1
|
Mocellin A, Guidotti F, Rizzato S, Tacconi M, Bruzzi G, Messina J, Puggioni D, Patsoura A, Fantini R, Tabbì L, Castaniere I, Marchioni A, Clini E, Tonelli R. Monitoring and modulation of respiratory drive in patients with acute hypoxemic respiratory failure in spontaneous breathing. Intern Emerg Med 2024; 19:2105-2119. [PMID: 39207721 PMCID: PMC11582292 DOI: 10.1007/s11739-024-03715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Non-invasive respiratory support, namely, non-invasive ventilation, continuous positive airway pressure, and high-flow nasal cannula, has been increasingly used worldwide to treat acute hypoxemic respiratory failure, giving the benefits of keeping spontaneous breathing preserved. In this scenario, monitoring and controlling respiratory drive could be helpful to avoid patient self-inflicted lung injury and promptly identify those patients that require an upgrade to invasive mechanical ventilation. In this review, we first describe the physiological components affecting respiratory drive to outline the risks associated with its hyperactivation. Further, we analyze and compare the leading strategies implemented for respiratory drive monitoring and discuss the sedative drugs and the non-pharmacological approaches used to modulate respiratory drive during non-invasive respiratory support. Refining the available techniques and rethinking our therapeutic and monitoring targets can help critical care physicians develop a personalized and minimally invasive approach.
Collapse
Affiliation(s)
- Anna Mocellin
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Federico Guidotti
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Simone Rizzato
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Matteo Tacconi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Jacopo Messina
- Internal Medicine Unit, University of Rome, Roma 1, Rome, Italy
| | - Daniele Puggioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Athina Patsoura
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Alessandro Marchioni
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy.
| | - Enrico Clini
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University Hospital of Modena, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Grieco DL, Russo A, Anzellotti GM, Romanò B, Bongiovanni F, Dell'Anna AM, Mauti L, Cascarano L, Gallotta V, Rosà T, Varone F, Menga LS, Polidori L, D'Indinosante M, Cappuccio S, Galletta C, Tortorella L, Costantini B, Gueli Alletti S, Sollazzi L, Scambia G, Antonelli M. Lung-protective ventilation during Trendelenburg pneumoperitoneum surgery: A randomized clinical trial. J Clin Anesth 2023; 85:111037. [PMID: 36495775 DOI: 10.1016/j.jclinane.2022.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Study objective To assess the effects of a protective ventilation strategy during Trendelenburg pneumoperitoneum surgery on postoperative oxygenation. DESIGNS Parallel-group, randomized trial. SETTING Operating room of a university hospital, Italy. PATIENTS Morbidly obese patients undergoing Trendelenburg pneumoperitoneum gynaecological surgery. INTERVENTIONS Participants were randomized to standard (SV: tidal volume = 10 ml/kg of predicted body weight, PEEP = 5 cmH2O) or protective (PV: tidal volume = 6 ml/kg of predicted body weight, PEEP = 10 cmH2O, recruitment maneuvers) ventilation during anesthesia. MEASUREMENTS Primary outcome was PaO2/FiO2 one hour after extubation. Secondary outcomes included day-1 PaO2/FiO2, day-2 respiratory function and intraoperative respiratory/lung mechanics, assessed through esophageal manometry, end-expiratory lung volume (EELV) measurement and pressure-volume curves. MAIN RESULTS Sixty patients were analyzed (31 in SV group, 29 in PV group). Median [IqR] tidal volume was 350 ml [300-360] in PV group and 525 [500-575] in SV group. Median PaO2/FiO2 one hour after extubation was 280 mmHg [246-364] in PV group vs. 298 [250-343] in SV group (p = 0.64). Day-1 PaO2/FiO2, day-2 forced vital capacity, FEV-1 and Tiffenau Index were not different between groups (all p > 0.10). Intraoperatively, 59% of patients showed complete airway closure during pneumoperitoneum, without difference between groups: median airway opening pressure was 17 cmH2O. In PV group, airway and transpulmonary driving pressure were lower (12 ± 5 cmH2O vs. 17 ± 7, p < 0.001; 9 ± 4 vs. 13 ± 7, p < 0.001), PaCO2 and respiratory rate were higher (48 ± 8 mmHg vs. 42 ± 12, p < 0.001; 23 ± 5 breaths/min vs. 16 ± 4, p < 0.001). Intraoperative EELV was similar between PV and SV group (1193 ± 258 ml vs. 1207 ± 368, p = 0.80); ratio of tidal volume to EELV was lower in PV group (0.45 ± 0.12 vs. 0.32 ± 0.09, p < 0.001). CONCLUSIONS In obese patients undergoing Trendelenburg pneumoperitoneum surgery, PV did not improve postoperative oxygenation nor day-2 respiratory function. PV was associated with intraoperative respiratory mechanics indicating less injurious ventilation. The high prevalence of complete airway closure may have affected study results. TRIAL REGISTRATION Prospectively registered on http://clinicaltrials.govNCT03157479 on May 17th, 2017.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Andrea Russo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bruno Romanò
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio M Dell'Anna
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luigi Mauti
