1
|
Barreto-Cruz OT, Henao Zambrano JC, Ospina Barrero MA, Castañeda-Serrano RD. Effects of Tithonia diversifolia Extract as a Feed Additive on Digestibility and Performance of Hair Lambs. Animals (Basel) 2024; 14:3648. [PMID: 39765551 PMCID: PMC11672614 DOI: 10.3390/ani14243648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
Animal production requires efficiency, safety and environmental sustainability. Bioactive compounds from tropical plants could modulate ruminal fermentation, providing an alternative method to antibiotic treatment and addressing concerns about antibiotic resistance. In this study, the aim was to determine the effects of Tithonia diversifolia extract (TDE) on performance, intake, digestibility and blood parameters [i.e., glucose, blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT)] in crossbreed sheep. The main biocompounds of the TDE include caffeic acid (CA), quercetin (QCT), luteolin (LT) and apigenin (AP). Experiment 1: An in vitro dry matter digestibility (IVDMD) study was conducted to determine the optimal inclusion levels. The IVDM values were 73.09a, 82.03b, 81.01b, 73.20a and 74.51a for the control, 5, 10, 15 and 20 g/kg for the DM treatments, respectively (R-Sq adj = 0.857). The levels of 5 and 10 g were selected for the in vivo experiment. Experiment 2: Twenty-eight male crossbred hair lambs were assigned to four treatments (n = 7): control, 20 mg monensin/day, 5 g TDE/day and 10 g TDE/day groups. No differences in animal performance were observed, including body weight and feed conversion (p > 0.05). The TDE at 10 g/day improved NDF digestibility) (61.32%) and reduced the ruminal acetate to propionate ratio. The total digestible nutrients (TDN) were higher in 10 g TDE treatment with 66.41% and the lowest acetate production (67.82%) (p = 0.042), and propionate production (21.07%) were observed. The TDE were safe at 5 g and 10 g/day for liver function and exhibited lower BUN levels suggesting an improvement in protein metabolism. TDE extract at 10 g/day (TDE10), showed improvements in total tract digestibility of NDF and reduced the ruminal acetate to propionate ratio. However, due to TDE10 reducing the DM intake, the improvements in digestibility and ruminal fermentation were not reflected in growth performance improvements.
Collapse
Affiliation(s)
- Olga Teresa Barreto-Cruz
- Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Universidad Cooperativa de Colombia, Ibagué 730003, Tolima, Colombia
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | - Juan Carlos Henao Zambrano
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | - Maria Alejandra Ospina Barrero
- Laboratory of Animal Nutrition, Veterinary Medicine and Animal Science Program, Universidad Cooperativa de Colombia, Ibagué 730003, Tolima, Colombia
- Faculty of Veterinary Medicine and Animal Science, Universidad del Tolima, Ibagué 730006, Tolima, Colombia
| | | |
Collapse
|
2
|
Aslam B, Asghar R, Muzammil S, Shafique M, Siddique AB, Khurshid M, Ijaz M, Rasool MH, Chaudhry TH, Aamir A, Baloch Z. AMR and Sustainable Development Goals: at a crossroads. Global Health 2024; 20:73. [PMID: 39415207 PMCID: PMC11484313 DOI: 10.1186/s12992-024-01046-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 10/18/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, primarily stemming from its misuse and overuse in both veterinary and public healthcare systems. The consequences of AMR are severe, leading to more severe infections, increased health protection costs, prolonged hospital stays, unresponsive treatments, and elevated fatality rates. The impact of AMR is direct and far-reaching, particularly affecting the Sustainable Development Goals (SDGs), underscoring the urgency for concerted global actions to achieve these objectives. Disproportionately affecting underprivileged populations, AMR compounds their vulnerabilities, pushing them further into poverty. Moreover, AMR has ramifications for food production, jeopardizing sustainable agriculture and diminishing the livelihoods of farmers. The emergence of antibiotic-resistant bacteria in underprivileged areas heightens the risk of complications and mortality. Climate change further contributes to AMR, as evidenced by increased instances of foodborne salmonellosis and the development of antibiotic resistance, resulting in substantial healthcare costs. Effectively addressing AMR demands collaboration among governments, entrepreneurs, and the public sector to establish institutions and policies across all regulatory levels. Expanding SDG 17, which focuses on partnerships for sustainable development, would facilitate global antimicrobial stewardship initiatives, technology transfer, surveillance systems, and investment in vaccine and drug research. The World Bank's SDG database, tracking progress towards sustainable development, reveals a concerning picture with only a 15% success rate till 2023 and 48% showing deviation, underscoring a global gap exacerbated by the COVID-19 pandemic. Tackling AMR's global impact necessitates international cooperation, robust monitoring, and evaluation methods. The five priorities outlined guide SDG implementation, while impoverished countries must address specific challenges in their implementation efforts. Addressing AMR and its impact on the SDGs is a multifaceted challenge that demands comprehensive and collaborative solutions on a global scale.
