1
|
Bergman ZR, Kiberenge RK, Bianco RW, Beilman GJ, Brophy CM, Hocking KM, Alvis BD, Wise ES. Norepinephrine Infusion and the Central Venous Waveform in a Porcine Model of Endotoxemic Hypotension with Resuscitation: A Large Animal Study. J INVEST SURG 2025; 38:2445603. [PMID: 39761972 PMCID: PMC11709120 DOI: 10.1080/08941939.2024.2445603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Venous waveform analysis is an emerging technique to estimate intravascular fluid status by fast Fourier transform deconvolution. Fluid status has been shown proportional to f0, the amplitude of the fundamental frequency of the waveform's cardiac wave upon deconvolution. Using a porcine model of distributive shock and fluid resuscitation, we sought to determine the influence of norepinephrine on f0 of the central venous waveform. METHODS Eight pigs were anesthetized, catheterized and treated with norepinephrine after precipitation of endotoxemic hypotension, and subsequent fluid resuscitation to mimic sepsis physiology. Hemodynamic parameters and central venous waveforms were continually transduced throughout the protocol for post-hoc analysis. Central venous waveform f0 before, during and after norepinephrine administration were determined using Fourier analysis. RESULTS Heart rate increased, while central venous pressure, pulmonary capillary wedge pressure and stroke volume decreased throughout norepinephrine administration (p < 0.05). Mean f0 at pre-norepinephrine, and doses 0.05, 0.10, 0.15, 0.20 and 0.25 mcg/kg/min, were 2.5, 1.4, 1.7, 1.7, 1.6 and 1.4 mmHg2, respectively (repeated measures ANOVA; p < 0.001). On post-hoc comparison to pre-norepinephrine, f0 at 0.05 mcg/kg/min was decreased (p = 0.04). CONCLUSIONS As the performance of f0 was previously characterized during fluid administration, these data offer novel insight into the performance of f0 during vasopressor delivery. Central venous waveform f0 is a decreased with norepinephrine, in concordance with pulmonary capillary wedge pressure. This allows contextualization of the novel, venous-derived signal f0 during vasopressor administration, a finding that must be understood prior to clinical translation.
Collapse
Affiliation(s)
- Zachary R Bergman
- Department of Surgery, University of Minnesota Twin Cities Medical School, Minneapolis, MN, USA, 420 Delaware St SE MMC 195, Minneapolis MN 55455
| | - Roy K Kiberenge
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Richard W Bianco
- Department of Surgery, University of Minnesota Twin Cities Medical School, Minneapolis, MN, USA, 420 Delaware St SE MMC 195, Minneapolis MN 55455
| | - Gregory J Beilman
- Department of Surgery, University of Minnesota Twin Cities Medical School, Minneapolis, MN, USA, 420 Delaware St SE MMC 195, Minneapolis MN 55455
| | - Colleen M Brophy
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA, 1161 21 Ave S. D-4303 MCN, Nashville TN 37232; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kyle M Hocking
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA, 1161 21 Ave S. D-4303 MCN, Nashville TN 37232; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631
| | - Bret D Alvis
- Vanderbilt University Department of Biomedical Engineering, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235-1631
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville TN 37232
| | - Eric S Wise
- Department of Surgery, University of Minnesota Twin Cities Medical School, Minneapolis, MN, USA, 420 Delaware St SE MMC 195, Minneapolis MN 55455
| |
Collapse
|
2
|
Lin J, Shan R, Lin S, Wu K. The Efficacy of Hydrocortisone Combined With Norepinephrine in the Treatment of Severe Septic Shock and Its Effect on Immunoinflammatory Indexes. Br J Hosp Med (Lond) 2025; 86:1-13. [PMID: 40265536 DOI: 10.12968/hmed.2024.0814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Aims/Background Severe septic shock (SS) is a life-threatening condition characterized by systemic inflammation and organ dysfunction. Hydrocortisone is used to reduce inflammation, while norepinephrine raises blood pressure and supports vasoconstriction, helping to maintain organ perfusion. This study aims to investigate the efficacy of hydrocortisone combined with norepinephrine in the treatment of SS and its effect on immunoinflammatory indexes. Methods A total of 126 patients with severe SS admitted to Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University from December 2020 to December 2023 were retrospectively selected as the study subjects. Patients were divided into control group (n = 67) and observation group (n = 59) according to the treatment given. The control group was treated with norepinephrine, whereas the observation group was treated with hydrocortisone combined with norepinephrine. The clinical efficacy of the treatment given between the two groups was compared. The serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), procalcitonin (PCT) and serum amyloid A (SAA) were compared between the two groups before and after treatment. The occurrence of adverse reactions was compared between the two groups. The clinical prognostic indexes of the two groups were analyzed. Results The total efficacy rate of observation group (93.22%) was significantly higher than that of control group (74.63%) (p = 0.005). After treatment, the levels of CRP, PCT, IL-6 and SAA in both groups were significantly decreased, with the observation group exhibiting significantly lower levels of these inflammatory indexes than the control group (p < 0.05). There was no significant difference in the incidence of adverse reactions between the two groups (p > 0.05). After 7 days of treatment, compared with the control group, the observation group showed significantly lower Acute Physiology and Chronic Health Evaluation (APACHE) II score and Sepsis-related Organ Failure Assessment (SOFA) score, required shorter mechanical ventilation time and total emergency intensive care unit (EICU) treatment time, and had lower mortality within 4 weeks (p < 0.05). Conclusion Hydrocortisone combined with norepinephrine holds high degree of efficacy in the treatment of severe SS by alleviating inflammation, improving prognosis and reducing mortality, while maintaining a good safety profile.
