1
|
Zhang G, Li Y, Chen D, Wu Z, Pan C, Zhang P, Zhao X, Tao B, Ding H, Meng C, Chen D, Liu W, Tang Z. The Role of ICP Monitoring in Minimally Invasive Surgery for the Management of Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:547-556. [PMID: 38157144 PMCID: PMC11976795 DOI: 10.1007/s12975-023-01219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Intracerebral hemorrhage (ICH) is the second major stroke type, with high incidence, high disability rate, and high mortality. At present, there is no effective and reliable treatment for ICH. As a result, most patients have a poor prognosis. Minimally invasive surgery (MIS) is the fastest treatment method to remove hematoma, which is characterized by less trauma and easy operation. Some studies have confirmed the safety of MIS, but there are still no reports showing that it can significantly improve the functional outcome of ICH patients. Intracranial pressure (ICP) monitoring is considered to be an important part of successful treatment in traumatic brain diseases. By monitoring ICP in real time, keeping stable ICP could help patients with craniocerebral injury get a good prognosis. In the course of MIS treatment of ICH patients, keeping ICP stable may also promote patient recovery. In this review, we will take ICP monitoring as the starting point for an in-depth discussion.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yunjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingwei Zhao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Bo Tao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Cai Meng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Diansheng Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Apparatus Co., Ltd., Beijing, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Kasprowicz M, Mataczyński C, Uryga A, Pelah AI, Schmidt E, Czosnyka M, Kazimierska A. Impact of age and mean intracranial pressure on the morphology of intracranial pressure waveform and its association with mortality in traumatic brain injury. Crit Care 2025; 29:78. [PMID: 39962578 PMCID: PMC11834513 DOI: 10.1186/s13054-025-05295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Morphological analysis of intracranial pressure (ICP) pulse waveforms provides indirect information on cerebrospinal compliance, which might be reduced by space-occupying lesions but also by intracranial hypertension and aging. This study investigates the impact of age and mean ICP on the shape and amplitude of ICP pulse waveform in traumatic brain injury (TBI). Additionally, it explores the association between morphological parameters and mortality after TBI. METHODS ICP recordings from 183 TBI patients (median age: 50 (30, 61) years) from the CENTER-TBI database were retrospectively analyzed. ICP morphology was assessed using the artificial intelligence-based pulse shape index (PSI) and peak-to-peak amplitude of ICP pulse waveform (AmpICP). The impact of mean ICP, age, and their interaction on PSI and AmpICP were estimated using factorial ANOVA. To account for influence of disturbance in the intracranial volume on AmpICP and PSI, a multiple regression analysis was performed using age, mean ICP, and the Rotterdam CT score as explanatory variables. The associations of AmpICP and PSI with six-month mortality were assessed using the area under the ROC curve (AUC). RESULTS Age had a predominant influence on PSI (p < 0.01), accounting for 33.1% of its variance, while mean ICP explained 6.6% (p < 0.01). Conversely, mean ICP primarily affected AmpICP (p < 0.01), explaining 22.8% of its variance, with age contributing 8.0% (p < 0.01). A combined effect of age and mean ICP on AmpICP (p = 0.01) explained 11.7% of its variance but did not influence PSI. After accounting for Rotterdam CT score, the results remained consistent, indicating that advanced age has the strongest impact on PSI (β = 0.342, p < 0.01) while elevated mean ICP has dominant influence on AmpICP (β = 0.522, p < 0.01). Both AmpICP and PSI were moderately associated with mortality (AUC: 0.76 and 0.71, respectively). CONCLUSIONS AmpICP and PSI capture distinct aspects of cerebrospinal compliance. PSI appears to reflect age-related stiffening of the cerebrovascular system, while AmpICP, influenced by mean ICP, indicates acute volume compensatory changes. Combined, they provide a more comprehensive assessment of cerebrospinal volume-pressure compensation. Both morphological metrics are associated with mortality after TBI. As cerebrospinal compliance declines with age, older TBI patients become more susceptible to uncontrolled rises in ICP, which can worsen their outcome.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Cyprian Mataczyński
- Department of Computer Engineering, Faculty of Information and Communication Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Uryga
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Adam I Pelah
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Eric Schmidt
- Department of Neurosurgery, University Hospital of Toulouse, Toulouse, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Agnieszka Kazimierska
- Neuroengineering Lab, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
3
|
Islam A, Sainbhi AS, Stein KY, Vakitbilir N, Gomez A, Silvaggio N, Bergmann T, Hayat M, Froese L, Zeiler FA. Characterization of RAP Signal Patterns, Temporal Relationships, and Artifact Profiles Derived from Intracranial Pressure Sensors in Acute Traumatic Neural Injury. SENSORS (BASEL, SWITZERLAND) 2025; 25:586. [PMID: 39860955 PMCID: PMC11769573 DOI: 10.3390/s25020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
GOAL Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP). RAP remains largely unexplored in cases of moderate to severe acute traumatic neural injury (also known as traumatic brain injury (TBI)). The goal of this work is to explore the general description of (a) RAP signal patterns and behaviors derived from ICP pressure transducers, (b) temporal statistical relationships, and (c) the characterization of the artifact profile. METHODS Different summary and statistical measurements were used to describe RAP's pattern and behaviors, along with performing sub-group analyses. The autoregressive integrated moving average (ARIMA) model was employed to outline the time-series structure of RAP across different temporal resolutions using the autoregressive (p-order) and moving average orders (q-order). After leveraging the time-series structure of RAP, similar methods were applied to ICP and AMP for comparison with RAP. Finally, key features were identified to distinguish artifacts in RAP. This might involve leveraging ICP/AMP signals and statistical structures. RESULTS The mean and time spent within the RAP threshold ranges ([0.4, 1], (0, 0.4), and [-1, 0]) indicate that RAP exhibited high positive values, suggesting an impaired compensatory reserve in TBI patients. The median optimal ARIMA model for each resolution and each signal was determined. Autocorrelative function (ACF) and partial ACF (PACF) plots of residuals verified the adequacy of these median optimal ARIMA models. The median of residuals indicates that ARIMA performed better with the higher-resolution data. To identify artifacts, (a) ICP q-order, AMP p-order, and RAP p-order and q-order, (b) residuals of ICP, AMP, and RAP, and (c) cross-correlation between residuals of RAP and AMP proved to be useful at the minute-by-minute resolution, whereas, for the 10-min-by-10-min data resolution, only the q-order of the optimal ARIMA model of ICP and AMP served as a distinguishing factor. CONCLUSIONS RAP signals derived from ICP pressure sensor technology displayed reproducible behaviors across this population of TBI patients. ARIMA modeling at the higher resolution provided comparatively strong accuracy, and key features were identified leveraging these models that could identify RAP artifacts. Further research is needed to enhance artifact management and broaden applicability across varied datasets.
Collapse
Affiliation(s)
- Abrar Islam
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
| | - Kevin Y. Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
- Undergraduate Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.G.); (M.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Noah Silvaggio
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tobias Bergmann
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
| | - Mansoor Hayat
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.G.); (M.H.)
| | - Logan Froese
- Department of Clinical Neurosciences, Karolinksa Institutet, 171 77 Stockholm, Sweden;
| | - Frederick A. Zeiler
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.S.S.); (K.Y.S.); (N.V.); (T.B.); (F.A.Z.)
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (A.G.); (M.H.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Clinical Neurosciences, Karolinksa Institutet, 171 77 Stockholm, Sweden;
- Pan Am Clinic Foundation, Winnipeg, MB R3M 3E4, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 1TN, UK
| |
Collapse
|
4
|
Islam A, Froese L, Bergmann T, Gomez A, Sainbhi AS, Vakitbilir N, Stein KY, Marquez I, Ibrahim Y, Zeiler FA. Continuous monitoring methods of cerebral compliance and compensatory reserve: a scoping review of human literature. Physiol Meas 2024; 45:06TR01. [PMID: 38776946 DOI: 10.1088/1361-6579/ad4f4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Objective.Continuous monitoring of cerebrospinal compliance (CC)/cerebrospinal compensatory reserve (CCR) is crucial for timely interventions and preventing more substantial deterioration in the context of acute neural injury, as it enables the early detection of abnormalities in intracranial pressure (ICP). However, to date, the literature on continuous CC/CCR monitoring is scattered and occasionally challenging to consolidate.Approach.We subsequently conducted a systematic scoping review of the human literature to highlight the available continuous CC/CCR monitoring methods.Main results.This systematic review incorporated a total number of 76 studies, covering diverse patient types and focusing on three primary continuous CC or CCR monitoring metrics and methods-Moving Pearson's correlation between ICP pulse amplitude waveform and ICP, referred to as RAP, the Spiegelberg Compliance Monitor, changes in cerebral blood flow velocity with respect to the alternation of ICP measured through transcranial doppler (TCD), changes in centroid metric, high frequency centroid (HFC) or higher harmonics centroid (HHC), and the P2/P1 ratio which are the distinct peaks of ICP pulse wave. The majority of the studies in this review encompassed RAP metric analysis (n= 43), followed by Spiegelberg Compliance Monitor (n= 11), TCD studies (n= 9), studies on the HFC/HHC (n= 5), and studies on the P2/P1 ratio studies (n= 6). These studies predominantly involved acute traumatic neural injury (i.e. Traumatic Brain Injury) patients and those with hydrocephalus. RAP is the most extensively studied of the five focused methods and exhibits diverse applications. However, most papers lack clarification on its clinical applicability, a circumstance that is similarly observed for the other methods.Significance.Future directions involve exploring RAP patterns and identifying characteristics and artifacts, investigating neuroimaging correlations with continuous CC/CCR and integrating machine learning, holding promise for simplifying CC/CCR determination. These approaches should aim to enhance the precision and accuracy of the metric, making it applicable in clinical practice.