Collapse
Affiliation(s)
- Bilal Aslam
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Rubab Asghar
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abu Baker Siddique
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ijaz
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | | | | | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China.
| |
Collapse
|
3
|
Aslam B, Asghar R, Muzammil S, Shafique M, Siddique AB, Khurshid M, Ijaz M, Rasool MH, Chaudhry TH, Aamir A, Baloch Z. AMR and Sustainable Development Goals: at a crossroads. Global Health 2024; 20:73. [DOI: doi.org/10.1186/s12992-024-01046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/24/2024] [Indexed: 04/10/2025] Open
|
4
|
Shawki MM, El-Shall HS, Moustafa ME, Atay KYS, Elsheredy AG, Eltarahony MM. Revealing detrimental effects of various DC electrical energy conditions on different multidrug resistant bacteria: a comprehensive study. Sci Rep 2024; 14:17046. [PMID: 39048587 PMCID: PMC11269707 DOI: 10.1038/s41598-024-66063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The arbitrary discharge of contaminated wastes, especially that encompass multidrug resistant microbes (MDR), would broaden the circle of epidemic diseases such as COVID-19, which in turn deteriorate definitely the whole socioeconomics. Therefore, the employment of electrical stimulation techniques such as direct current (DC) with low energy considers being effective tool to impede spontaneous changes in microbial genetic makeup, which increases the prevalence of MDR phenomenon. Herein, the influence of different electric energies generated by DC electric field, volts and time on MDR-bacteria that are categorized among the highly ranked nosocomial pathogens, was scrutinized. Wherein, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis were examined as paradigms of Gram-negative and Gram-positive pathogens. The results declared the significant superior antagonizing potency of electric energy in a dose-dependent modality rather than the applied volts or exposure time. Notably, the exposure of bacterial cultures to140 J inhibited the bacterial count by > 78% and the range of 47-73% for Gram-negative and Gram-positive, respectively. While the suppression in their metabolic activity assessed by > 75% and 41-68%, respectively; reflecting the capability of electrical energy to induce viable but non-culturable (VBNC) state. Similarly, the results of total protein, extracellular protein content and lactate dehydrogenase activity emphasized the cell wall deterioration and losing of cell membrane integrity. Additionally, the elevating in ROS upon DC-exposure participated in DNA fragmentation and plasmid decomposability by the range of 33-60%. Further, SEM micrographs depicted drastic morphological deformations after electrical treatment. Strikingly, DC-treatment impaired antibiotic resistance of the examined strains against several antibiotics by > 64.2%. Generally, our comparative detailed study revealed deleterious potentiality of different DC-protocols in defeating microbial pollution, which could be invested as efficient disinfectant alternative in various sectors such as milk sterilization and wastewater purification.
Collapse
Affiliation(s)
- Mamdouh M Shawki
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Hadeel S El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Maisa E Moustafa
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kamal Y S Atay
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amel G Elsheredy
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Marwa M Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
| |
Collapse
|
5
|
Russell B, Rogers A, Yoder R, Kurilich M, Krishnamurthi VR, Chen J, Wang Y. Silver Ions Inhibit Bacterial Movement and Stall Flagellar Motor. Int J Mol Sci 2023; 24:11704. [PMID: 37511461 PMCID: PMC10381017 DOI: 10.3390/ijms241411704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Silver (Ag) in different forms has been gaining broad attention due to its antimicrobial activities and the increasing resistance of bacteria to commonly prescribed antibiotics. However, various aspects of the antimicrobial mechanism of Ag have not been understood, including how Ag affects bacterial motility, a factor intimately related to bacterial virulence. Here, we report our study on how Ag+ ions affect the motility of E. coli bacteria using swimming, tethering, and rotation assays. We observed that the bacteria slowed down dramatically by >70% when subjected to Ag+ ions, providing direct evidence that Ag+ ions inhibit the motility of bacteria. In addition, through tethering and rotation assays, we monitored the rotation of flagellar motors and observed that the tumbling/pausing frequency of bacteria increased significantly by 77% in the presence of Ag+ ions. Furthermore, we analyzed the results from the tethering assay using the hidden Markov model (HMM) and found that Ag+ ions decreased bacterial tumbling/pausing-to-running transition rate significantly by 75%. The results suggest that the rotation of bacterial flagellar motors was stalled by Ag+ ions. This work provided a new quantitative understanding of the mechanism of Ag-based antimicrobial agents in bacterial motility.