Collapse
Affiliation(s)
- Juanjuan Lin
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Renfei Shan
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Shasha Lin
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Keke Wu
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
3
|
Ahn C, Yu G, Shin TG, Cho Y, Park S, Suh GY. Comparison of Early and Late Norepinephrine Administration in Patients With Septic Shock: A Systematic Review and Meta-Analysis. Chest 2024; 166:1417-1430. [PMID: 38972348 DOI: 10.1016/j.chest.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Vasopressor administration at an appropriate time is crucial, but the optimal timing remains controversial. RESEARCH QUESTION Does early vs late norepinephrine administration impact the prognosis of septic shock? STUDY DESIGN AND METHODS Searches were conducted in PubMed, EMBASE, the Cochrane Library, and KMbase databases. We included studies of adults with sepsis and categorized patients into an early and late norepinephrine group according to specific time points or differences in norepinephrine use protocols. The primary outcome was overall mortality. The secondary outcomes included length of stay in the ICU, days free from ventilator use, days free from renal replacement therapy, days free from vasopressor use, adverse events, and total fluid volume. RESULTS Twelve studies (four randomized controlled trials [RCTs] and eight observational studies) comprising 7,281 patients were analyzed. For overall mortality, no significant difference was found between the early norepinephrine group and late norepinephrine group in RCTs (OR, 0.70; 95% CI, 0.41-1.19) or observational studies (OR, 0.83; 95% CI, 0.54-1.29). In the two RCTs without a restrictive fluid strategy that prioritized vasopressors and lower IV fluid volumes, the early norepinephrine group showed significantly lower mortality than the late norepinephrine group (OR, 0.49; 95%, CI, 0.25-0.96). The early norepinephrine group demonstrated more mechanical ventilator-free days in observational studies (mean difference, 4.06; 95% CI, 2.82-5.30). The incidence of pulmonary edema was lower in the early norepinephrine group in the three RCTs that reported this outcome (OR, 0.43; 95% CI, 0.25-0.74). No differences were found in the other secondary outcomes. INTERPRETATION Overall mortality did not differ significantly between early and late norepinephrine administration for septic shock. However, early norepinephrine administration seemed to reduce pulmonary edema incidence, and mortality improvement was observed in studies without fluid restriction interventions, favoring early norepinephrine use.
Collapse
Affiliation(s)
- Chiwon Ahn
- Department of Emergency Medicine, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Gina Yu
- Department of Emergency Medicine, University of Yonsei College of Medicine, Seoul, South Korea
| | - Tae Gun Shin
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Youngsuk Cho
- Department of Emergency Medicine, Kangdong Sacred Heart Hospital, Hallym University, Seoul, South Korea
| | - Sunghoon Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Gee Young Suh
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Sun H, Xu L, Ruan S, Ratovelomanana-Vidal V, Chen GQ, Zhang X. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of α-Nitro Ketones. Org Lett 2024. [PMID: 39538111 DOI: 10.1021/acs.orglett.4c03859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A catalytic protocol for the enantioselective hydrogenation and transfer hydrogenation of α-nitro ketones was developed, providing a wide range of β-nitro-α-phenylethanols with high yields and excellent enantioselectivities (up to 98% yield and up to >99.9% ee). Compatibility with a wide range of solvents and bases demonstrates the robustness of this reaction. The synthetic potential of the protocol was demonstrated by the high TON experiment as well as the application in the synthesis of key intermediates of mirabegron (S/C = 10,000, 95% yield, 99% ee).
Collapse
Affiliation(s)
- Hao Sun
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Liren Xu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Sai Ruan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D Team, 75005 Paris, France
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
5
|
Gupta S, Mandal S, Banerjee K, Almarshood H, Pushpakumar SB, Sen U. Complex Pathophysiology of Acute Kidney Injury (AKI) in Aging: Epigenetic Regulation, Matrix Remodeling, and the Healing Effects of H 2S. Biomolecules 2024; 14:1165. [PMID: 39334931 PMCID: PMC11429536 DOI: 10.3390/biom14091165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The kidney is an essential excretory organ that works as a filter of toxins and metabolic by-products of the human body and maintains osmotic pressure throughout life. The kidney undergoes several physiological, morphological, and structural changes with age. As life expectancy in humans increases, cell senescence in renal aging is a growing challenge. Identifying age-related kidney disorders and their cause is one of the contemporary public health challenges. While the structural abnormalities to the extracellular matrix (ECM) occur, in part, due to changes in MMPs, EMMPRIN, and Meprin-A, a variety of epigenetic modifiers, such as DNA methylation, histone alterations, changes in small non-coding RNA, and microRNA (miRNA) expressions are proven to play pivotal roles in renal pathology. An aged kidney is vulnerable to acute injury due to ischemia-reperfusion, toxic medications, altered matrix proteins, systemic hemodynamics, etc., non-coding RNA and miRNAs play an important role in renal homeostasis, and alterations of their expressions can be considered as a good marker for AKI. Other epigenetic changes, such as histone modifications and DNA methylation, are also evident in AKI pathophysiology. The endogenous production of gaseous molecule hydrogen sulfide (H2S) was documented in the early 1980s, but its ameliorative effects, especially on kidney injury, still need further research to understand its molecular mode of action in detail. H2S donors heal fibrotic kidney tissues, attenuate oxidative stress, apoptosis, inflammation, and GFR, and also modulate the renin-angiotensin-aldosterone system (RAAS). In this review, we discuss the complex pathophysiological interplay in AKI and its available treatments along with future perspectives. The basic role of H2S in the kidney has been summarized, and recent references and knowledge gaps are also addressed. Finally, the healing effects of H2S in AKI are described with special emphasis on epigenetic regulation and matrix remodeling.
Collapse
Affiliation(s)
- Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College, College Para Rd, Raniganj 713347, West Bengal, India
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sathnur B Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Perna B, Raparelli V, Tordo Caprioli F, Blanaru OT, Malacarne C, Crosetti C, Portoraro A, Zanotto A, Strocchi FM, Rapino A, Costanzini A, Maritati M, Lazzari R, Spampinato MD, Contini C, De Giorgio R, Guarino M. Sex- and Gender-Based Analysis on Norepinephrine Use in Septic Shock: Why Is It Still a Male World? Microorganisms 2024; 12:821. [PMID: 38674765 PMCID: PMC11052153 DOI: 10.3390/microorganisms12040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Sex and gender are fundamental health determinants and their role as modifiers of treatment response is increasingly recognized. Norepinephrine is a cornerstone of septic shock management and its use is based on the highest level of evidence compared to dopamine. The related 2021 Surviving Sepsis Campaign (SCC) recommendation is presumably applicable to both females and males; however, a sex- and gender-based analysis is lacking, thus not allowing generalizable conclusions. This paper was aimed at exploring whether sex- and gender-disaggregated data are available in the evidence supporting this recommendation. For all the studies underpinning it, four pairs of authors, including a woman and a man, extracted data concerning sex and gender, according to the Sex and Gender Equity in Research guidelines. Nine manuscripts were included with an overall population of 2126 patients, of which 43.2% were females. No sex analysis was performed and gender was never reported. In conclusion, the present manuscript highlighted that the clinical studies underlying the SCC recommendation of NE administration in septic shock have neglected the likely role of sex and gender as modifiers of treatment response, thus missing the opportunity of sex- and gender-specific guidelines.
