
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|