Collapse
Affiliation(s)
- Benjamin Russell
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ariel Rogers
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ryan Yoder
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Matthew Kurilich
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Mokrani D, Chommeloux J, Pineton de Chambrun M, Hékimian G, Luyt CE. Antibiotic stewardship in the ICU: time to shift into overdrive. Ann Intensive Care 2023; 13:39. [PMID: 37148398 PMCID: PMC10163585 DOI: 10.1186/s13613-023-01134-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Antibiotic resistance is a major health problem and will be probably one of the leading causes of deaths in the coming years. One of the most effective ways to fight against resistance is to decrease antibiotic consumption. Intensive care units (ICUs) are places where antibiotics are widely prescribed, and where multidrug-resistant pathogens are frequently encountered. However, ICU physicians may have opportunities to decrease antibiotics consumption and to apply antimicrobial stewardship programs. The main measures that may be implemented include refraining from immediate prescription of antibiotics when infection is suspected (except in patients with shock, where immediate administration of antibiotics is essential); limiting empiric broad-spectrum antibiotics (including anti-MRSA antibiotics) in patients without risk factors for multidrug-resistant pathogens; switching to monotherapy instead of combination therapy and narrowing spectrum when culture and susceptibility tests results are available; limiting the use of carbapenems to extended-spectrum beta-lactamase-producing Enterobacteriaceae, and new beta-lactams to difficult-to-treat pathogen (when these news beta-lactams are the only available option); and shortening the duration of antimicrobial treatment, the use of procalcitonin being one tool to attain this goal. Antimicrobial stewardship programs should combine these measures rather than applying a single one. ICUs and ICU physicians should be at the frontline for developing antimicrobial stewardship programs.
Collapse
Affiliation(s)
- David Mokrani
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Juliette Chommeloux
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Marc Pineton de Chambrun
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Guillaume Hékimian
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Charles-Edouard Luyt
- Service de Médecine Intensive Réanimation, Institut de Cardiologie, ICAN, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, Hôpital Pitié-Salpêtrière, 47-83, Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
- Sorbonne Université, INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
| |
Collapse
|
7
|
Samir S, El-Far A, Okasha H, Mahdy R, Samir F, Nasr S. Isolation and characterization of lytic bacteriophages from sewage at an egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi J Biol Sci 2022; 29:3097-3106. [PMID: 35360502 PMCID: PMC8961222 DOI: 10.1016/j.sjbs.2022.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen to humans causing life-threatening infections. MRSA have the capability to grow resistance to many antibiotics, and phage therapy is one treatment option for this infection. Objectives The aim of the present study was to isolate and characterize the lytic bacteriophages specific to MRSA from domestic sewage water at a tertiary care hospital in Egypt. Methods Thirty MRSA strains were isolated from different clinical samples admitted to the microbiology lab at Theodor Bilharz Research institute (TBRI) hospital, Giza, Egypt. They were confirmed to be MRSA through phenotypic detection and conventional PCR for mecA gene. They were used for the isolation of phages from sewage water of TBRI hospital. Plaque assay was applied to purify and quantify the titer of the isolated phages. The host range of the isolated phages was detected using the spot test assay. The morphology of phages was confirmed using transmission electron microscope (TEM). Digestion of DNA extracted from phages with endonuclease enzymes including EcoRI and SmaI was performed. SDS-PAGE was performed to analyze MRSA specific phage proteins. As a positive control prophages were isolated from a mitomycin C (MitC) treated culture of S. aureus strain ATCC25923. Further characterization using conventional polymerase chain reaction (PCR) was used to select three known Staphylophages by detecting the endolysin gene of phage K, the polymerase gene of phage 44AHJD, and the minor tail gene of phage P68. Results Isolated phages in this research displayed a wide host range against MRSA using the spot test, out of thirty tested MRSA isolates 24 were sensitive and got lysed (80%). The titer of the phages was estimated to be 1.04 × 106 pfu/ml using plaque test. Identification of head and tail morphology of the phages was achieved using TEM and they were designated to tailed phages of order Caudovirales, they composed an icosahedral capsid. Prophages were isolated through MitC induction. DNA of phages was digested by endonuclease enzymes. Conventional PCR yielded 341 bp of phage K endolysin gene and phage P68 minor tail protein gene 501 bp. Protein analysis using SDS-PAGE showed 4 proteins of sizes between 42 kDa and 140 kDa. Conclusion Phages isolated here are alike to others mentioned in previous studies. The high broad host range of the isolated phages is promising to control MRSA and can be in the future commercially suitable for treatment as lysate preparations. Animal models of phage-bacterial interaction will be our next step that may help in resolving the multidrug resistant crisis of MRSA in Egypt.