- Department of Internal medicine, Catholic University of The Sacred Heart, Rome, Italy; Respiratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Cascarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerio Gallotta
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tommaso Rosà
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Varone
- Department of Internal medicine, Catholic University of The Sacred Heart, Rome, Italy; Respiratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca S Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorenzo Polidori
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco D'Indinosante
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Serena Cappuccio
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Galletta
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Tortorella
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Costantini
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Salvatore Gueli Alletti
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Liliana Sollazzi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- Department of Obstetrics and Gynecology, Catholic University of The Sacred Heart, Rome, Italy; Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy; Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
3
|
Cesarano M, Grieco DL, Michi T, Munshi L, Menga LS, Delle Cese L, Ruggiero E, Rosà T, Natalini D, Sklar MC, Cutuli SL, Bongiovanni F, De Pascale G, Ferreyro BL, Goligher EC, Antonelli M. Helmet noninvasive support for acute hypoxemic respiratory failure: rationale, mechanism of action and bedside application. Ann Intensive Care 2022; 12:94. [PMID: 36241926 PMCID: PMC9568634 DOI: 10.1186/s13613-022-01069-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic patients. Main results In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow generator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet noninvasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies (conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg), possibly because higher positive end-expiratory pressure (10–15 cmH2O) can be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities, and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The potential superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized trials and in a network metanalysis. Conclusions Helmet noninvasive support represents a promising tool for the initial management of patients with severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the treatment is essential to early identify treatment failure and avoid delays in intubation.
Collapse
Affiliation(s)
- Melania Cesarano
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. .,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy.
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Luca Delle Cese
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Ersilia Ruggiero
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Daniele Natalini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Michael C Sklar
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Salvatore L Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| | - Gennaro De Pascale
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Bruno L Ferreyro
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Department of Medicine, Division of Respirology, University Health Network/Sinai Health System, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto Di Anestesiologia E Rianimazione, Università Cattolica del Sacro Cuore Rome, Fondazione 'Policlinico Universitario A. Gemelli' IRCCS, L.go F. Vito, 00168, Rome, Italy
| |
Collapse
|
4
|
Dries DJ, Perry JF, Tawfik PN. A Rationale for Safe Ventilation with Inhalation Injury: An Editorial Review. J Burn Care Res 2022; 43:irac061. [PMID: 35511894 DOI: 10.1093/jbcr/irac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/14/2022]
Abstract
Lung injury from smoke inhalation manifests as airway and parenchymal damage, at times leading to the acute respiratory distress syndrome. From the beginning of this millennium, the approach to mechanical ventilation in the patient with ARDS was based on reduction of tidal volume to 6 milliliters/kilogram of ideal body weight, maintaining a ceiling of plateau pressure, and titration of driving pressure (plateau pressure minus PEEP). Beyond these broad constraints, there is little specification for the mechanics of ventilator settings, consideration of the metabolic impact of the disease process on the patient, or interaction of patient disease and ventilator settings. Various studies suggest that inhomogeneity of lung injury, which increases the risk of regional lung trauma from mechanical ventilation, may be found in the patient with smoke inhalation. We now appreciate that energy transfer principles may affect optimal ventilator management and come into play in damaged heterogenous lungs. Mechanical ventilation in the patient with inhalation injury should consider various factors. Self-injurious respiratory demand by the patient can be reduced using analgesia and sedation. Dynamic factors beginning with rate management can reduce the incidence of potentially damaging ventilation. Moreover, preclinical study is underway to examine the flow of gas based on the ventilator mode selected, which may also be a factor triggering regional lung injury.