Collapse
Affiliation(s)
- Benedetta Perna
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Federica Tordo Caprioli
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Oana Teodora Blanaru
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Cecilia Malacarne
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Cecilia Crosetti
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Andrea Portoraro
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Alex Zanotto
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Francesco Maria Strocchi
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Alessandro Rapino
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Anna Costanzini
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Martina Maritati
- Infectious Diseases Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.); (C.C.)
| | - Roberto Lazzari
- Emergency Department, Hospital de la Santa Creu I Sant Pau, 08041 Barcelona, Spain;
| | - Michele Domenico Spampinato
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
- Emergency Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Carlo Contini
- Infectious Diseases Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (M.M.); (C.C.)
| | - Roberto De Giorgio
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
| | - Matteo Guarino
- Department of Translational Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (B.P.); (F.T.C.); (O.T.B.); (C.M.); (C.C.); (A.P.); (A.Z.); (F.M.S.); (A.R.); (A.C.); (M.D.S.); (M.G.)
- Emergency Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
7
|
Ramasco F, Nieves-Alonso J, García-Villabona E, Vallejo C, Kattan E, Méndez R. Challenges in Septic Shock: From New Hemodynamics to Blood Purification Therapies. J Pers Med 2024; 14:176. [PMID: 38392609 PMCID: PMC10890552 DOI: 10.3390/jpm14020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Sepsis and septic shock are associated with high mortality, with diagnosis and treatment remaining a challenge for clinicians. Their management classically encompasses hemodynamic resuscitation, antibiotic treatment, life support, and focus control; however, there are aspects that have changed. This narrative review highlights current and avant-garde methods of handling patients experiencing septic shock based on the experience of its authors and the best available evidence in a context of uncertainty. Following the first recommendation of the Surviving Sepsis Campaign guidelines, it is recommended that specific sepsis care performance improvement programs are implemented in hospitals, i.e., "Sepsis Code" programs, designed ad hoc, to achieve this goal. Regarding hemodynamics, the importance of perfusion and hemodynamic coherence stand out, which allow for the recognition of different phenotypes, determination of the ideal time for commencing vasopressor treatment, and the appropriate fluid therapy dosage. At present, this is not only important for the initial timing, but also for de-resuscitation, which involves the early weaning of support therapies, directed elimination of fluids, and fluid tolerance concept. Finally, regarding blood purification therapies, those aimed at eliminating endotoxins and cytokines are attractive in the early management of patients in septic shock.
Collapse
Affiliation(s)
- Fernando Ramasco
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Jesús Nieves-Alonso
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Esther García-Villabona
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Carmen Vallejo
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| | - Eduardo Kattan
- Departamento de Medicina Intensiva del Adulto, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago 8320000, Chile
| | - Rosa Méndez
- Department of Anaesthesiology and Surgical Intensive Care, Hospital Universitario de La Princesa, Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
8
|
Suh GJ, shin TG, Kwon WY, Kim K, Jo YH, Choi SH, Chung SP, Kim WY, for the Korean Shock Society Investigators. Hemodynamic management of septic shock: beyond the Surviving Sepsis Campaign guidelines. Clin Exp Emerg Med 2023; 10:255-264. [PMID: 37439141 PMCID: PMC10579730 DOI: 10.15441/ceem.23.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023] Open
Abstract
Although the Surviving Sepsis Campaign guidelines provide standardized and generalized guidance, they are less individualized. This review focuses on recent updates in the hemodynamic management of septic shock. Monitoring and intervention for septic shock should be personalized according to the phase of shock. In the salvage phase, fluid resuscitation and vasopressors should be given to provide life-saving tissue perfusion. During the optimization phase, tissue perfusion should be optimized. In the stabilization and de-escalation phases, minimal fluid infusion and safe fluid removal should be performed, respectively, while preserving organ perfusion. There is controversy surrounding the use of restrictive versus liberal fluid strategies after initial resuscitation. Fluid administration after initial resuscitation should depend upon the patient's fluid responsiveness and requires individualized management. A number of dynamic tests have been proposed to monitor fluid responsiveness, which can help clinicians decide whether to give fluid or not. The optimal timing for the initiation of vasopressor agents is unknown. Recent data suggest that early vasopressor initiation should be considered. Inotropes can be considered in patients with decreased cardiac contractility associated with impaired tissue perfusion despite adequate volume status and arterial blood pressure. Venoarterial extracorporeal membrane oxygenation should be considered for refractory septic shock with severe cardiac systolic dysfunction.
Collapse
Affiliation(s)
- Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Tae Gun shin
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - You Hwan Jo
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sung-Hyuk Choi
- Department of Emergency Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sung Phil Chung
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Won Young Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - for the Korean Shock Society Investigators
- Department of Emergency Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Emergency Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Argenti G, Ishikawa G, Fadel CB. The Direct Effects of Norepinephrine Administration on Pressure Injuries in Intensive Care Patients: A Retrospective Cohort Study. Adv Skin Wound Care 2023; 36:1-12. [PMID: 37603319 DOI: 10.1097/asw.0000000000000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To estimate the direct effects of norepinephrine administration on pressure injury (PI) incidence in intensive care patients. METHODS This is a secondary and exploratory analysis of a retrospective cohort study of intensive care patients discharged in 2017 to 2018. Observational cases only included patients who received primary PI preventive care during intensive care (N = 479). As a first-choice vasopressor drug, norepinephrine administration was approximated with days of norepinephrine. Linear path models were examined from norepinephrine administration to PI development. The identification of confounding variables and instrumental variables was grounded on directed acyclic graph theory. Direct effects were estimated with instrumental variables to overcome bias from unobserved variables. As models were re-specified with data analysis, the robustness of path identification was improved by requiring graph invariance with sample split. RESULTS Norepinephrine caused PI development from one stage to another after 4.0 to 6.3 days of administration in this cohort as a total effect (90% CI). The direct effect was estimated to advance the stage of PI at a rate of 0.140 per day of norepinephrine administered (standard error, 0.029; P < .001). The direct effect accounted for about 70% of the total effect on PI development. CONCLUSIONS Estimations with instrumental variables and structural equation modeling showed that norepinephrine administration directly and substantially affected hospital-acquired PI incidence in intensive care patients in this cohort.