Collapse
Affiliation(s)
- Abrar Islam
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Tobias Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Izabella Marquez
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Zhu J, Shan Y, Li Y, Wu X, Gao G. Predicting the Severity and Discharge Prognosis of Traumatic Brain Injury Based on Intracranial Pressure Data Using Machine Learning Algorithms. World Neurosurg 2024; 185:e1348-e1360. [PMID: 38519020 DOI: 10.1016/j.wneu.2024.03.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE This study aimed to explore the potential of employing machine learning algorithms based on intracranial pressure (ICP), ICP-derived parameters, and their complexity to predict the severity and short-term prognosis of traumatic brain injury (TBI). METHODS A single-center prospectively collected cohort of neurosurgical intensive care unit admissions was analyzed. We extracted ICP-related data within the first 6 hours and processed them using complex algorithms. To indicate TBI severity and short-term prognosis, Glasgow Coma Scale score on the first postoperative day and Glasgow Outcome Scale-Extended score at discharge were used as binary outcome variables. A univariate logistic regression model was developed to predict TBI severity using only mean ICP values. Subsequently, 3 multivariate Random Forest (RF) models were constructed using different combinations of mean and complexity metrics of ICP-related data. To avoid overfitting, five-fold cross-validations were performed. Finally, the best-performing multivariate RF model was used to predict patients' discharge Glasgow Outcome Scale-Extended score. RESULTS The logistic regression model exhibited limited predictive ability with an area under the curve (AUC) of 0.558. Among multivariate models, the RF model, combining the mean and complexity metrics of ICP-related data, achieved the most robust ability with an AUC of 0.815. Finally, in terms of predicting discharge Glasgow Outcome Scale-Extended score, this model had a consistent performance with an AUC of 0.822. Cross-validation analysis confirmed the performance. CONCLUSIONS This study demonstrates the clinical utility of the RF model, which integrates the mean and complexity metrics of ICP data, in accurately predicting the TBI severity and short-term prognosis.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchi Shan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyi Gao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Boraschi A, Hafner M, Spiegelberg A, Kurtcuoglu V. Influence of age on the relation between body position and noninvasively acquired intracranial pulse waves. Sci Rep 2024; 14:5493. [PMID: 38448614 PMCID: PMC10918064 DOI: 10.1038/s41598-024-55860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The capacitive measurement of the head's dielectric properties has been recently proposed as a noninvasive method for deriving surrogates of craniospinal compliance (CC), a parameter used in the evaluation of space-occupying neurological disorders. With the higher prevalence of such disorders in the older compared to the younger population, data on the head's dielectric properties of older healthy individuals would be of particularly high value before assessing pathologic changes. However, so far only measurements on young volunteers (< 30 years) were reported. In the present study, we have investigated the capacitively obtained electric signal known as W in older healthy individuals. Thirteen healthy subjects aged > 60 years were included in the study. W was acquired in the resting state (supine horizontal position), and during head-up and head-down tilting. AMP, the peak-to-valley amplitude of W related to cardiac action, was extracted from W. AMP was higher in this older cohort compared to the previously investigated younger one (0°: 5965 ± 1677 arbitrary units (au)). During head-up tilting, AMP decreased (+ 60°: 4446 ± 1620 au, P < 0.001), whereas it increased during head-down tilting (- 30°: 7600 ± 2123 au, P < 0.001), as also observed in the younger cohort. Our observation that AMP, a metric potentially reflective of CC, is higher in the older compared to the younger cohort aligns with the expected decrease of CC with age. Furthermore, the robustness of AMP is reinforced by the consistent relative changes observed during tilt testing in both cohorts.
Collapse
Affiliation(s)
- Andrea Boraschi
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Hafner
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Andreas Spiegelberg
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Kazimierska A, Manet R, Vallet A, Schmidt E, Czosnyka Z, Czosnyka M, Kasprowicz M. Analysis of intracranial pressure pulse waveform in studies on cerebrospinal compliance: a narrative review. Physiol Meas 2023; 44:10TR01. [PMID: 37793420 DOI: 10.1088/1361-6579/ad0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Continuous monitoring of mean intracranial pressure (ICP) has been an essential part of neurocritical care for more than half a century. Cerebrospinal pressure-volume compensation, i.e. the ability of the cerebrospinal system to buffer changes in volume without substantial increases in ICP, is considered an important factor in preventing adverse effects on the patient's condition that are associated with ICP elevation. However, existing assessment methods are poorly suited to the management of brain injured patients as they require external manipulation of intracranial volume. In the 1980s, studies suggested that spontaneous short-term variations in the ICP signal over a single cardiac cycle, called the ICP pulse waveform, may provide information on cerebrospinal compensatory reserve. In this review we discuss the approaches that have been proposed so far to derive this information, from pulse amplitude estimation and spectral techniques to most recent advances in morphological analysis based on artificial intelligence solutions. Each method is presented with focus on its clinical significance and the potential for application in standard clinical practice. Finally, we highlight the missing links that need to be addressed in future studies in order for ICP pulse waveform analysis to achieve widespread use in the neurocritical care setting.