Collapse
Key Words
- AMR, antimicrobial resistance
- CLSI, clinical and laboratory standards institute
- Caudovirales
- ESKAPE, (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species)
- FOX, Cefoxitin
- ITS, Internal transcribed spacer
- LB, Luria-Bertani
- Lytic bacteriophages
- MDR, Multidrug-resistant
- MRSA
- MRSA, Methicillin Resistant Staphylococcus aureus
- MitC, mitomycin C
- Mitomycin C
- NGS, double-stranded, ds, next generation sequencing
- OX, Oxacillin
- PCR, Polymerase chain reaction
- PFU, Plaque forming unit
- PTA, phosphotungstic acid
- Polymerase chain reaction
- Restriction digestion
- S. aureus, Staphylococcus aureus
- SDS-polyacrylamide gel electrophoresis
- Sewage
- TBRI, Theodor Bilharz research Institute
- TEM, Transmission electron microscopy
- Transmission electron microscopy
Collapse
Affiliation(s)
- Safia Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Amira El-Far
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Rania Mahdy
- Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Fatima Samir
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| | - Sami Nasr
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt
| |
Collapse
|
8
|
Microampere Electric Current Causes Bacterial Membrane Damage and Two-Way Leakage in a Short Period of Time. Appl Environ Microbiol 2020; 86:AEM.01015-20. [PMID: 32561580 DOI: 10.1128/aem.01015-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 01/26/2023] Open
Abstract
Physical agents, such as low electric voltage and current, have recently gained attention for antimicrobial treatment due to their bactericidal capability. Although microampere electric current was shown to suppress the growth of bacteria, it remains unclear to what extent the microampere current damaged the bacterial membrane. Here, we investigated the membrane damage and two-way leakage caused by microampere electric current (≤100 μA) with a short exposure time (30 min). Based on MitoTracker staining, propidium iodide staining, filtration assays, and quantitative single-molecule localization microscopy, we observed significant membrane damage, which allowed two-way leakage of ions, small molecules, and proteins. This study paves the way to new development of antimicrobial applications for ultralow electric voltage and current.IMPORTANCE Although electric voltage and current have been studied for a long time in terms of their ability to suppress the growth of bacteria and to kill bacteria, increasing interest has been aroused more recently due to the prevalence of antibiotic resistance of microbes in past decades. Toward understanding the antimicrobial mechanism of low electric voltage and current, previous studies showed that treating bacteria with milliampere electric currents (≥5 mA) for ≥72 h led to significant damage of the bacterial membrane, which likely resulted in leakage of cellular contents and influx of toxic substances through the damaged membrane. However, it remains unclear to what extent membrane damage and two-way (i.e., inward and outward) leakage are caused by lower (i.e., microampere) electric current in a shorter time frame. In this work, we set out to answer this question. We observed that the membrane damage was caused by microampere electric current in half an hour, which allowed two-way leakage of ions, small molecules, and proteins.
Collapse
|
9
|
Sadoon AA, Khadka P, Freeland J, Gundampati RK, Manso RH, Ruiz M, Krishnamurthi VR, Thallapuranam SK, Chen J, Wang Y. Silver Ions Caused Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live Bacteria. Appl Environ Microbiol 2020; 86:e02479-19. [PMID: 31953329 PMCID: PMC7054089 DOI: 10.1128/aem.02479-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antimicrobial activity and mechanism of silver ions (Ag+) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag+ ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag+ ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag+ ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag+ ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag+ ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag+ ions: Ag+-induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.IMPORTANCE As so-called "superbug" bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.