Collapse
Affiliation(s)
- Graziela Argenti
- Graziela Argenti, MSc, RN, is Professor, Department of Nursing, Universidade Estadual de Ponta Grossa, Brazil. Gerson Ishikawa, DEng, is Associate Professor, Department of Production Engineering, Universidade Tecnologica Federal do Parana, Ponta Grossa. Also at Universidade Estadual de Ponta Grossa, Cristina Berger Fadel, DMD, is Associate Professor, Department of Dentistry. Acknowledgment: This research project was submitted and registered as CAAE 21591719.7.0000.0105 in PlataformaBrasil of Conselho Nacional de Saude and approved by the research ethics committee of Universidade Estadual de Ponta Grossa (resolution 3.604.604). The authors have disclosed no financial relationships related to this article. Submitted May 2, 2022; accepted in revised form December 1, 2022
| | | | | |
Collapse
|
10
|
Guarino M, Perna B, Cesaro AE, Maritati M, Spampinato MD, Contini C, De Giorgio R. 2023 Update on Sepsis and Septic Shock in Adult Patients: Management in the Emergency Department. J Clin Med 2023; 12:jcm12093188. [PMID: 37176628 PMCID: PMC10179263 DOI: 10.3390/jcm12093188] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Sepsis/septic shock is a life-threatening and time-dependent condition that requires timely management to reduce mortality. This review aims to update physicians with regard to the main pillars of treatment for this insidious condition. METHODS PubMed, Scopus, and EMBASE were searched from inception with special attention paid to November 2021-January 2023. RESULTS The management of sepsis/septic shock is challenging and involves different pathophysiological aspects, encompassing empirical antimicrobial treatment (which is promptly administered after microbial tests), fluid (crystalloids) replacement (to be established according to fluid tolerance and fluid responsiveness), and vasoactive agents (e.g., norepinephrine (NE)), which are employed to maintain mean arterial pressure above 65 mmHg and reduce the risk of fluid overload. In cases of refractory shock, vasopressin (rather than epinephrine) should be combined with NE to reach an acceptable level of pressure control. If mechanical ventilation is indicated, the tidal volume should be reduced from 10 to 6 mL/kg. Heparin is administered to prevent venous thromboembolism, and glycemic control is recommended. The efficacy of other treatments (e.g., proton-pump inhibitors, sodium bicarbonate, etc.) is largely debated, and such treatments might be used on a case-to-case basis. CONCLUSIONS The management of sepsis/septic shock has significantly progressed in the last few years. Improving knowledge of the main therapeutic cornerstones of this challenging condition is crucial to achieve better patient outcomes.
Collapse
Affiliation(s)
- Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Benedetta Perna
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Alice Eleonora Cesaro
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Infectious and Dermatology Diseases, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Domenico Spampinato
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Contini
- Infectious and Dermatology Diseases, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Coen D. Fluids and vasopressors in septic shock: basic knowledge for a first approach in the emergency department. EMERGENCY CARE JOURNAL 2023. [DOI: 10.4081/ecj.2023.10810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Much research, both pathophysiological and clinical, has been produced about septic shock during the last 20 years. Nevertheless, many aspects of treatment are still controversial, among these the approach to the administration of fluids and vasopressors. After the first clinical trial on Early goal-directed therapy (EGDT) was published, a liberal approach to the use of fluids and conservative use of vasopressors prevailed, but in recent years a more restrictive use of fluids and an earlier introduction of vasopressors seem to be preferred. Although both treatments are based on sound pathophysiological knowledge, clinical evidence is still inadequate and somehow controversial. In this non-systematic review, recent research on the hemodynamics of septic shock and its treatment with fluids and inotropes is discussed. As a conclusion, general indications are proposed for a practical approach to patients in septic shock.
Collapse
|
12
|
Yamashita T, Street JM, Halasa BC, Naito Y, Tsuji T, Tsuji N, Hayase N, Yuen PST, Star RA. The effect of continuous intravenous norepinephrine infusion on systemic hemodynamics in a telemetrically-monitored mouse model of sepsis. PLoS One 2022; 17:e0271667. [PMID: 35951593 PMCID: PMC9371331 DOI: 10.1371/journal.pone.0271667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction, results from dysregulated host responses to infection and still has a high incidence and mortality. Although administration of vasopressors to treat septic shock is standard of care, the benefits are not well established. We evaluated the effect of continuous intravenous norepinephrine infusion in a septic cecal ligation and puncture (CLP) mouse model, evaluating systemic hemodynamics and body temperature post-hoc. CLP surgery significantly decreased mean arterial blood pressure (MAP), heart rate, and body temperature within six hours. Continuous norepinephrine infusion (NE+, n = 12) started at the time of CLP surgery significantly increased MAP at 24 and 30 hours and heart rate at 6, 18, 24, and 30 hours after CLP vs CLP alone (NE-, n = 12). However, addition of norepinephrine did not improve survival rate (NE+ n = 34, NE- n = 31). Early (6 hours or earlier, when the animal became visibly sick) MAP did not predict 7-day mortality. However, heart rates at 3 and at 6 hours after CLP/norepinephrine (NE+) were highly predictive of mortality, as also been found in one clinical study. We conclude that limited hemodynamic support can be provided in a mouse sepsis model. We propose that heart rate can be used to stratify severity of illness in rodent preclinical studies of sepsis therapeutics.
Collapse
Affiliation(s)
- Tetsushi Yamashita
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Jonathan M. Street
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Brianna C. Halasa
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Yoshitaka Naito
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Takayuki Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoko Tsuji
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, NIDDK, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med 2021; 48:148-163. [PMID: 34910228 DOI: 10.1007/s00134-021-06595-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Clinical and pathophysiological understanding of septic shock has progressed exponentially in the previous decades, translating into a steady decrease in septic shock-related morbidity and mortality. Even though large randomized, controlled trials have addressed fundamental aspects of septic shock resuscitation, many questions still exist. In this review, we will describe the current standards of septic shock resuscitation, but the emphasis will be placed on evolving concepts in different domains such as clinical resuscitation targets, adequate use of fluids and vasoactive drugs, refractory shock, and the use of extracorporeal therapies. Multiple research opportunities remain open, and collaborative endeavors should be performed to fill in these gaps.
Collapse
|
14
|
Judickas Š, Stasiūnaitis R, Žučenka A, Žvirblis T, Šerpytis M, Šipylaitė J. Outcomes and Risk Factors of Critically Ill Patients with Hematological Malignancy. Prospective Single-Centre Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57121317. [PMID: 34946262 PMCID: PMC8707137 DOI: 10.3390/medicina57121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023]
Abstract
Background and Objectives: Oncohematological patients have a high risk of mortality when they need treatment in an intensive care unit (ICU). The aim of our study is to analyze the outcomes of oncohemathological patients admitted to the ICU and their risk factors. Materials and Methods: A prospective single-center observational study was performed with 114 patients from July 2017 to December 2019. Inclusion criteria were transfer to an ICU, hematological malignancy, age >18 years, a central line or arterial line inserted or planned to be inserted, and a signed informed consent form. Univariate and multivariable logistic regression models were used to evaluate the potential risk factors for ICU mortality. Results: ICU mortality was 44.74%. Invasive mechanical ventilation in ICU was used for 55.26% of the patients, and vasoactive drugs were used for 77.19% of patients. Factors independently associated with it were qSOFA score ≥2, increase of SOFA score over the first 48 h, mechanical ventilation on the first day in ICU, need for colistin therapy, lower arterial pH on arrival to ICU. Cut-off value of the noradrenaline dose associated with ICU mortality was 0.21 μg/kg/min with a ROC of 0.9686 (95% CI 0.93-1.00, p < 0.0001). Conclusions: Mortality of oncohematological patients in the ICU is high and it is associated with progression of organ dysfunction over the first 48 h in ICU, invasive mechanical ventilation and need for relatively low dose of noradrenaline. Despite our findings, we do not recommend making decisions regarding treatment limitations for patients who have reached cut-off dose of noradrenaline.