Collapse
Affiliation(s)
- Agnieszka Kazimierska
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Romain Manet
- Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, University Hospital of Lyon, Lyon, France
| | - Alexandra Vallet
- Department of Mathematics, University of Oslo, Oslo, Norway
- INSERM U1059 Sainbiose, Ecole des Mines Saint-Étienne, Saint-Étienne, France
| | - Eric Schmidt
- Department of Neurosurgery, University Hospital of Toulouse, Toulouse, France
| | - Zofia Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Brain Physics Laboratory, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
8
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. A position- and time-dependent pressure profile to model viscoelastic mechanical behavior of the brain tissue due to tumor growth. Comput Methods Biomech Biomed Engin 2023; 26:660-672. [PMID: 35638726 PMCID: PMC9708950 DOI: 10.1080/10255842.2022.2082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study proposed a computational framework to calculate the resultant position- and time-dependent pressure profile on the brain tissue due to tumor growth. A finite element (FE) patch of the brain tissue was constructed and an inverse dynamic FE-optimization algorithm was used to calculate its viscoelastic mechanical properties under compressive uniaxial loading. Two patient-specific post-tumor resection FE models were input to the FE-optimization algorithm to calculate the optimized 3rd-order position-dependent and normal distribution time-dependent pressure profile parameters. The optimized viscoelastic material properties, the most suitable simulation time, and the optimized 3rd-order position- and -time-dependent pressure profiles were calculated.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Zhu J, Shan Y, Li Y, Liu J, Wu X, Gao G. Spindle wave in intracranial pressure signal analysis for patients with traumatic brain injury: A single-center prospective observational cohort study. Front Physiol 2023; 13:1043328. [PMID: 36699681 PMCID: PMC9868554 DOI: 10.3389/fphys.2022.1043328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Objective: Intracranial pressure (ICP) monitoring is an integral part of the multimodality monitoring system in the neural intensive care unit. The present study aimed to describe the morphology of the spindle wave (a shuttle shape with wide middle and narrow ends) during ICP signal monitoring in TBI patients and to investigate its clinical significance. Methods: Sixty patients who received ICP sensor placement and admitted to the neurosurgical intensive care unit between January 2021 and September 2021 were prospectively enrolled. The patient's Glasgow Coma Scale (GCS) score on admission and at discharge and length of stay in hospital were recorded. ICP monitoring data were monitored continuously. The primary endpoint was 6-month Glasgow Outcome Scale-Extended (GOSE) score. Patients with ICP spindle waves were assigned to the spindle wave group and those without were assigned to the control group. The correlation between the spindle wave and 6-month GOSE was analyzed. Meanwhile, the mean ICP and two ICP waveform-derived indices, ICP pulse amplitude (AMP) and correlation coefficient between AMP and ICP (RAP) were comparatively analyzed. Results: There were no statistically significant differences between groups in terms of age (p = 0.89), gender composition (p = 0.62), and GCS score on admission (p = 0.73). Patients with spindle waves tended to have a higher GCS score at discharge (12.75 vs. 10.90, p = 0.01), a higher increment in GCS score during hospitalization (ΔGCS, the difference between discharge GCS score and admission GCS score) (4.95 vs. 2.80, p = 0.01), and a better 6-month GOSE score (4.90 vs. 3.68, p = 0.04) compared with the control group. And the total duration of the spindle wave was positively correlated with 6-month GOSE (r = 0.62, p = 0.004). Furthermore, the parameters evaluated during spindle waves, including mean ICP, AMP, and RAP, demonstrated significant decreases compared with the parameters before the occurrence of the spindle wave (all p < 0.025). Conclusion: The ICP spindle wave was associated with a better prognosis in TBI patients. Physiological parameters such as ICP, AMP, and RAP were significantly improved when spindle waves occurred, which may explain the enhancement of clinical outcomes. Further studies are needed to investigate the pathophysiological mechanisms behind this wave.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchi Shan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihua Li
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Liu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Xiang Wu, ; Guoyi Gao,
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Head Trauma Institute, Shanghai, China,*Correspondence: Xiang Wu, ; Guoyi Gao,
| |
Collapse
|
10
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. Inverse dynamic finite element-optimization modeling of the brain tumor mass-effect using a variable pressure boundary. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106476. [PMID: 34715517 DOI: 10.1016/j.cmpb.2021.106476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Statistical atlases of brain structure can potentially contribute in the surgical and radiotherapeutic treatment planning for the brain tumor patients. However, the current brain image-registration methods lack of accuracy when it comes to the mass-effect caused by tumor growth. Numerical simulations, such as finite element method (FEM), allow us to calculate the resultant pressure and deformation in the brain tissue due to tumor growth, and to predict the mass-effect. To date, however, the pressure boundary in the brain tissue due to tumor growth has been simply presented as a constant profile throughout the entire tumor outer surface that resulted in discrepancy between the patient imaging data and brain atlases. METHODS In this study, we employed a fully-coupled inverse dynamic FE-optimization method to estimate the resultant variable pressure boundary due to tumor resection surgery. To do that, magnetic resonance imaging data of two patients' pre- and post-tumor resection surgery were registered, segmented, volume-meshed, and prepared for fully-coupled inverse dynamic FE-optimization simulations. Two different pressure boundaries were defined on the brain cavity after tumor resection including: a) a constant pressure boundary and b) a variable pressure boundary. The inverse FE-optimization algorithm was used to find the optimum constant and variable pressure boundaries that result in the least distance between the surface-nodes of the post-surgery brain cavity and pre-surgery tumor. RESULTS The results revealed that a variable pressure boundary causes a considerably lower mean percentage error compared to a constant pressure one; hence, it can more effectively address the realistic boundary in tumor resection surgery and predict the mass-effect. CONCLUSIONS The proposed variable pressure boundary can be a robust tool that allows batch processing to register the brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. This approach is also computationally inexpensive and can be coupled to any FE software to run. The findings of this study have implications for not only predicting the accurate pressure boundary and mass-effect before tumor resection surgery, but also for predicting some clinical symptoms of brain cancers and presenting useful tools for APPLICATIONs in image-guided neurosurgery.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
12
|
Svedung Wettervik T, Howells T, Hånell A, Ronne-Engström E, Lewén A, Enblad P. Low intracranial pressure variability is associated with delayed cerebral ischemia and unfavorable outcome in aneurysmal subarachnoid hemorrhage. J Clin Monit Comput 2021; 36:569-578. [PMID: 33728586 PMCID: PMC9123038 DOI: 10.1007/s10877-021-00688-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
Purpose High intracranial pressure variability (ICPV) is associated with favorable outcome in traumatic brain injury, by mechanisms likely involving better cerebral blood flow regulation. However, less is known about ICPV in aneurysmal subarachnoid hemorrhage (aSAH). In this study, we investigated the explanatory variables for ICPV in aSAH and its association with delayed cerebral ischemia (DCI) and clinical outcome. Methods
In this retrospective study, 242 aSAH patients, treated at the neurointensive care, Uppsala, Sweden, 2008–2018, with ICP monitoring the first ten days post-ictus were included. ICPV was evaluated on three time scales: (1) ICPV-1 m—ICP slow wave amplitude of wavelengths between 55 and 15 s, (2) ICPV-30 m—the deviation from the mean ICP averaged over 30 min, and (3) ICPV-4 h—the deviation from the mean ICP averaged over 4 h. The ICPV measures were analyzed in the early phase (day 1–3), in the early vasospasm phase (day 4–6.5), and the late vasospasm phase (day 6.5–10). Results High ICPV was associated with younger age, reduced intracranial pressure/volume reserve (high RAP), and high blood pressure variability in multiple linear regression analyses for all ICPV measures. DCI was associated with reduced ICPV in both vasospasm phases. High ICPV-1 m in the post-ictal early phase and the early vasospasm phase predicted favorable outcome in multiple logistic regressions, whereas ICPV-30 m and ICPV-4 h in the late vasospasm phase had a similar association. Conclusions Higher ICPV may reflect more optimal cerebral vessel activity, as reduced values are associated with an increased risk of DCI and unfavorable outcome after aSAH.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Hånell
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
13
|
Velle F, Lewén A, Howells T, Nilsson P, Enblad P. Temporal effects of barbiturate coma on intracranial pressure and compensatory reserve in children with traumatic brain injury. Acta Neurochir (Wien) 2021; 163:489-498. [PMID: 33341913 PMCID: PMC7815615 DOI: 10.1007/s00701-020-04677-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
Background The aim was to study the effects of barbiturate coma treatment (BCT) on intracranial pressure (ICP) and intracranial compensatory reserve (RAP index) in children (< 17 years of age) with traumatic brain injury (TBI) and refractory intracranial hypertension (RICH). Methods High-resolution monitoring data were used to study the effects of BCT on ICP, mean arterial pressure (MAP), cerebral perfusion pressure (CPP), and RAP index. Four half hour long periods were studied: before bolus injection and at 5, 10, and 24 hours thereafter, respectively, and a fifth tapering period with S-thiopental between < 100 and < 30 μmol/L. S-thiopental concentrations and administered doses were registered. Results Seventeen children treated with BCT 2007–2017 with high-resolution data were included; median age 15 (range 6–17) and median Glasgow coma score 7 (range 3–8). Median time from trauma to start of BCT was 44.5 h (range 2.5–197.5) and from start to stop 99.0 h (range 21.0–329.0). Median ICP was 22 (IQR 20–25) in the half hour period before onset of BCT and 16 (IQR 11–20) in the half hour period 5 h later (p = 0.011). The corresponding figures for CPP were 65 (IQR 62–71) and 63 (57–71) (p > 0.05). The RAP index was in the half hour period before onset of BCT 0.6 (IQR 0.1–0.7), in the half hour period 5 h later 0.3 (IQR 0.1–0.7) (p = 0.331), and in the whole BCT period 0.3 (IQR 0.2–0.4) (p = 0.004). Eighty-two percent (14/17) had favorable outcome (good recovery = 8 patients and moderate disability = 6 patients). Conclusion BCT significantly reduced ICP and RAP index with preserved CPP. BCT should be considered in case of RICH.
Collapse
Affiliation(s)
- Fartein Velle
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE 751 85, Uppsala, Sweden.