Collapse
Affiliation(s)
- Asmaa A Sadoon
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Physics, University of Thi Qar, Thi Qar, Iraq
| | - Prabhat Khadka
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jack Freeland
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ravi Kumar Gundampati
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Ryan H Manso
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Mason Ruiz
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | | | - Jingyi Chen
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yong Wang
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
- Microelectronics-Photonics Graduate Program, University of Arkansas, Fayetteville, Arkansas, USA
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
10
|
Rajak BL, Kumar R, Gogoi M, Patra S. Antimicrobial Activity of Nanomaterials. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-29207-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Alqahtany M, Khadka P, Niyonshuti I, Krishnamurthi VR, Sadoon AA, Challapalli SD, Chen J, Wang Y. Nanoscale reorganizations of histone-like nucleoid structuring proteins in Escherichia coli are caused by silver nanoparticles. NANOTECHNOLOGY 2019; 30:385101. [PMID: 31212266 DOI: 10.1088/1361-6528/ab2a9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) and ions (Ag+) have recently gained broad attention due to their antimicrobial effects against bacteria and other microbes. In this work, we demonstrate the use of super-resolution fluorescence microscopy for investigating and quantifying the antimicrobial effect of AgNPs at the molecular level. We found that subjecting Escherichia coli (E. coli) bacteria to AgNPs led to nanoscale reorganization of histone-like nucleoid structuring (H-NS) proteins, an essential nucleoid associated protein in bacteria. We observed that H-NS proteins formed denser and larger clusters at the center of the bacteria after exposure to AgNPs. We quantified the spatial reorganizations of H-NS proteins by examining the changes of various spatial parameters, including the inter-molecular distances and molecular densities. Clustering analysis based on Voronoi-tessellation were also performed to characterize the change of H-NS proteins' clustering behavior. We found that AgNP-treatment led to an increase in the fraction of H-NS proteins forming clusters. Similar effects were observed for bacteria exposed to Ag+ ions, suggesting that the release of Ag+ ions plays an important role in the toxicity of AgNPs. On the other hand, we observed that AgNPs with two surface coatings showed difference in the nanoscale reorganization of H-NS proteins, indicating that particle-specific effects also contribute to the antimicrobial activities of AgNPs. Our results suggested that H-NS proteins were significantly affected by AgNPs and Ag+ ions, which has been overlooked previously. In addition, we examined the dynamic motion of AgNPs that were attached to the surface of bacteria. We expect that the current methodology can be readily applied to broadly and quantitatively study the spatial reorganization of biological macromolecules at the scale of nanometers caused by metal nanoparticles, which are expected to shed new light on the antimicrobial mechanism of metal nanoparticles.
Collapse
Affiliation(s)
- Meaad Alqahtany
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States of America. Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yu G, Thies‐Weesie DME, Pieters RJ. TetravalentPseudomonas aeruginosaAdhesion Lectin LecA Inhibitor for Enhanced Biofilm Inhibition. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Guangyun Yu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical SciencesUtrecht University P.O.Box 80082 NL-3508 TB Utrecht The Netherlands
| | - Dominique M. E. Thies‐Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials ScienceUtrecht University Padualaan 8 NL-3584 CH Utrecht The Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical SciencesUtrecht University P.O.Box 80082 NL-3508 TB Utrecht The Netherlands
| |
Collapse
|
13
|
Wang Y, Wang Y, Xu H, Mei X, Gong L, Wang B, Li W, Jiang S. Direct-fed glucose oxidase and its combination with B. amyloliquefaciens SC06 on growth performance, meat quality, intestinal barrier, antioxidative status, and immunity of yellow-feathered broilers. Poult Sci 2018; 97:3540-3549. [PMID: 30085304 DOI: 10.3382/ps/pey216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
This experiment investigated the effects of dietary glucose oxidase (GOD) and its combination with B. amyloliquefaciens SC06 (BaSC06) on the growth performance, meat quality, intestinal physical barrier, antioxidative status and immunity of male Lingnan yellow-feathered broilers. A total of 720 1-d-old broilers were assigned into 4 treatments with 6 replicates per treatment (30 birds per replicate): (1) basal diet (Ctr), (2) basal diet with 200 mg/kg enramycin (ER), (3) basal diet with 75 U/kg GOD, and (4) GOD diet (75U/kg) supplemented with 1 × 105 colony-forming units BaSC06/kg feed (GB), for an experimental duration of 52 d. The results showed that there were no significant effects of GOD or GB on growth performance of birds. The shear force and drip loss of breast muscle of birds fed GOD and GB were less than those fed ER, while the shear force in GB significantly decreased compared to Ctr. Also, both GOD and