Collapse
Affiliation(s)
- Šarūnas Judickas
- Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania; (M.Š.); (J.Š.)
- Correspondence:
| | - Raimundas Stasiūnaitis
- Faculty of Medicine, Vilnius University, M. K. Čiurlionio Str. 21/27, 03101 Vilnius, Lithuania;
| | - Andrius Žučenka
- Clinic of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania;
| | - Tadas Žvirblis
- Department of Mechanics and Material Engineering, Faculty of Mechanics, Vilnius Gediminas Technical University Vilnius, J. Basanaviciaus Str. 28, 03224 Vilnius, Lithuania;
| | - Mindaugas Šerpytis
- Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania; (M.Š.); (J.Š.)
| | - Jūratė Šipylaitė
- Department of Anaesthesiology and Intensive Care, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, 08661 Vilnius, Lithuania; (M.Š.); (J.Š.)
| |
Collapse
|
15
|
Gavelli F, Castello LM, Avanzi GC. Management of sepsis and septic shock in the emergency department. Intern Emerg Med 2021; 16:1649-1661. [PMID: 33890208 PMCID: PMC8354945 DOI: 10.1007/s11739-021-02735-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Early management of sepsis and septic shock is crucial for patients' prognosis. As the Emergency Department (ED) is the place where the first medical contact for septic patients is likely to occur, emergency physicians play an essential role in the early phases of patient management, which consists of accurate initial diagnosis, resuscitation, and early antibiotic treatment. Since the issuing of the Surviving Sepsis Campaign guidelines in 2016, several studies have been published on different aspects of sepsis management, adding a substantial amount of new information on the pathophysiology and treatment of sepsis and septic shock. In light of this emerging evidence, the present narrative review provides a comprehensive account of the recent advances in septic patient management in the ED.
Collapse
Affiliation(s)
- Francesco Gavelli
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Via Solaroli 17, Novara, Italy.
- Emergency Medicine Department, AOU Maggiore Della Carità, Corso Mazzini 18, Novara, Italy.
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Via Solaroli 17, Novara, Italy
- Emergency Medicine Department, AOU Maggiore Della Carità, Corso Mazzini 18, Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Via Solaroli 17, Novara, Italy
- Emergency Medicine Department, AOU Maggiore Della Carità, Corso Mazzini 18, Novara, Italy
| |
Collapse
|
16
|
Riessen R, Hellwege RS. [Pharmacological therapy of circulatory shock]. Med Klin Intensivmed Notfmed 2021; 116:541-553. [PMID: 34338810 DOI: 10.1007/s00063-021-00838-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Circulatory shock requires treatment of the underlying pathology in addition to supportive pharmacological therapy that is guided by hemodynamic monitoring. Based on the evaluation of the patient's volume, perfusion and cardiac status, the following therapeutic goals should be achieved: (1) Normalization of the intra- and extravascular fluid volume. (2) Provision of sufficient perfusion pressure and organ perfusion. (3) Optimization of cardiac function including protecting an ischemic and exhausted myocardium from overload. The most important therapeutic substances are balanced electrolyte solutions and the vasopressor noradrenaline. Because there is little scientific evidence for the use of alternative drugs, these should only be given if there is a good pathophysiologic rationale and if their effect is continuously monitored and re-evaluated.
Collapse
Affiliation(s)
- Reimer Riessen
- Internistische Intensivstation, Department für Innere Medizin, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland.
| | - Rubi Stephani Hellwege
- Internistische Intensivstation, Department für Innere Medizin, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| |
Collapse
|
17
|
Innocenti F, Palmieri V, Tassinari I, Capretti E, De Paris A, Gianno A, Marchesini A, Montuori M, Pini R. Change in Myocardial Contractility in Response to Treatment with Norepinephrine in Septic Shock. Am J Respir Crit Care Med 2021; 204:365-368. [PMID: 33945774 DOI: 10.1164/rccm.202102-0442le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | | | - Elisa Capretti
- Azienda Ospedaliero-Universitaria Careggi Firenze, Italy
| | - Anna De Paris
- Azienda Ospedaliero-Universitaria Careggi Firenze, Italy
| | - Adriana Gianno
- Azienda Ospedaliero-Universitaria Careggi Firenze, Italy
| | | | | | - Riccardo Pini
- Azienda Ospedaliero-Universitaria Careggi Firenze, Italy
| |
Collapse
|
18
|
Zhou X, Pan J, Wang Y, Wang H, Xu Z, Zhuo W. Left ventricular-arterial coupling as a predictor of stroke volume response to norepinephrine in septic shock - a prospective cohort study. BMC Anesthesiol 2021; 21:56. [PMID: 33596822 PMCID: PMC7886849 DOI: 10.1186/s12871-021-01276-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background Left ventricular-arterial coupling (VAC), defined as the ratio of arterial elastance (Ea) to left ventricular end-systolic elastance (Ees), is a key determinant of cardiovascular performance. This study aims to evaluate whether left VAC can predict stroke volume (SV) response to norepinephrine (NE) in septic shock patients. Methods This was a prospective cohort study conducted in an intensive care unit of a tertiary teaching hospital in China. We recruited septic shock patients who had persistent hypotension despite fluid resuscitation and required NE to maintain mean arterial pressure (MAP) > 65 mmHg. Those patients in whom the target MAP was not reached after NE infusion were ineligible. Echocardiographic variables were measured before (baseline) and after NE infusion. SV responder was defined by a ≥ 15% increase in SV after NE infusion. Results Of 34 septic shock patients included, 19 (56%) were SV responders. Before NE infusion, SV responders had a lower Ees (1.13 ± 0.24 mmHg/mL versus 1.50 ± 0.46 mmHg/mL, P = 0.005) and a higher Ea/Ees ratio (1.47 ± 0.40 versus 1.02 ± 0.30, P = 0.001) than non-responders, and Ea in SV responders was comparable to that in non-responders (1.62 ± 0.36 mmHg/mL versus 1.43 ± 0.28 mmHg/mL, P = 0.092). NE significantly increased Ea and Ees in both groups. The Ea/Ees ratio was normalized by NE administration in SV responders but unchanged in non-responders. The baseline Ea/Ees ratio was positively correlated with NE-induced SV increases (r = 0.688, P < 0.001). Logistic regression analysis indicated that the baseline Ea/Ees ratio was a predictor of SV increases induced by NE (odd ratio 0.008, 95% confidence interval (CI): 0.000 to 0.293), with an area under the receiver operating characteristic curve of 0.816 (95% CI: 0.646 to 0.927). Conclusions The left VAC has the ability to predict SV response to NE infusion in septic shock patients. Trial registration Chinese Clinical Trial Registry, ChiCTR1900024031, Registered 23 June 2019 - Retrospectively registered, http://www.chictr.org.cn/edit.aspx?pid=40359&htm=4.