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Pelle Nilsson
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE 751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, SE 751 85, Uppsala, Sweden
| |
Collapse
|
14
|
Froese L, Dian J, Batson C, Gomez A, Unger B, Zeiler FA. The impact of hypertonic saline on cerebrovascular reactivity and compensatory reserve in traumatic brain injury: an exploratory analysis. Acta Neurochir (Wien) 2020; 162:2683-2693. [PMID: 32959342 PMCID: PMC7505542 DOI: 10.1007/s00701-020-04579-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023]
Abstract
Background Intravenous hypertonic saline is utilized commonly in critical care for treatment of acute or refractory elevations of intracranial pressure (ICP) in traumatic brain injury (TBI) patients. Though there is a clear understanding of the general physiological effects of a hypertonic saline solution over long periods of time, smaller epoch effects of hypertonic saline (HTS) have not been thoroughly analyzed. The aim of this study was to perform a direct evaluation of the high-frequency response of HTS on the cerebrovascular physiological responses in TBI. Methods We retrospectively reviewed our prospectively maintained adult TBI database for those with archived high-frequency cerebral physiology and available HTS treatment information. We evaluated different epochs of physiology around HTS bolus dosing, comparing pre- with post-HTS. We assessed for changes in slow fluctuations in ICP, pulse amplitude of ICP (AMP), cerebral perfusion pressure (CPP), mean arterial pressure (MAP), cerebrovascular reactivity (as measured through pressure reactivity index (PRx)), and cerebral compensatory reserve (correlation (R) between AMP (A) and ICP (P)). Comparisons of mean measures and percentage time above clinically relevant thresholds for the physiological parameters were compared pre- and post-HTS using descriptive statistics and Mann-Whitney U testing. We assessed for subgroups of physiological responses using latent profile analysis (LPA). Results Fifteen patients underwent 69 distinct bolus infusions of hypertonic saline. Apart from the well-documented decrease in ICP, there was also a reduction in AMP. The analysis of cerebrovascular reactivity response to HTS solution had two main effects. For patients with grossly impaired cerebrovascular reactivity pre-HTS (PRx > + 0.30), HTS bolus led to improved reactivity. However, for those with intact cerebrovascular reactivity pre-HTS (PRx < 0), HTS bolus demonstrated a trend towards more impaired reactivity. This indicates that HTS has different impacts, dependent on pre-bolus cerebrovascular status. There was no significant change in metrics of cerebral compensatory reserve. LPA failed to demonstrate any subgroups of physiological responses to HTS administration. Conclusions The direct decrease in ICP and AMP confirms that a bolus dose of a HTS solution is an effective therapeutic agent for intracranial hypertension. However, in patients with intact autoregulation, hypertonic saline may impair cerebral hemodynamics. These findings regarding cerebrovascular reactivity remain preliminary and require further investigation. Electronic supplementary material The online version of this article (10.1007/s00701-020-04579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Dai H, Jia X, Pahren L, Lee J, Foreman B. Intracranial Pressure Monitoring Signals After Traumatic Brain Injury: A Narrative Overview and Conceptual Data Science Framework. Front Neurol 2020; 11:959. [PMID: 33013638 PMCID: PMC7496370 DOI: 10.3389/fneur.2020.00959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/24/2020] [Indexed: 12/29/2022] Open
Abstract
Continuous intracranial pressure (ICP) monitoring is a cornerstone of neurocritical care after severe brain injuries such as traumatic brain injury and acts as a biomarker of secondary brain injury. With the rapid development of artificial intelligent (AI) approaches to data analysis, the acquisition, storage, real-time analysis, and interpretation of physiological signal data can bring insights to the field of neurocritical care bioinformatics. We review the existing literature on the quantification and analysis of the ICP waveform and present an integrated framework to incorporate signal processing tools, advanced statistical methods, and machine learning techniques in order to comprehensively understand the ICP signal and its clinical importance. Our goals were to identify the strengths and pitfalls of existing methods for data cleaning, information extraction, and application. In particular, we describe the use of ICP signal analytics to detect intracranial hypertension and to predict both short-term intracranial hypertension and long-term clinical outcome. We provide a well-organized roadmap for future researchers based on existing literature and a computational approach to clinically-relevant biomedical signal data.
Collapse
Affiliation(s)
- Honghao Dai
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Xiaodong Jia
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Laura Pahren
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Jay Lee
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Sciences, Cincinnati, OH, United States
- NSF I/UCRC Center for Intelligent Maintenance Systems, Cincinnati, OH, United States
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
16
|
Pan Y, Xue Y, Zhao P, Ding J, Ren Z, Xu J. Significance of ICP-related parameters for the treatment and outcome of severe traumatic brain injury. J Int Med Res 2020; 48:300060520941291. [PMID: 32854551 PMCID: PMC7459188 DOI: 10.1177/0300060520941291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective To analyze the significance of intracranial pressure (ICP)-related parameters
on outcome in patients with severe traumatic brain injury. The ICP-related
parameters included ICP, ICP dose (DICP), regression of the correlation
coefficient between amplitude and pressure (RAP), pressure reactivity index
(PRx), and cerebral perfusion pressure (CPP). Methods A retrospective analysis was performed using clinical information from 29
patients with severe traumatic brain injury who were admitted to the
Department of Neurosurgery from January 2018 to January 2019. All patients
underwent ICP probe implantation after admission. Patients were followed up
for 6 months after discharge, and were categorized into either the favorable
or unfavorable outcome group based on their Glasgow Outcome Scale score. The
differences in ICP, DICP, RAP, PRx, and CPP between the two groups were
analyzed for their effects on outcome. Results The average ICP, DICP, PRx, and RAP values in patients with favorable
outcomes were significantly lower than in patients with unfavorable
outcomes, while CPP values were significantly higher in the favorable
outcome group. Conclusion Average ICP, DICP, PRx, RAP, and CPP values may indicate disease status and
relate to patient outcomes. It is important to use multiple parameters to
predict patients’ disease severity and prognosis.
Collapse
Affiliation(s)
- Yuchun Pan
- Department of Neurosurgery, Lishui People's Hospital, Lishui Region of Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuanfeng Xue
- Department of Neurosurgery, Lishui People's Hospital, Lishui Region of Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Penglai Zhao
- Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junhong Ding
- Department of Neurosurgery, Lishui People's Hospital, Lishui Region of Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Zhiwen Ren
- Department of Neurosurgery, Lishui People's Hospital, Lishui Region of Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Jian Xu
- Department of Neurosurgery, Lishui People's Hospital, Lishui Region of Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
17
|
Heldt T, Zoerle T, Teichmann D, Stocchetti N. Intracranial Pressure and Intracranial Elastance Monitoring in Neurocritical Care. Annu Rev Biomed Eng 2020; 21:523-549. [PMID: 31167100 DOI: 10.1146/annurev-bioeng-060418-052257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with acute brain injuries tend to be physiologically unstable and at risk of rapid and potentially life-threatening decompensation due to shifts in intracranial compartment volumes and consequent intracranial hypertension. Invasive intracranial pressure (ICP) monitoring therefore remains a cornerstone of modern neurocritical care, despite the attendant risks of infection and damage to brain tissue arising from the surgical placement of a catheter or pressure transducer into the cerebrospinal fluid or brain tissue compartments. In addition to ICP monitoring, tracking of the intracranial capacity to buffer shifts in compartment volumes would help in the assessment of patient state, inform clinical decision making, and guide therapeutic interventions. We review the anatomy, physiology, and current technology relevant to clinical management of patients with acute brain injury and outline unmet clinical needs to advance patient monitoring in neurocritical care.
Collapse
Affiliation(s)
- Thomas Heldt
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; ,
| | - Daniel Teichmann
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; , .,Department of Physiopathology and Transplant Medicine, University of Milan, 20122 Milan, Italy
| |
Collapse
|
18
|
Harrois A, Anstey JR, Deane AM, Craig S, Udy AA, McNamara R, Bellomo R. Effects of Routine Position Changes and Tracheal Suctioning on Intracranial Pressure in Traumatic Brain Injury Patients. J Neurotrauma 2020; 37:2227-2233. [PMID: 32403976 DOI: 10.1089/neu.2019.6873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patient position change and tracheal suctioning are routine interventions in mechanically ventilated traumatic brain injury (TBI) patients. We sought to better understand the impact of these interventions on intracranial pressure (ICP) and cerebral hemodynamics. We conducted a prospective study in TBI patients requiring ICP monitoring. The timing of position changes and suctioning episodes were recorded with concurrent blood pressure and ICP measurements. We collected data on 460 patient position changes and 204 suctioning episodes over 2404 h in 18 ventilated patients (mean age 34 [13] years, median Glasgow Coma Score 4 [3-7]). We recorded 24 (20-31) positioning and 11 (6-18) suctioning episodes per patient, with 54% and 39% of position changes associated with ICP ≥22 mm Hg and cerebral perfusion pressure (CPP) <60 mm Hg, respectively, and 22% and 27% of suctioning episodes associated with an ICP ≥22 mm Hg and CPP <60 mm Hg. The median change in ICP was 11 (6-16) mm Hg after position changes and 3 (1-9) mm Hg after suctioning. Reduction in CPP to <60 mm Hg lasted ≥10 min in 17% of positioning and 11% of suctioning episodes. The baseline ICP and its amplitude were both predictive of a rise in ICP ≥22 mm Hg after positioning and suctioning episodes, whereas cerebral autoregulation was not. Baseline CPP was predictive of a decrease in CPP <60 mm Hg after both interventions. Increases in ICP and reductions in CPP are common following patient positioning and tracheal suctioning episodes. Frequently, these changes are substantial and sustained.