Collapse
Affiliation(s)
| | - John F Perry
- Chair of Trauma Surgery University of Minnesota, U.S.A
| | - Pierre N Tawfik
- Fellow Pulmonary and Critical Care Medicine University of Minnesota, U.S.A
| |
Collapse
|
5
|
Bongiovanni F, Grieco DL, Anzellotti GM, Menga LS, Michi T, Cesarano M, Raggi V, De Bartolomeo C, Mura B, Mercurio G, D'Arrigo S, Bello G, Maviglia R, Pennisi MA, Antonelli M. Gas conditioning during helmet noninvasive ventilation: effect on comfort, gas exchange, inspiratory effort, transpulmonary pressure and patient-ventilator interaction. Ann Intensive Care 2021; 11:184. [PMID: 34952962 PMCID: PMC8708509 DOI: 10.1186/s13613-021-00972-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/12/2021] [Indexed: 01/21/2023] Open
Abstract
Background There is growing interest towards the use of helmet noninvasive ventilation (NIV) for the management of acute hypoxemic respiratory failure. Gas conditioning through heat and moisture exchangers (HME) or heated humidifiers (HHs) is needed during facemask NIV to provide a minimum level of humidity in the inspired gas (15 mg H2O/L). The optimal gas conditioning strategy during helmet NIV remains to be established. Methods Twenty patients with acute hypoxemic respiratory failure (PaO2/FiO2 < 300 mmHg) underwent consecutive 1-h periods of helmet NIV (PEEP 12 cmH2O, pressure support 12 cmH2O) with four humidification settings, applied in a random order: double-tube circuit with HHs and temperature set at 34 °C (HH34) and 37 °C (HH37); Y-piece circuit with HME; double-tube circuit with no humidification (NoH). Temperature and humidity of inhaled gas were measured through a capacitive hygrometer. Arterial blood gases, discomfort and dyspnea through visual analog scales (VAS), esophageal pressure swings (ΔPES) and simplified pressure–time product (PTPES), dynamic transpulmonary driving pressure (ΔPL) and asynchrony index were measured in each step. Results Median [IqR] absolute humidity, temperature and VAS discomfort were significantly lower during NoH vs. HME, HH34 and HH37: absolute humidity (mgH2O/L) 16 [12–19] vs. 28 [23–31] vs. 28 [24–31] vs. 33 [29–38], p < 0.001; temperature (°C) 29 [28–30] vs. 30 [29–31] vs. 31 [29–32] vs 32. [31–33], p < 0.001; VAS discomfort 4 [2–6] vs. 6 [2–7] vs. 7 [4–8] vs. 8 [4–10], p = 0.03. VAS discomfort increased with higher absolute humidity (p < 0.01) and temperature (p = 0.007). Higher VAS discomfort was associated with increased VAS dyspnea (p = 0.001). Arterial blood gases, respiratory rate, ΔPES, PTPES and ΔPL were similar in all conditions. Overall asynchrony index was similar in all steps, but autotriggering rate was lower during NoH and HME (p = 0.03). Conclusions During 1-h sessions of helmet NIV in patients with hypoxemic respiratory failure, a double-tube circuit with no humidification allowed adequate conditioning of inspired gas, optimized comfort and improved patient–ventilator interaction. Use of HHs or HME in this setting resulted in increased discomfort due to excessive heat and humidity in the interface, which was associated with more intense dyspnea. Trail Registration Registered on clinicaltrials.gov (NCT02875379) on August 23rd, 2016.