Collapse
Affiliation(s)
- Xiaoyang Zhou
- Department of Intensive Care Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Jianneng Pan
- Department of Intensive Care Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Yang Wang
- Department of Intensive Care Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Hua Wang
- Department of Intensive Care Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China
| | - Zhaojun Xu
- Department of Intensive Care Medicine, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China. .,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315000, China.
| | - Weibo Zhuo
- Department of Intensive Care Medicine, Ningbo Fenghua District Hospital of Traditional Chinese Medicine Medical Community, Ningbo, Zhejiang, 315500, China.
| |
Collapse
|
19
|
Scheeren TWL, Bakker J, Kaufmann T, Annane D, Asfar P, Boerma EC, Cecconi M, Chew MS, Cholley B, Cronhjort M, De Backer D, Dubin A, Dünser MW, Duranteau J, Gordon AC, Hajjar LA, Hamzaoui O, Hernandez G, Kanoore Edul V, Koster G, Landoni G, Leone M, Levy B, Martin C, Mebazaa A, Monnet X, Morelli A, Payen D, Pearse RM, Pinsky MR, Radermacher P, Reuter DA, Sakr Y, Sander M, Saugel B, Singer M, Squara P, Vieillard-Baron A, Vignon P, Vincent JL, van der Horst ICC, Vistisen ST, Teboul JL. Current use of inotropes in circulatory shock. Ann Intensive Care 2021; 11:21. [PMID: 33512597 PMCID: PMC7846624 DOI: 10.1186/s13613-021-00806-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Treatment decisions on critically ill patients with circulatory shock lack consensus. In an international survey, we aimed to evaluate the indications, current practice, and therapeutic goals of inotrope therapy in the treatment of patients with circulatory shock. METHODS From November 2016 to April 2017, an anonymous web-based survey on the use of cardiovascular drugs was accessible to members of the European Society of Intensive Care Medicine (ESICM). A total of 14 questions focused on the profile of respondents, the triggering factors, first-line choice, dosing, timing, targets, additional treatment strategy, and suggested effect of inotropes. In addition, a group of 42 international ESICM experts was asked to formulate recommendations for the use of inotropes based on 11 questions. RESULTS A total of 839 physicians from 82 countries responded. Dobutamine was the first-line inotrope in critically ill patients with acute heart failure for 84% of respondents. Two-thirds of respondents (66%) stated to use inotropes when there were persistent clinical signs of hypoperfusion or persistent hyperlactatemia despite a supposed adequate use of fluids and vasopressors, with (44%) or without (22%) the context of low left ventricular ejection fraction. Nearly half (44%) of respondents stated an adequate cardiac output as target for inotropic treatment. The experts agreed on 11 strong recommendations, all of which were based on excellent (> 90%) or good (81-90%) agreement. Recommendations include the indications for inotropes (septic and cardiogenic shock), the choice of drugs (dobutamine, not dopamine), the triggers (low cardiac output and clinical signs of hypoperfusion) and targets (adequate cardiac output) and stopping criteria (adverse effects and clinical improvement). CONCLUSION Inotrope use in critically ill patients is quite heterogeneous as self-reported by individual caregivers. Eleven strong recommendations on the indications, choice, triggers and targets for the use of inotropes are given by international experts. Future studies should focus on consistent indications for inotrope use and implementation into a guideline for circulatory shock that encompasses individualized targets and outcomes.
Collapse
Affiliation(s)
- Thomas W. L. Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.Box 30.001, 9700 RB Groningen, The Netherlands
| | - Jan Bakker
- New York University Medical Center, New York, USA
- Columbia University Medical Center, New York, USA
- Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Kaufmann
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O.Box 30.001, 9700 RB Groningen, The Netherlands
| | - Djillali Annane
- School of Medicine Simone Veil, Raymond Poincaré Hospital (APHP), Department of Intensive Care Medicine, University of Versailles- University Paris Saclay, Garches, France
| | - Pierre Asfar
- Département de Médecine Intensive-Réanimation Et de Médecine Hyperbare, Centre Hospitalier Universitaire Angers; and Institut MITOVASC, CNRS UMR 6215, INSERM U1083, Angers University, Angers, France
| | - E. Christiaan Boerma
- Medical Centre Leeuwarden, Department of Intensive Care, Leeuwarden, the Netherlands
| | - Maurizio Cecconi
- Department of Anesthesia and Intensive Care, IRCCS Humanitas Research Hospital, Via Manzoni 56, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Milan, Italy
| | - Michelle S. Chew
- Department of Anaesthesiology and Intensive Care, Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bernard Cholley
- Department of Anaesthesiology & Intensive Care Medicine, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université de Paris, Paris, France
| | - Maria Cronhjort
- Section of Anaesthesiology and Intensive Care, Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Arnaldo Dubin
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata Y Servicio de Terapia Intensiva, Sanatorio Otamendi, Buenos Aires, Argentina
| | - Martin W. Dünser
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital and Johannes Kepler University Linz, Linz, Austria
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Assistance Publique Des Hopitaux de Paris, Hôpitaux Universitaires Paris-Saclay, Université Paris-Saclay, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Anthony C. Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK
| | - Ludhmila A. Hajjar
- Department of Cardiopneumology, Instituto Do Coracao, Universidade de São Paulo, Hospital SirioLibanes, São Paulo, Brazil
| | - Olfa Hamzaoui
- Assistance Publique-Hôpitaux de Paris, Paris Saclay University Hospitals, Antoine Béclère Hospital, Paris, France
| | - Glenn Hernandez
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Geert Koster
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marc Leone
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Service D’Anesthésie Et de Réanimation CHU Nord, Marseille, France
| | - Bruno Levy
- Service de Réanimation Médicale Brabois Et Pôle Cardio-Médico-Chirurgical. CHRU Brabois, INSERM U1116, Université de Lorraine, Vandoeuvre les NancyNancy, 54500 France
| | - Claude Martin
- Aix Marseille Université, Assistance Publique Hôpitaux de Marseille, Service D’Anesthésie Et de Réanimation CHU Nord, Marseille, France