Collapse
Affiliation(s)
- Anatole Harrois
- Intensive Care Unit, Level 5, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Department of Anesthesia and Surgical Intensive Care, Paris Sud University, Orsay, France
| | - James R Anstey
- Intensive Care Unit, Level 5, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Adam M Deane
- Intensive Care Unit, Level 5, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Center for Integrated Critical Care, University of Melbourne, Melbourne, Victoria, Australia
| | - Sally Craig
- Intensive Care Unit, Level 5, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Center, Monash University, Melbourne, Victoria, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,Intensive Care Unit, the Alfred Hospital, Melbourne, Victoria, Australia
| | - Robert McNamara
- Department of Intensive Care Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Rinaldo Bellomo
- Intensive Care Unit, Level 5, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Center for Integrated Critical Care, University of Melbourne, Melbourne, Victoria, Australia.,Australian and New Zealand Intensive Care Research Center, Monash University, Melbourne, Victoria, Australia.,Department of Intensive Care, Austin Health, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Evensen KB, Eide PK. Measuring intracranial pressure by invasive, less invasive or non-invasive means: limitations and avenues for improvement. Fluids Barriers CNS 2020; 17:34. [PMID: 32375853 PMCID: PMC7201553 DOI: 10.1186/s12987-020-00195-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022] Open
Abstract
Sixty years have passed since neurosurgeon Nils Lundberg presented his thesis about intracranial pressure (ICP) monitoring, which represents a milestone for its clinical introduction. Monitoring of ICP has since become a clinical routine worldwide, and today represents a cornerstone in surveillance of patients with acute brain injury or disease, and a diagnostic of individuals with chronic neurological disease. There is, however, controversy regarding indications, clinical usefulness and the clinical role of the various ICP scores. In this paper, we critically review limitations and weaknesses with the current ICP measurement approaches for invasive, less invasive and non-invasive ICP monitoring. While risk related to the invasiveness of ICP monitoring is extensively covered in the literature, we highlight other limitations in current ICP measurement technologies, including limited ICP source signal quality control, shifts and drifts in zero pressure reference level, affecting mean ICP scores and mean ICP-derived indices. Control of the quality of the ICP source signal is particularly important for non-invasive and less invasive ICP measurements. We conclude that we need more focus on mitigation of the current limitations of today's ICP modalities if we are to improve the clinical utility of ICP monitoring.
Collapse
Affiliation(s)
- Karen Brastad Evensen
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
20
|
Svedung Wettervik T, Howells T, Enblad P, Lewén A. Intracranial pressure variability: relation to clinical outcome, intracranial pressure-volume index, cerebrovascular reactivity and blood pressure variability. J Clin Monit Comput 2019; 34:733-741. [PMID: 31538266 PMCID: PMC7367899 DOI: 10.1007/s10877-019-00387-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/10/2019] [Indexed: 02/03/2023]
Abstract
It was recently found in traumatic brain injury (TBI) that ICP variability (ICPV) predicted favorable outcome. We hypothesized that ICPV may depend on intracranial compliance, unstable blood pressure and cerebral vasomotion. In this study, we aimed to further investigate the explanatory variables for ICPV and its relation to outcome. Data from 362 TBI patients were retrospectively analyzed day 2 to 5 post-injury. ICPV was evaluated in three ways. First, variability in the sub-minute time interval (similar to B waves) was calculated as the amplitude of the ICP slow waves using a bandpass filter, limiting the analysis to oscillations of 55 to 15 s (ICP AMP 55-15). The second and third ICPV measures were calculated as the deviation from the mean ICP averaged over 30 min (ICPV-30m) and 4 h (ICPV-4h), respectively. All ICPV measures were associated with a reduced intracranial pressure/volume state (high ICP and RAP) and high blood pressure variability in multiple linear regression analyses. Higher ICPV was associated with better pressure reactivity in the univariate, but not the multiple analyses. All ICPV measures were associated with favorable outcome in univariate analysis, but only ICP AMP 55-15 and ICPV-30m did so in the multiple logistic regression analysis. Higher ICPV can be explained by a reduced intracranial compliance and variations in cerebral blood volume due to the vessel response to unstable blood pressure. As ICP AMP 55-15 and ICPV-30m independently predicted favorable outcome, it may represent general cerebral vessel activity, associated with better cerebral blood flow regulation and less secondary insults.
Collapse
Affiliation(s)
| | - Timothy Howells
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Per Enblad
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Anders Lewén
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
21
|
Zeiler FA, Kim DJ, Cabeleira M, Calviello L, Smielewski P, Czosnyka M. Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury. Acta Neurochir (Wien) 2018; 160:2277-2287. [PMID: 30251196 PMCID: PMC6267721 DOI: 10.1007/s00701-018-3681-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Background Continuous assessment of cerebral compensatory reserve is possible using the moving correlation between pulse amplitude of intra-cranial pressure (AMP) and intra-cranial pressure (ICP), called RAP. Little is known about the behavior and associations of this index in adult traumatic brain injury (TBI). The goal of this study is to evaluate the association between admission cerebral imaging findings and RAP over the course of the acute intensive care unit stay. Methods We retrospectively reviewed 358 adult TBI patients admitted to the Addenbrooke’s Hospital, University of Cambridge, from March 2005 to December 2016. Only non-craniectomy patients were studied. Using archived high frequency physiologic signals, RAP was derived and analyzed over the first 48 h and first 10 days of recording in each patient, using grand mean, percentage of time above various thresholds, and integrated area under the curve (AUC) of RAP over time. Associations between these values and admission computed tomography (CT) injury characteristics were evaluated. Results The integrated AUC, based on various thresholds of RAP, was statistically associated with admission CT markers of diffuse TBI and cerebral edema. Admission CT findings of cortical gyral effacement, lateral ventricle compression, diffuse cortical subarachnoid hemorrhage (SAH), thickness of cortical SAH, presence of bilateral contusions, and subcortical diffuse axonal injury (DAI) were all associated with AUC of RAP over time. Joncheere-Terpstra testing indicated a statistically significant increase in mean RAP AUC across ordinal categories of the abovementioned associated CT findings. Conclusions RAP is associated with cerebral CT injury patterns of diffuse injury and edema, providing some confirmation of its potential measurement of cerebral compensatory reserve in TBI. Electronic supplementary material The online version of this article (10.1007/s00701-018-3681-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Section of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Clinician Investigator Program, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Canada
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Manuel Cabeleira
- Section of Brain Physics, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Leanne Calviello
- Section of Brain Physics, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Peter Smielewski
- Section of Brain Physics, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Marek Czosnyka
- Section of Brain Physics, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0QQ UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
22
|
Enblad P. Continuous monitoring of intracranial compliance in neurointensive care (Editorial by invitation). Acta Neurochir (Wien) 2018; 160:2289-2290. [PMID: 30334098 DOI: 10.1007/s00701-018-3682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Per Enblad
- Department of Neuroscience/Neurosurgery, Uppsala University Hospital, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
23
|
Faltermeier R, Proescholdt MA, Wolf S, Bele S, Brawanski A. A Patient-Independent Significance Test by Means of False-Positive Rates in Selected Correlation Analysis of Brain Multimodal Monitoring Data. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:6821893. [PMID: 30159004 PMCID: PMC6109537 DOI: 10.1155/2018/6821893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022]
Abstract
Recently, we introduced a mathematical toolkit called selected correlation analysis (sca) that reliably detects negative and positive correlations between arterial blood pressure (ABP) and intracranial pressure (ICP) data, recorded during multimodal monitoring, in a time-resolved way. As has been shown with the aid of a mathematical model of cerebral perfusion, such correlations reflect impaired autoregulation and reduced intracranial compliance in patients with critical neurological diseases. Sca calculates a Fourier transform-based index called selected correlation (sc) that reflects the strength of correlation between the input data and simultaneously an index called mean Hilbert phase difference (mhpd) that reflects the phasing between the data. To reliably detect pathophysiological conditions during multimodal monitoring, some thresholds for the abovementioned indexes sc and mhpd have to be established that assign predefined significance levels to that thresholds. In this paper, we will present a method that determines the rate of false positives for fixed pairs of thresholds (lsc, lmhpd). We calculate these error rates as a function of the predefined thresholds for each individual out of a patient cohort of 52 patients in a retrospective way. Based on the deviation of the individual error rates, we subsequently determine a globally valid upper limit of the error rate by calculating the predictive interval. From this predictive interval, we deduce a globally valid significance level for appropriate pairs of thresholds that allows the application of sca to every future patient in a prospective, bedside fashion.