Collapse
Affiliation(s)
- Filippo Bongiovanni
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy. .,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy.
| | - Gian Marco Anzellotti
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Luca Salvatore Menga
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Teresa Michi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Melania Cesarano
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Valeria Raggi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Cecilia De Bartolomeo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Benedetta Mura
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Giovanna Mercurio
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Sonia D'Arrigo
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Giuseppe Bello
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Riccardo Maviglia
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Mariano Alberto Pennisi
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Rome, Italy.,Anesthesia, Emergency and Intensive Care Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.Go F. Vito, 00168, Rome, Italy
| |
Collapse
|
6
|
Massion PB, Berg J, Samalea Suarez N, Parzibut G, Lambermont B, Ledoux D, Massion PP. Novel method of transpulmonary pressure measurement with an air-filled esophageal catheter. Intensive Care Med Exp 2021; 9:47. [PMID: 34532776 PMCID: PMC8445653 DOI: 10.1186/s40635-021-00411-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
Background There is a strong rationale for proposing transpulmonary pressure-guided protective ventilation in acute respiratory distress syndrome. The reference esophageal balloon catheter method requires complex in vivo calibration, expertise and specific material order. A simple, inexpensive, accurate and reproducible method of measuring esophageal pressure would greatly facilitate the measure of transpulmonary pressure to individualize protective ventilation in the intensive care unit. Results We propose an air-filled esophageal catheter method without balloon, using a disposable catheter that allows reproducible esophageal pressure measurements. We use a 49-cm-long 10 Fr thin suction catheter, positioned in the lower-third of the esophagus and connected to an air-filled disposable blood pressure transducer bound to the monitor and pressurized by an air-filled infusion bag. Only simple calibration by zeroing the transducer to atmospheric pressure and unit conversion from mmHg to cmH2O are required. We compared our method with the reference balloon catheter both ex vivo, using pressure chambers, and in vivo, in 15 consecutive mechanically ventilated patients. Esophageal-to-airway pressure change ratios during the dynamic occlusion test were close to one (1.03 ± 0.19 and 1.00 ± 0.16 in the controlled and assisted modes, respectively), validating the proper esophageal positioning. The Bland–Altman analysis revealed no bias of our method compared with the reference and good precision for inspiratory, expiratory and delta esophageal pressure measurements in both the controlled (largest bias −0.5 cmH2O [95% confidence interval: −0.9; −0.1] cmH2O; largest limits of agreement −3.5 to 2.5 cmH2O) and assisted modes (largest bias −0.3 [−2.6; 2.0] cmH2O). We observed a good repeatability (intra-observer, intraclass correlation coefficient, ICC: 0.89 [0.79; 0.96]) and reproducibility (inter-observer ICC: 0.89 [0.76; 0.96]) of esophageal measurements. The direct comparison with pleural pressure in two patients and spectral analysis by Fourier transform confirmed the reliability of the air-filled catheter-derived esophageal pressure as an accurate surrogate of pleural pressure. A calculator for transpulmonary pressures is available online. Conclusions We propose a simple, minimally invasive, inexpensive and reproducible method for esophageal pressure monitoring with an air-filled esophageal catheter without balloon. It holds the promise of widespread bedside use of transpulmonary pressure-guided protective ventilation in ICU patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00411-w.
Collapse
Affiliation(s)
- Paul Bernard Massion
- Department of Intensive Care, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium.