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, APHP Hôpitaux Universitaires Saint Louis LariboisièreUniversité Paris DiderotU942 Inserm, Paris, France
| | - Xavier Monnet
- Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, FHU SEPSIS, Le Kremlin-Bicêtre, France
| | - Andrea Morelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Science, Sapienza University of Rome, Rome, Italy
| | - Didier Payen
- University Paris 7 Denis Diderot; INSERM 1160 and Hôpital Lariboisière, APHP, Paris, France
| | - Rupert M. Pearse
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ UK
| | - Michael R. Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Peter Radermacher
- Institut Für Anästhesiologische Pathophysiologie Und Verfahrensentwicklung, Universitätsklinikum Ulm, Ulm, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Yasser Sakr
- Department of Anesthesiology and Intensive Care, Uniklinikum Jena, Jena, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen, UKGM, Justus-Liebig University Giessen, Giessen, Germany
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pierre Squara
- ICU Department, Réanimation CERIC, Clinique Ambroise Paré, Neuilly, France
| | - Antoine Vieillard-Baron
- Assistance Publique-Hôpitaux de Paris, University Hospital Ambroise Paré, intensive care unit, Boulogne-Billancourt, France
- INSERM U-1018, CESP, Team 5, University of Versailles Saint-Quentin en Yvelines, Villejuif, France
| | - Philippe Vignon
- Medical-Surgical Intensive Care Unit, INSERM CIC-1435, Teaching Hospital of Limoges, Limoges, France
- University of Limoges, Limoges, France
| | - Jean-Louis Vincent
- Université Libre de Bruxelles - Dept of Intensive Care, Erasme Univ Hospital, Brussels, Belgium
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Simon T. Vistisen
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Jean-Louis Teboul
- Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University Hospitals, Bicêtre hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, FHU SEPSIS, Le Kremlin-Bicêtre, France
| |
Collapse
|
20
|
Poiroux L, Le Roy C, Ramelet AS, Le Brazic M, Messager L, Gressent A, Alcourt Y, Haubertin C, Hamel JF, Piquilloud L, Mercat A. Minimising haemodynamic lability during changeover of syringes infusing norepinephrine in adult critical care patients: a multicentre randomised controlled trial. Br J Anaesth 2020; 125:622-628. [PMID: 32739045 DOI: 10.1016/j.bja.2020.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Arterial pressure lability is common during the process of replacing syringes used for norepinephrine infusions in critically ill patients. It is unclear if there is an optimal approach to minimise arterial pressure instability during this procedures. We investigated whether 'double pumping' changeover (DPC) or automated changeover (AC) reduced blood pressure lability in critically ill adults compared with quick syringe changeover (QC). METHODS Patients requiring a norepinephrine infusion syringe change were randomised in a non-blinded trial undertaken in six ICUs. Randomisation was minimised by norepinephrine flow rate at inclusion and centre. The primary outcome was the frequency of increased/decreased mean arterial pressure (defined by </>15 mm Hg from baseline measurements) within 15 min of switching the syringe compared with QC. RESULTS Patients (mean age: 64 (range:18-88)) yr were randomly assigned to QC (n=95), DPC (n=95), or AC (n=96). Increased MAP was the commonest consequence of syringe changeovers. MAP variability was most frequent after DPC (89/224 changeovers; 39.7%) compared with 57/223 (25.6%) changeovers after quick syringe switch and 46/181 (25.4%) in patients randomised to receive automated changeover (P=0.001). Fewer events occurred with QC compared with DPC (P=0.002). Sensitivity analysis based on mixed models showed that performing several changeovers on a single patient had no impact. Both type of changeover and norepinephrine dose before syringe changeover were independently associated with MAP variations >15 mm Hg. CONCLUSIONS Quick changeover of norepinephrine syringes was associated with less blood pressure lability compared with DPC. The prevalence of MAP variations was the same between AC and QC. CLINICAL TRIAL REGISTRATION NCT02304939.
Collapse
Affiliation(s)
- Laurent Poiroux
- Medical Intensive Care Department, Angers University Hospital, Angers, France; UMR CNRS 6015-INSERM UI083 MitoVasc Institute, University of Angers, Angers, France.
| | - Cyril Le Roy
- Medical Intensive Care Department, Angers University Hospital, Angers, France
| | - Anne-Sylvie Ramelet
- Institute of Higher Education and Research in Healthcare (IUFRS), University of Lausanne, Lausanne, Switzerland; Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
| | - Mélaine Le Brazic
- Medical Intensive Care Department, Nantes University Hospital, Nantes, France
| | - Leslie Messager
- Department of Anesthesiology and Critical Care, Critical Care Unit, Angers University Hospital, Angers, France
| | - Amélie Gressent
- Medical Intensive Care Unit, Rouen University Hospital, Rouen, France
| | - Yolaine Alcourt
- Intensive Care Department, Vendée Regional Hospital, La Roche-sur-Yon, France
| | - Carole Haubertin
- Department of Anaesthesiology and Critical Care, Critical Care Unit, University Teaching Hospital of Purpan, Toulouse, France
| | - Jean-François Hamel
- Department of Methodology and Biostatistics, Angers University Hospital, Angers, France
| | - Lise Piquilloud
- Medical Intensive Care Department, Angers University Hospital, Angers, France; Adult Intensive Care and Burn Unit, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; UMR CNRS 6015-INSERM UI083 MitoVasc Institute, University of Angers, Angers, France
| | - Alain Mercat
- Medical Intensive Care Department, Angers University Hospital, Angers, France
| |
Collapse
|
21
|
Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J Clin Med 2020; 9:E1704. [PMID: 32498340 PMCID: PMC7357116 DOI: 10.3390/jcm9061704] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is characterized by an acute decrease in renal function that can be multifactorial in its origin and is associated with complex pathophysiological mechanisms. In the short term, AKI is associated with an increased length of hospital stay, health care costs, and in-hospital mortality, and its impact extends into the long term, with AKI being associated with increased risks of cardiovascular events, progression to chronic kidney disease (CKD), and long-term mortality. Given the impact of the prognosis of AKI, it is important to recognize at-risk patients and improve preventive, diagnostic, and therapy strategies. The authors provide a comprehensive review on available diagnostic, preventive, and treatment strategies for AKI.