Collapse
Affiliation(s)
- Rupert Faltermeier
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Stefan Wolf
- Department of Neurosurgery, University Hospital Charite, Berlin, Germany
| | - Sylvia Bele
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Brawanski
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
24
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
25
|
Steed TC, Treiber JM, Brandel MG, Patel KS, Dale AM, Carter BS, Chen CC. Quantification of glioblastoma mass effect by lateral ventricle displacement. Sci Rep 2018; 8:2827. [PMID: 29434275 PMCID: PMC5809591 DOI: 10.1038/s41598-018-21147-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/26/2018] [Indexed: 11/08/2022] Open
Abstract
Mass effect has demonstrated prognostic significance for glioblastoma, but is poorly quantified. Here we define and characterize a novel neuroimaging parameter, lateral ventricle displacement (LVd), which quantifies mass effect in glioblastoma patients. LVd is defined as the magnitude of displacement from the center of mass of the lateral ventricle volume in glioblastoma patients relative to that a normal reference brain. Pre-operative MR images from 214 glioblastoma patients from The Cancer Imaging Archive (TCIA) were segmented using iterative probabilistic voxel labeling (IPVL). LVd, contrast enhancing volumes (CEV) and FLAIR hyper-intensity volumes (FHV) were determined. Associations with patient survival and tumor genomics were investigated using data from The Cancer Genome Atlas (TCGA). Glioblastoma patients had significantly higher LVd relative to patients without brain tumors. The variance of LVd was not explained by tumor volume, as defined by CEV or FLAIR. LVd was robustly associated with glioblastoma survival in Cox models which accounted for both age and Karnofsky's Performance Scale (KPS) (p = 0.006). Glioblastomas with higher LVd demonstrated increased expression of genes associated with tumor proliferation and decreased expression of genes associated with tumor invasion. Our results suggest LVd is a quantitative measure of glioblastoma mass effect and a prognostic imaging biomarker.
Collapse
Affiliation(s)
- Tyler C Steed
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Jeffrey M Treiber
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Michael G Brandel
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Anders M Dale
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
26
|
Harary M, Dolmans RGF, Gormley WB. Intracranial Pressure Monitoring-Review and Avenues for Development. SENSORS (BASEL, SWITZERLAND) 2018; 18:E465. [PMID: 29401746 PMCID: PMC5855101 DOI: 10.3390/s18020465] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/27/2022]
Abstract
Intracranial pressure (ICP) monitoring is a staple of neurocritical care. The most commonly used current methods of monitoring in the acute setting include fluid-based systems, implantable transducers and Doppler ultrasonography. It is well established that management of elevated ICP is critical for clinical outcomes. However, numerous studies show that current methods of ICP monitoring cannot reliably define the limit of the brain's intrinsic compensatory capacity to manage increases in pressure, which would allow for proactive ICP management. Current work in the field hopes to address this gap by harnessing live-streaming ICP pressure-wave data and a multimodal integration with other physiologic measures. Additionally, there is continued development of non-invasive ICP monitoring methods for use in specific clinical scenarios.
Collapse
Affiliation(s)
- Maya Harary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Rianne G F Dolmans
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Department of Neurosurgery, University Medical Center, 3584 CS Utrecht, The Netherlands.
| | - William B Gormley
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Wu X, Gao G, Feng J, Mao Q, Jiang J. A Detailed Protocol for Physiological Parameters Acquisition and Analysis in Neurosurgical Critical Patients. J Vis Exp 2017. [PMID: 29155778 DOI: 10.3791/56388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Intracranial pressure (ICP) monitoring is now widely used in neurosurgical critical patients. Besides mean ICP value, the ICP derived parameters such as ICP waveform, amplitude of pulse (AMP), the correlation of ICP amplitude and ICP mean (RAP), pressure reactivity index (PRx), ICP and arterial blood pressure (ABP) wave amplitude correlation (IAAC), and so on, can reflect intracranial status, predict prognosis, and can also be used as guidance of proper treatment. However, most of the clinicians focus only on the mean ICP value while ignoring these parameters because of the limitations of the current devices. We have recently developed a multimodality monitoring system to address these drawbacks. This portable, user-friendly system will use a data collecting and storing device to continuously acquire patients' physiological parameters first, i.e., ABP, ICP, and oxygen saturation, and then analyze these physiological parameters. We hope that the multimodality monitoring system will be accepted as a key measure to monitor physiological parameters, to analyze the current clinical status, and to predict the prognosis of the neurosurgical critical patients.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Institute of Head Trauma
| | - Guoyi Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Institute of Head Trauma;
| | - Junfeng Feng
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Institute of Head Trauma
| | - Qing Mao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Institute of Head Trauma
| | - Jiyao Jiang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine; Shanghai Institute of Head Trauma
| |
Collapse
|
28
|
Nyholm L, Howells T, Lewén A, Hillered L, Enblad P. The influence of hyperthermia on intracranial pressure, cerebral oximetry and cerebral metabolism in traumatic brain injury. Ups J Med Sci 2017; 122:177-184. [PMID: 28463046 PMCID: PMC5649323 DOI: 10.1080/03009734.2017.1319440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Hyperthermia is a common secondary insult in traumatic brain injury (TBI). The aim was to evaluate the relationship between hyperthermia and intracranial pressure (ICP), and if intracranial compliance and cerebral blood flow (CBF) pressure autoregulation affected that relationship. The relationships between hyperthermia and cerebral oximetry (BtipO2) and cerebral metabolism were also studied. METHODS A computerized multimodality monitoring system was used for data collection at the neurointensive care unit. Demographic and monitoring data (temperature, ICP, blood pressure, microdialysis, BtipO2) were analyzed from 87 consecutive TBI patients. ICP amplitude was used as measure of compliance, and CBF pressure autoregulation status was calculated using collected blood pressure and ICP values. Mixed models and comparison between groups were used. RESULTS The influence of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) was small, but individual differences were seen. Linear mixed models showed that hyperthermia raises ICP slightly more when temperature increases in the groups with low compliance and impaired CBF pressure autoregulation. There was also a tendency (not statistically significant) for increased BtipO2, and for increased pyruvate and lactate, with higher temperature, while the lactate/pyruvate ratio and glucose were stable. CONCLUSIONS The major finding was that the effects of hyperthermia on intracranial dynamics (ICP, brain energy metabolism, and BtipO2) were not extensive in general, but there were exceptional cases. Hyperthermia treatment has many side effects, so it is desirable to identify cases in which hyperthermia is dangerous. Information from multimodality monitoring may be used to guide treatment in individual patients.
Collapse
Affiliation(s)
- Lena Nyholm
- Department of Neuroscience/Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
29
|
Shaw M, Piper I, Hawthorne C. Multi-resolution Convolution Methodology for ICP Waveform Morphology Analysis. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 122:41-4. [PMID: 27165874 DOI: 10.1007/978-3-319-22533-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Intracranial pressure (ICP) monitoring is a key clinical tool in the assessment and treatment of patients in neurointensive care. ICP morphology analysis can be useful in the classification of waveform features.A methodology for the decomposition of an ICP signal into clinically relevant dimensions has been devised that allows the identification of important ICP waveform types. It has three main components. First, multi-resolution convolution analysis is used for the main signal decomposition. Then, an impulse function is created, with multiple parameters, that can represent any form in the signal under analysis. Finally, a simple, localised optimisation technique is used to find morphologies of interest in the decomposed data.A pilot application of this methodology using a simple signal has been performed. This has shown that the technique works with performance receiver operator characteristic area under the curve values for each of the waveform types: plateau wave, B wave and high and low compliance states of 0.936, 0.694, 0.676 and 0.698, respectively.This is a novel technique that showed some promise during the pilot analysis. However, it requires further optimisation to become a usable clinical tool for the automated analysis of ICP signals.