GB treatment increased about 1-fold expression of ZO-1, Claudin-1, Occludin, and MUC-2 genes in jejunal mucosa compared to Ctr, no difference was found between GOD and GB. Compared to Ctr, serum total antioxidant capability and glutathione peroxidase in GOD and GB increased, while the malondialdehyde level and xanthine oxidase activity significantly decreased. Both GOD and GB treatments reduced the relative level of HO-1, p53, and BAX transcripts in liver. It is worth noting that GB decreased transcription of p53 and Bcl-2 by 76.11% and 50.19% compared to GOD, respectively. In addition, compared to Ctr, GOD and GB markedly increased serum IL-2 content by 110% and 182%, while decreased IFN-γ by 43.57% and 57.51%, respectively. The highest sIgA level in GB was found among four groups. In conclusion, dietary treatment with GOD and its combination with BaSC06 both had beneficial effects on shear force and drip loss, expression of intestinal tight junctions, antioxidative capacity and immune function. It is suggested that GB had better effect than GOD on anti-apoptosis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
14
|
Koulenti D, Song A, Ellingboe A, Abdul-Aziz MH, Harris P, Gavey E, Lipman J. Infections by multidrug-resistant Gram-negative Bacteria: What's new in our arsenal and what's in the pipeline? Int J Antimicrob Agents 2018; 53:211-224. [PMID: 30394301 DOI: 10.1016/j.ijantimicag.2018.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023]
Abstract
The spread of multidrug-resistant bacteria is an ever-growing concern, particularly among Gram-negative bacteria because of their intrinsic resistance and how quickly they acquire and spread new resistance mechanisms. Treating infections caused by Gram-negative bacteria is a challenge for medical practitioners and increases patient mortality and cost of care globally. This vulnerability, along with strategies to tackle antimicrobial resistance development, prompts the development of new antibiotic agents and exploration of alternative treatment options. This article summarises the new antibiotics that have recently been approved for Gram-negative bacterial infections, looks down the pipeline at promising agents currently in phase I, II, or III clinical trials, and introduces new alternative avenues that show potential in combating multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia; 2nd Critical Care Department, Attikon University Hospital, Athens, Greece.
| | - Andrew Song
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Aaron Ellingboe
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; School of Pharmacy, International Islamic University, Malaysia, Kuantan, Malaysia
| | - Patrick Harris
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Pathology Queensland, Central Laboratory, Herston, Queensland, Australia; Infection Management Services, Princess Alexandra Hospital, Queensland, Australia
| | - Emile Gavey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jeffrey Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Royal Brisbane Clinical Unit, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane
| |
Collapse
|
15
|
Paling FP, Olsen K, Ohneberg K, Wolkewitz M, Fowler VG, DiNubile MJ, Jafri HS, Sifakis F, Bonten MJM, Harbarth SJ, Kluytmans JAJW. Risk prediction for Staphylococcus aureus surgical site infection following cardiothoracic surgery; A secondary analysis of the V710-P003 trial. PLoS One 2018; 13:e0193445. [PMID: 29561866 PMCID: PMC5862433 DOI: 10.1371/journal.pone.0193445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background Identifying patients undergoing cardiothoracic surgery at high risk of Staphylococcus aureus surgical site infection (SSI) is a prerequisite for implementing effective preventive interventions. The objective of this study was to develop a risk prediction model for S. aureus SSI or bacteremia after cardiothoracic surgery based on pre-operative variables. Materials/Methods Data from the Merck Phase IIb/III S. aureus vaccine (V710-P003) clinical trial were analyzed. In this randomized placebo-controlled trial, the effect of preoperative vaccination against S. aureus was investigated in patients undergoing cardiothoracic surgery. The primary outcome was deep/superficial S. aureus SSI or S. aureus bacteremia through day 90 after surgery. Performance, calibration, and discrimination of the final model were assessed. Results Overall 164 out of 7,647 included patients (2.1%) developed S. aureus infection (149 SSI, 15 bacteremia, 28 both). Independent risk factors for developing the primary outcome were pre-operative colonization with S. aureus (OR 3.08, 95% confidence interval [CI] 2.23–4.22), diabetes mellitus (OR 1.87, 95% CI 1.34–2.60), BMI (OR 1.02 per kg/m2, 95% CI 0.99–1.05), and CABG (OR 2.67, 95% CI 1.91–3.78). Although vaccination had a significant (albeit modest) protective effect, it was omitted from the model because its addition did not significantly change the coefficients of the final model and V710-vaccine development has been discontinued due to insufficient efficacy. The final prediction model had moderate discriminative accuracy (AUC-value, 0.72). Conclusion Pre-operative S. aureus colonization status, diabetes mellitus, BMI, and type of surgical procedure moderately predicted the risk of S. aureus SSI and/or bacteremia among patients undergoing cardiothoracic surgery.