| | - Julien Berg
- Department of Intensive Care, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium
| | - Nicolas Samalea Suarez
- Department of Anesthesiology, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium
| | - Gilles Parzibut
- Department of Intensive Care, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium
| | - Bernard Lambermont
- Department of Intensive Care, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium
| | - Didier Ledoux
- Department of Intensive Care, University Hospital of Liege, Sart-Tilman B35, 4000, Liege, Belgium
| | - Pierre Pascal Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
7
|
İnci K, Boyacı N, Kara İ, Gürsel G. Assessment of different computing methods of inspiratory transpulmonary pressure in patients with multiple mechanical problems. J Clin Monit Comput 2021; 36:1173-1180. [PMID: 34480238 PMCID: PMC8415196 DOI: 10.1007/s10877-021-00751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
While plateau airway pressure alone is an unreliable estimate of lung overdistension inspiratory transpulmonary pressure (PL) is an important parameter to reflect it in patients with ARDS and there is no concensus about which computation method should be used to calculate it. Recent studies suggest that different formulas may lead to different tidal volume and PEEP settings. The aim of this study is to compare 3 different inspiratory PL measurement method; direct measurement (PLD), elastance derived (PLE) and release derived (PLR) methods in patients with multiple mechanical abnormalities. 34 patients were included in this prospective observational study. Measurements were obtained during volume controlled mechanical ventilation in sedated and paralyzed patients. During the study day airway and eosephageal pressures, flow, tidal volume were measured and elastance, inspiratory PLE, PLD and PLR were calculated. Mean age of the patients was 67 ± 15 years and APACHE II score was 27 ± 7. Most frequent diagnosis of the patients were pneumonia (71%), COPD exacerbation(56%), pleural effusion (55%) and heart failure(50%). Mean plateau pressure of the patients was 22 ± 5 cmH2O and mean respiratory system elastance was 36.7 ± 13 cmH2O/L. EL/ERS% was 0.75 ± 0.35%. Mean expiratory transpulmonary pressure was 0.54 ± 7.7 cmH2O (min: − 21, max: 12). Mean PLE (18 ± 9 H2O) was significantly higher than PLD (13 ± 9 cmH2O) and PLR methods (11 ± 9 cmH2O). There was a good aggreement and there was no bias between the measurements in Bland–Altman analysis. The estimated bias was similar between the PLD and PLE (− 3.12 ± 11 cmH2O) and PLE and PLR (3.9 ± 10.9 cmH2O) measurements. Our results suggest that standardization of calculation method of inspiratory PL is necessary before using it routinely to estimate alveolar overdistension.
Collapse
Affiliation(s)
- Kamil İnci
- Critical Care Training Programme, Division of Critical Care, Department of Internal Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - Nazlıhan Boyacı
- Critical Care Training Programme, Division of Critical Care, Department of Internal Medicine, School of Medicine, Gazi University, Ankara, Turkey
| | - İskender Kara
- Critical Care Training Programme, Division of Critical Care, Department of Anaesthesiology, School of Medicine, Gazi University, Ankara, Turkey.
| | - Gül Gürsel
- Critical Care Training Programme, Department of Pulmonary Critical Care Medicine, School of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
8
|
When could airway plateau pressure above 30 cmH 2O be acceptable in ARDS patients? Intensive Care Med 2021; 47:1028-1031. [PMID: 34236478 PMCID: PMC8265297 DOI: 10.1007/s00134-021-06472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022]
|
9
|
Grieco DL, Menga LS, Raggi V, Bongiovanni F, Anzellotti GM, Tanzarella ES, Bocci MG, Mercurio G, Dell'Anna AM, Eleuteri D, Bello G, Maviglia R, Conti G, Maggiore SM, Antonelli M. Physiological Comparison of High-Flow Nasal Cannula and Helmet Noninvasive Ventilation in Acute Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2020; 201:303-312. [PMID: 31687831 DOI: 10.1164/rccm.201904-0841oc] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rationale: High-flow nasal cannula (HFNC) and helmet noninvasive ventilation (NIV) are used for the management of acute hypoxemic respiratory failure.Objectives: Physiological comparison of HFNC and helmet NIV in patients with hypoxemia.Methods: Fifteen patients with hypoxemia with PaO2/FiO2 < 200 mm Hg received helmet NIV (positive end-expiratory pressure ≥ 10 cm H2O, pressure support = 10-15 cm H2O) and HFNC (50 L/min) in randomized crossover order. Arterial blood gases, dyspnea, and comfort were recorded. Inspiratory effort was estimated by esophageal pressure (Pes) swings. Pes-simplified pressure-time product and transpulmonary pressure swings were measured.Measurements and Main Results: As compared with HFNC, helmet NIV increased PaO2/FiO2 (median [interquartile range]: 255 mm Hg [140-299] vs. 138 [101-172]; P = 0.001) and lowered inspiratory effort (7 cm H2O [4-11] vs. 15 [8-19]; P = 0.001) in all patients. Inspiratory effort reduction by NIV was linearly related to inspiratory effort during HFNC (r = 0.84; P < 0.001). Helmet NIV reduced respiratory rate (24 breaths/min [23-31] vs. 29 [26-32]; P = 0.027), Pes-simplified pressure-time product (93 cm H2O ⋅ s ⋅ min-1 [43-138] vs. 200 [168-335]; P = 0.001), and dyspnea (visual analog scale 3 [2-5] vs. 8 [6-9]; P = 0.002), without affecting PaCO2 (P = 0.80) and comfort (P = 0.50). In the overall cohort, transpulmonary pressure swings were not different between treatments (NIV = 18 cm H2O [14-21] vs. HFNC = 15 [8-19]; P = 0.11), but patients exhibiting lower inspiratory effort on HFNC experienced increases in transpulmonary pressure swings with helmet NIV. Higher transpulmonary pressure swings during NIV were associated with subsequent need for intubation.Conclusions: As compared with HFNC in hypoxemic respiratory failure, helmet NIV improves oxygenation, reduces dyspnea, inspiratory effort, and simplified pressure-time product, with similar transpulmonary pressure swings, PaCO2, and comfort.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Luca S Menga
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Valeria Raggi
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Filippo Bongiovanni
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Gian Marco Anzellotti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Eloisa S Tanzarella
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Maria Grazia Bocci
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giovanna Mercurio
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Antonio M Dell'Anna
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Davide Eleuteri
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giuseppe Bello
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Riccardo Maviglia
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Giorgio Conti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| | - Salvatore Maurizio Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Rome, Italy; and
| |
Collapse
|
10
|
Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019; 85:1014-1023. [PMID: 30871304 DOI: 10.23736/s0375-9393.19.13418-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The role of spontaneous breathing among patients with acute hypoxemic respiratory failure and ARDS is debated: while avoidance of intubation with noninvasive ventilation (NIV) or high-flow nasal cannula improves clinical outcome, treatment failure worsens mortality. Recent data suggest patient self-inflicted lung injury (P-SILI) as a possible mechanism aggravating lung damage in these patients. P-SILI is generated by intense inspiratory effort yielding: (A) swings in transpulmonary pressure (i.e. lung stress) causing the inflation of big volumes in an aerated compartment markedly reduced by the disease-induced aeration loss; (B) abnormal increases in transvascular pressure, favouring negative-pressure pulmonary edema; (C) an intra-tidal shift of gas between different lung zones, generated by different transmission of muscular force (i.e. pendelluft); (D) diaphragm injury. Experimental data suggest that not all subjects are exposed to the development of P-SILI: patients with a PaO2/FiO2 ratio below 200 mmHg may represent the most at risk population. For them, current evidence indicates that high-flow nasal cannula alone may be superior to intermittent sessions of low-PEEP NIV delivered through face mask, while continuous high-PEEP helmet NIV likely promotes treatment success and may mitigate lung injury. The optimal initial noninvasive treatment of hypoxemic respiratory failure/ARDS remains however uncertain; high-flow nasal cannula and high-PEEP helmet NIV are promising tools to enhance success of the approach, but the best balance between these techniques has yet to be identified. During noninvasive support, careful clinical monitoring remains mandatory for prompt detection of treatment failure, in order not to delay intubation and protective ventilation.
Collapse
Affiliation(s)
- Domenico L Grieco
- Institute of Anesthesiology and Resuscitation, Sacred Heart Catholic University, Rome, Italy - .,Department of Emergency, Anesthesiology and Resuscitation Sciences, A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy -
| | - Luca S Menga
- Institute of Anesthesiology and Resuscitation, Sacred Heart Catholic University, Rome, Italy.,Department of Emergency, Anesthesiology and Resuscitation Sciences, A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| | - Davide Eleuteri
- Institute of Anesthesiology and Resuscitation, Sacred Heart Catholic University, Rome, Italy.,Department of Emergency, Anesthesiology and Resuscitation Sciences, A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| | - Massimo Antonelli
- Institute of Anesthesiology and Resuscitation, Sacred Heart Catholic University, Rome, Italy.,Department of Emergency, Anesthesiology and Resuscitation Sciences, A. Gemelli University Polyclinic, IRCCS and Foundation, Rome, Italy
| |
Collapse
|