Collapse
Affiliation(s)
- Martin Shaw
- Department of Clinical Physics, Glasgow University, Glasgow, UK. .,NHS Greater Glasgow and Clyde, Anaesthesia and Intensive Care, Glasgow, UK. .,Academic Unit of Anaesthesia, Pain & Critical Care Medicine, University of Glasgow, Level 4, Walton Building, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 OSF, UK.
| | - Ian Piper
- Department of Clinical Physics, Glasgow University, Glasgow, UK.,NHS Greater Glasgow and Clyde, Anaesthesia and Intensive Care, Glasgow, UK
| | - Christopher Hawthorne
- Academic Unit of Anaesthesia, Pain and Critical Care Medicine, University of Glasgow, Level 4, Walton Building, Glasgow Royal Infirmary, 84 Castle Street, Glasgow, G4 OSF, UK
| |
Collapse
|
30
|
Abu Hamdeh S, Marklund N, Lannsjö M, Howells T, Raininko R, Wikström J, Enblad P. Extended Anatomical Grading in Diffuse Axonal Injury Using MRI: Hemorrhagic Lesions in the Substantia Nigra and Mesencephalic Tegmentum Indicate Poor Long-Term Outcome. J Neurotrauma 2016; 34:341-352. [PMID: 27356857 PMCID: PMC5220564 DOI: 10.1089/neu.2016.4426] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Clinical outcome after traumatic diffuse axonal injury (DAI) is difficult to predict. In this study, three magnetic resonance imaging (MRI) sequences were used to quantify the anatomical distribution of lesions, to grade DAI according to the Adams grading system, and to evaluate the value of lesion localization in combination with clinical prognostic factors to improve outcome prediction. Thirty patients (mean 31.2 years ±14.3 standard deviation) with severe DAI (Glasgow Motor Score [GMS] <6) examined with MRI within 1 week post-injury were included. Diffusion-weighted (DW), T2*-weighted gradient echo and susceptibility-weighted (SWI) sequences were used. Extended Glasgow outcome score was assessed after 6 months. Number of DW lesions in the thalamus, basal ganglia, and internal capsule and number of SWI lesions in the mesencephalon correlated significantly with outcome in univariate analysis. Age, GMS at admission, GMS at discharge, and low proportion of good monitoring time with cerebral perfusion pressure <60 mm Hg correlated significantly with outcome in univariate analysis. Multivariate analysis revealed an independent relation with poor outcome for age (p = 0.005) and lesions in the mesencephalic region corresponding to substantia nigra and tegmentum on SWI (p = 0.008). We conclude that higher age and lesions in substantia nigra and mesencephalic tegmentum indicate poor long-term outcome in DAI. We propose an extended MRI classification system based on four stages (stage I—hemispheric lesions, stage II—corpus callosum lesions, stage III—brainstem lesions, and stage IV—substantia nigra or mesencephalic tegmentum lesions); all are subdivided by age (≥/<30 years).
Collapse
Affiliation(s)
- Sami Abu Hamdeh
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Niklas Marklund
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Marianne Lannsjö
- 2 Department of Neuroscience, Rehabilitation Medicine, Uppsala University , Uppsala, Sweden .,3 Center of Research and Development, Uppsala University/County Council of Gävleborg , Gävle Hospital, Gävle, Sweden
| | - Tim Howells
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| | - Raili Raininko
- 4 Department of Radiology, Uppsala University , Uppsala, Sweden
| | - Johan Wikström
- 4 Department of Radiology, Uppsala University , Uppsala, Sweden
| | - Per Enblad
- 1 Department of Neuroscience, Neurosurgery, Uppsala University , Uppsala, Sweden
| |
Collapse
|
31
|
The effects of ventricular drainage on the intracranial pressure signal and the pressure reactivity index. J Clin Monit Comput 2016; 31:469-478. [PMID: 26987656 DOI: 10.1007/s10877-016-9863-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/13/2016] [Indexed: 01/13/2023]
Abstract
In subarachnoid hemorrhage (SAH) patients intracranial pressure (ICP) is usually monitored via an extraventricular drain (EVD), which can produce false readings when the drain is open. It is established that both the ICP cardiac pulse frequency and long term trends over several hours are often seriously corrupted. The aim of this study was to establish whether or not the intermediate frequency bands [respiratory, Mayer wave and very low frequency (VLF)] were also corrupted. The VLF range is of special interest because it is important in cerebral autoregulation studies. Using a pattern recognition algorithm we retrospectively identified 718 cases of EVD opening in 80 SAH patients. An analysis of differences between closed and open-drain periods showed that ICP amplitude decreased significantly in all of the three lower frequency bands when the EVD was open. A similar analysis of systemic arterial pressure signal revealed similar changes in the same frequency bands that were positively correlated with the ICP changes. Therefore we concluded that the changes in the ICP signal represented real, physiological changes and not artifact. Pressure reactivity index (PRx) values were also computed during closed and open-drain periods. We found a small but statistically significant decrease during open-drain periods. Based on analysis of the change in the PRx distribution during open drainage we concluded that this decrease also represented physiological changes rather than artifact. In summary the ICP respiratory, Mayer wave, and VLF frequency bands are not corrupted when the EVD is open, and it safe to use these for autoregulation studies.
Collapse
|
32
|
Eide PK. The correlation between pulsatile intracranial pressure and indices of intracranial pressure-volume reserve capacity: results from ventricular infusion testing. J Neurosurg 2016; 125:1493-1503. [PMID: 26918478 DOI: 10.3171/2015.11.jns151529] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The objective of this study was to examine how pulsatile and static intracranial pressure (ICP) scores correlate with indices of intracranial pressure-volume reserve capacity, i.e., intracranial elastance (ICE) and intracranial compliance (ICC), as determined during ventricular infusion testing. METHODS All patients undergoing ventricular infusion testing and overnight ICP monitoring during the 6-year period from 2007 to 2012 were included in the study. Clinical data were retrieved from a quality registry, and the ventricular infusion pressure data and ICP scores were retrieved from a pressure database. The ICE and ICC (= 1/ICE) were computed during the infusion phase of the infusion test. RESULTS During the period from 2007 to 2012, 82 patients with possible treatment-dependent hydrocephalus underwent ventricular infusion testing within the department of neurosurgery. The infusion tests revealed a highly significant positive correlation between ICE and the pulsatile ICP scores mean wave amplitude (MWA) and rise-time coefficient (RTC), and the static ICP score mean ICP. The ICE was negatively associated with linear measures of ventricular size. The overnight ICP recordings revealed significantly increased MWA (> 4 mm Hg) and RTC (> 20 mm Hg/sec) values in patients with impaired ICC (< 0.5 ml/mm Hg). CONCLUSIONS In this study cohort, there was a significant positive correlation between pulsatile ICP and ICE measured during ventricular infusion testing. In patients with impaired ICC during infusion testing (ICC < 0.5 ml/mm Hg), overnight ICP recordings showed increased pulsatile ICP (MWA > 4 mm Hg, RTC > 20 mm Hg/sec), but not increased mean ICP (< 10-15 mm Hg). The present data support the assumption that pulsatile ICP (MWA and RTC) may serve as substitute markers of pressure-volume reserve capacity, i.e., ICE and ICC.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, and Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
33
|
Waveform Analysis of Intraspinal Pressure After Traumatic Spinal Cord Injury: An Observational Study (O-64). ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:335-8. [PMID: 27165932 DOI: 10.1007/978-3-319-22533-3_66] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following a traumatic brain injury (TBI), intracranial pressure (ICP) increases, often resulting in secondary brain insults. After a spinal cord injury, here the cord may be swollen, leading to a local increase in intraspinal pressure (ISP). We hypothesised that waveform analysis methodology similar to that used for ICP after TBI may be applicable for the monitoring of patients with spinal cord injury.An initial cohort of 10 patients with spinal cord injury, as presented by the first author at a meeting in Cambridge in May 2012, were included in this observational study. The whole group (18 patients) was recently presented in the context of clinically oriented findings (Werndle et al., Crit Care Med, 42(3):646-655, 2014, PMID: 24231762). Mean pressure, pulse and respiratory waveform were analysed along slow vasogenic waves.Slow, respiratory and pulse components of ISP were characterised in the time and frequency domains. Mean ISP was 22.5 ± 5.1, mean pulse amplitude 1.57 ± 0.97, mean respiratory amplitude 0.65 ± 0.45 and mean magnitude of slow waves (a 20-s to 3-min period) was 3.97 ± 3.1 (all in millimetres of mercury). With increasing mean ISP, the pulse amplitude increased in all cases. This suggests that the ISP signal is of a similar character to ICP recorded after TBI. Therefore, the methods of ICP analysis can be helpful in ISP analysis.
Collapse
|
34
|
Varsos GV, Werndle MC, Czosnyka ZH, Smielewski P, Kolias AG, Phang I, Saadoun S, Bell BA, Zoumprouli A, Papadopoulos MC, Czosnyka M. Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. J Neurosurg Spine 2015; 23:763-71. [DOI: 10.3171/2015.3.spine14870] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT
In contrast to intracranial pressure (ICP) in traumatic brain injury (TBI), intraspinal pressure (ISP) after traumatic spinal cord injury (TSCI) has not received the same attention in terms of waveform analysis. Based on a recently introduced technique for continuous monitoring of ISP, here the morphological characteristics of ISP are observationally described. It was hypothesized that the waveform analysis method used to assess ICP could be similarly applied to ISP.