Collapse
Affiliation(s)
- Fleur P. Paling
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- * E-mail:
| | - Karina Olsen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kristin Ohneberg
- Institute for Medical Biometry and Statistics, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Wolkewitz
- Institute for Medical Biometry and Statistics, University Medical Center Freiburg, Freiburg, Germany
| | - Vance G. Fowler
- Division of Infectious Diseases, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark J. DiNubile
- Merck & Company Incorporation, Kenilworth, New Jersey, United States of America
| | - Hasan S. Jafri
- MedImmune, Gaithersburg, Maryland, United States of America
| | - Frangiscos Sifakis
- AstraZeneca Pharmaceuticals LP, Gaithersburg, Maryland, United States of America
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jan A. J. W. Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
- Amphia Hospital, Breda, The Netherlands
| |
Collapse
|
16
|
Paling FP, Troeman DPR, Wolkewitz M, Kalyani R, Prins DR, Weber S, Lammens C, Timbermont L, Goossens H, Malhotra-Kumar S, Sifakis F, Bonten MJM, Kluytmans JAJW. Rationale and design of ASPIRE-ICU: a prospective cohort study on the incidence and predictors of Staphylococcus aureus and Pseudomonas aeruginosa pneumonia in the ICU. BMC Infect Dis 2017; 17:643. [PMID: 28946849 PMCID: PMC5613521 DOI: 10.1186/s12879-017-2739-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The epidemiology of ICU pneumonia caused by Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) is not fully described, but is urgently needed to support the development of effective interventions. The objective of this study is to estimate the incidence of S. aureus and P. aeruginosa ICU pneumonia and to assess its association with patient-related and contextual risk factors. METHODS ASPIRE-ICU is a prospective, observational, multi-center cohort study nested within routine surveillance among ICU patients in Europe describing the occurrence of S. aureus and P. aeruginosa ICU pneumonia. Two thousand (2000) study cohort subjects will be enrolled (50% S. aureus colonized) in which specimens and data will be collected. Study cohort subjects will be enrolled from a larger surveillance population, in which basic surveillance data is captured. The primary outcomes are the incidence of S. aureus ICU acquired pneumonia and the incidence of P. aeruginosa ICU acquired pneumonia through ICU stay. The analysis will include advanced survival techniques (competing risks and multistate models) for each event separately as well as for the sub-distribution of ICU pneumonia to determine independent association of outcomes with risk factors.. A risk prediction model will be developed to quantify the risk for acquiring S. aureus or P. aeruginosa ICU pneumonia during ICU stay by using a composite score of independent risk factors. DISCUSSION The diagnosis of pathogen-specific ICU pneumonia is difficult, however, the criteria used in this study are objective and comparable to those in the literature. TRIAL REGISTRATION This study is registered on clinicaltrials.gov under identifier NCT02413242 .
Collapse
Affiliation(s)
- Fleur P Paling
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - Darren P R Troeman
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Martin Wolkewitz
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Daniël R Prins
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Susanne Weber
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Wilrijk, Belgium
| | | | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan A J W Kluytmans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, HP Stratenum 6.131, PO Box 85500, 3508 GA, Utrecht, The Netherlands.,Amphia Hospital, Breda, The Netherlands
| |
Collapse
|