METHODS
Data included continuous recordings of ISP and arterial blood pressure (ABP) in 18 patients with severe TSCI.
RESULTS
The morphology of the ISP pulse waveform resembled the ICP waveform shape and was composed of 3 peaks representing percussion, tidal, and dicrotic waves. Spectral analysis demonstrated the presence of slow, respiratory, and pulse waves at different frequencies. The pulse amplitude of ISP was proportional to the mean ISP, suggesting a similar exponential pressure-volume relationship as in the intracerebral space. The interaction between the slow waves of ISP and ABP is capable of characterizing the spinal autoregulatory capacity.
CONCLUSIONS
This preliminary observational study confirms morphological and spectral similarities between ISP in TSCI and ICP. Therefore, the known methods used for ICP waveform analysis could be transferred to ISP analysis and, upon verification, potentially used for monitoring TSCI patients.
Collapse
Affiliation(s)
- Georgios V. Varsos
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge
| | | | - Zofia H. Czosnyka
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge
| | - Peter Smielewski
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge
| | - Angelos G. Kolias
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge
| | - Isaac Phang
- 2Academic Neurosurgery Unit, St. George’s University of London
| | - Samira Saadoun
- 2Academic Neurosurgery Unit, St. George’s University of London
| | - B. Anthony Bell
- 2Academic Neurosurgery Unit, St. George’s University of London
| | - Argyro Zoumprouli
- 3Department of Anaesthesia, St. George’s Hospital, London, United Kingdom; and
| | | | - Marek Czosnyka
- 1Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge
- 4Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
35
|
Nouveaux outils de neuromonitorage. MEDECINE INTENSIVE REANIMATION 2015. [DOI: 10.1007/s13546-015-1099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Abstract
PURPOSE OF REVIEW The care of critically ill brain-injured patients is complex and requires careful balancing of cerebral and systemic treatment priorities. A growing number of studies have reported improved outcomes when patients are admitted to dedicated neurocritical care units (NCCUs). The reasons for this observation have not been definitively clarified. RECENT FINDINGS When recently published articles are combined with older literature, there have been more than 40 000 patients assessed in observational studies that compare neurological and general ICUs. Although results are heterogeneous, admission to NCCUs is associated with lower mortality and a greater chance of favorable recovery. These findings are remarkable considering that there are few interventions in neurocritical care that have been demonstrated to be efficacious in randomized trials. Whether the relationship is causal is still being elucidated but potential explanations include higher patient volume and, in turn, greater clinician experience; more emphasis on and adherence to protocols to avoid secondary brain injury; practice differences related to prognostication and withdrawal of life-sustaining interventions; and differences in the use and interpretation of neuroimaging and neuromonitoring data. SUMMARY Neurocritical care is an evolving field that is associated with improvements in outcomes over the past decade. Further research is required to determine how monitoring and treatment protocols can be optimized.
Collapse
|
37
|
Eide PK, Sorteberg A, Meling TR, Sorteberg W. The effect of baseline pressure errors on an intracranial pressure-derived index: results of a prospective observational study. Biomed Eng Online 2014; 13:99. [PMID: 25052470 PMCID: PMC4125597 DOI: 10.1186/1475-925x-13-99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Background In order to characterize the intracranial pressure-volume reserve capacity, the correlation coefficient (R) between the ICP wave amplitude (A) and the mean ICP level (P), the RAP index, has been used to improve the diagnostic value of ICP monitoring. Baseline pressure errors (BPEs), caused by spontaneous shifts or drifts in baseline pressure, cause erroneous readings of mean ICP. Consequently, BPEs could also affect ICP indices such as the RAP where in the mean ICP is incorporated. Methods A prospective, observational study was carried out on patients with aneurysmal subarachnoid hemorrhage (aSAH) undergoing ICP monitoring as part of their surveillance. Via the same burr hole in the scull, two separate ICP sensors were placed close to each other. For each consecutive 6-sec time window, the dynamic mean ICP wave amplitude (MWA; measure of the amplitude of the single pressure waves) and the static mean ICP, were computed. The RAP index was computed as the Pearson correlation coefficient between the MWA and the mean ICP for 40 6-sec time windows, i.e. every subsequent 4-min period (method 1). We compared this approach with a method of calculating RAP using a 4-min moving window updated every 6 seconds (method 2). Results The study included 16 aSAH patients. We compared 43,653 4-min RAP observations of signals 1 and 2 (method 1), and 1,727,000 6-sec RAP observations (method 2). The two methods of calculating RAP produced similar results. Differences in RAP ≥0.4 in at least 7% of observations were seen in 5/16 (31%) patients. Moreover, the combination of a RAP of ≥0.6 in one signal and <0.6 in the other was seen in ≥13% of RAP-observations in 4/16 (25%) patients, and in ≥8% in another 4/16 (25%) patients. The frequency of differences in RAP >0.2 was significantly associated with the frequency of BPEs (5 mmHg ≤ BPE <10 mmHg). Conclusions Simultaneous monitoring from two separate, close-by ICP sensors reveals significant differences in RAP that correspond to the occurrence of BPEs. As differences in RAP are of magnitudes that may alter patient management, we do not advocate the use of RAP in the management of neurosurgical patients.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | |
Collapse
|
38
|
Anile C, De Bonis P, Mangiola A, Mannino S, Santini P. A New Method of Estimating Intracranial Elastance. INTERDISCIPLINARY NEUROSURGERY 2014. [DOI: 10.1016/j.inat.2014.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
39
|
Eide PK, Sorteberg W. An intracranial pressure-derived index monitored simultaneously from two separate sensors in patients with cerebral bleeds: comparison of findings. Biomed Eng Online 2013; 12:14. [PMID: 23405985 PMCID: PMC3608258 DOI: 10.1186/1475-925x-12-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/11/2013] [Indexed: 12/29/2022] Open
Abstract
Background In an attempt to characterize the intracranial pressure-volume compensatory reserve capacity, the correlation coefficient (R) between the ICP wave amplitude (A) and the ICP (P) level (RAP) has been applied in the surveillance of neurosurgical patients. However, as the ICP level may become altered by electrostatic discharges, human factors, technical factors and technology issues related to the ICP sensors, erroneous ICP scores may become revealed to the physician, and also become incorporated into the calculated RAP index. To evaluate the problem with regard to the RAP, we compared simultaneous RAP values from two separate ICP signals in the same patient. Materials and Methods We retrieved our recordings in 20 patients with cerebral bleeds wherein the ICP had been recorded simultaneously from two different sensors. Sensor 1 was always a solid sensor while sensor 2 was a solid sensor (Category A), a fluid sensor (Category B), an air-pouch sensor (Category C), or a fibre-optic sensor (Category D). The simultaneous signals were analyzed with automatic identification of the cardiac induced ICP waves, with subsequent determination and comparison of the Pearson correlation coefficient between mean wave amplitude (MWA) and mean ICP (RAP) for 40 6-s time windows every 4-min period. Results A total of 23,056 4-min RAP observations were compared. A difference in RAP ≥0.4 between the two signals was seen in 4% of the observations in Category A-, in 44% of observations in Category B -, in 20% of observations in Category C -, and in 28% of observations in Category D patients, respectively. Moreover, the combination of a RAP of <0.6 in one signal and ≥0.6 in the other was seen in >20% of scores in 3/5 Category A -, in 3/5 Category B -, in 5/7 Category C - and 1/3 Category D patients. Conclusions Simultaneous monitoring of the ICP-derived index RAP from two separate ICP sensors reveals marked differences in the index values. These differences in RAP may be explained by erroneous scoring of the ICP level. This will hamper the usefulness of RAP as a guide in the management of neurosurgical patients.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, and Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
40
|
Year in review in Intensive Care Medicine 2012: I. Neurology and neurointensive care, epidemiology and nephrology, biomarkers and inflammation, nutrition, experimentals. Intensive Care Med 2012; 39:232-46. [PMID: 23248038 PMCID: PMC3569582 DOI: 10.1007/s00134-012-2774-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023]
|
41
|
Czosnyka M, Citerio G. Brain compliance: the old story with a new 'et cetera'. Intensive Care Med 2012; 38:925-7. [PMID: 22527086 DOI: 10.1007/s00134-012-2572-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/28/2022]
|