Collapse
Affiliation(s)
- Joana Gameiro
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José Agapito Fonseca
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - Cristina Outerelo
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| | - José António Lopes
- Department of Medicine, Division of Nephrology and Renal Transplantation, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal
| |
Collapse
|
22
|
Shi R, Hamzaoui O, De Vita N, Monnet X, Teboul JL. Vasopressors in septic shock: which, when, and how much? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:794. [PMID: 32647719 PMCID: PMC7333107 DOI: 10.21037/atm.2020.04.24] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to fluid resuscitation, the vasopressor therapy is a fundamental treatment of septic shock-induced hypotension as it aims at correcting the vascular tone depression and then at improving organ perfusion pressure. Experts’ recommendations currently position norepinephrine (NE) as the first-line vasopressor in septic shock. Vasopressin and its analogues are only second-line vasopressors as strong recent evidence suggests no benefit of their early administration in spite of promising preliminary data. Early administration of NE may allow achieving the initial mean arterial pressure (MAP) target faster and reducing the risk of fluid overload. The diastolic arterial pressure (DAP) as a marker of vascular tone, helps identifying the patients who need NE urgently. Available data suggest a MAP of 65 mmHg as the initial target but a more individualized approach is often required depending on several factors such as history of chronic hypertension or value of central venous pressure (CVP). In cases of refractory hypotension, increasing NE up to doses ≥1 µg/kg/min could be an option. However, current experts’ guidelines suggest to combine NE with other vasopressors such as vasopressin, with the intent to rising the MAP to target or to decrease the NE dosage.
Collapse
Affiliation(s)
- Rui Shi
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S999 LabEx - LERMIT, Hôpital Marie-Lannelongue, Le Plessis Robinson, France
| | - Olfa Hamzaoui
- Service de réanimation polyvalente, Hôpital Antoine Béclère, AP-HP, Université Paris-Saclay 92141, Clamart, France
| | - Nello De Vita
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S999 LabEx - LERMIT, Hôpital Marie-Lannelongue, Le Plessis Robinson, France
| | - Xavier Monnet
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S999 LabEx - LERMIT, Hôpital Marie-Lannelongue, Le Plessis Robinson, France
| | - Jean-Louis Teboul
- Service de Médecine Intensive-Réanimation, Hôpital Bicêtre, AP-HP, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM UMR_S999 LabEx - LERMIT, Hôpital Marie-Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
23
|
Kattan E, Castro R, Vera M, Hernández G. Optimal target in septic shock resuscitation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:789. [PMID: 32647714 PMCID: PMC7333135 DOI: 10.21037/atm-20-1120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Septic shock presents a high risk of morbidity and mortality. Through therapeutic strategies, such as fluid administration and vasoactive agents, clinicians intend to rapidly restore tissue perfusion. Nonetheless, these interventions have narrow therapeutic margins. Adequate perfusion monitoring is paramount to avoid progressive hypoperfusion or detrimental over-resuscitation. During early stages of septic shock, macrohemodynamic derangements, such as hypovolemia and decreased cardiac output (CO) tend to predominate. However, during late septic shock, endothelial and coagulation dysfunction induce severe alterations of the microcirculation, making it more difficult to achieve tissue reperfusion. Multiple perfusion variables have been described in the literature, from bedside clinical examination to complex laboratory tests. Moreover, all of them present inherent flaws and limitations. After the ANDROMEDA-SHOCK trial, there is evidence that capillary refill time (CRT) is an interesting resuscitation target, due to its rapid kinetics and correlation with deep hypoperfusion markers. New concepts such as hemodynamic coherence and flow responsiveness may be used at the bedside to select the best treatment strategies at any time-point. A multimodal perfusion monitoring and an integrated analysis with macrohemodynamic parameters is mandatory to optimize the resuscitation of septic shock patients.
Collapse
Affiliation(s)
- Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
24
|
Vincent JL, Hernandez G. Septic shock patients with adequate tissue perfusion parameters still need the recommended minimal Mean Arterial Pressure: It depends. J Crit Care 2020; 56:311-312. [DOI: 10.1016/j.jcrc.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/08/2020] [Indexed: 10/24/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Adequate tissue perfusion is of utmost importance to avoid organ failure in patients with cardiogenic shock. Within the recent years, the microcirculation, defined as the perfusion of the smallest vessels, has been identified to play a crucial role. Microcirculatory changes may include capillary flow disturbances as well as changes in the density of perfused vessels. Due to the availability of new technologies to assess the microcirculation, interesting new data came up and it is the purpose of this review to summarize recent studies in the field. RECENT FINDINGS Nowadays, an increasing number of studies confirm parameters of the microcirculation, derived by intravital microscopy, to represent strong outcome predictors in cardiogenic shock. In addition, microcirculation as read-out parameter in innovative clinical studies has meanwhile been accepted as serious endpoint. Treatment strategies such as mechanical assist devices, blood pressure regulating agents or fluids use tissue perfusion and microcirculatory network density as targets in addition to clinical perfusion evaluation and decreasing serum lactate levels. SUMMARY The parameter most frequently used to detect tissue malperfusion is serum lactate. Novel, noninvasive methods to quantify microvascular perfusion have the potential to guide treatment in terms of optimizing organ perfusion and oxygenation probably paving the way for an individualized therapy.
Collapse
|
26
|
Cinel I, Kasapoglu US, Gul F, Dellinger RP. The initial resuscitation of septic shock. J Crit Care 2020; 57:108-117. [PMID: 32135409 DOI: 10.1016/j.jcrc.2020.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
Abstract
Septic shock is the most severe form of sepsis, characterized by (a) persistent hypotension despite fluid resuscitation and (b) the presence of tissue hypoperfusion. Delays in the diagnosis and initiation of treatment of septic shock is associated with increasing risk for mortality. Early and effective fluid resuscitation and vasopressor administration play a crucial role in maintaining tissue perfusion in septic shock patients. A low diastolic arterial pressure (DAP) correlates with severity of arteriolar vasodilation, compromises left ventricle oxygen supply and can be used for identifying septic shock patients that would potentially benefit from earlier vasopressor therapy. Controversy currently exists as to the balance of fluids and vasopressors to maintain target mean arterial pressure. The aim of this article is to review the rationale for fluid resuscitation and vasopressor therapy and the importance of both mean and diastolic blood pressure during the initial resuscitation of the septic shock. We relate our personal prescription of balancing fluids and vasopressors in the resuscitation of septic shock.
Collapse
Affiliation(s)
- Ismail Cinel
- Department of Critical Care Medicine, Marmara University School of Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Umut S Kasapoglu
- Department of Critical Care Medicine, Marmara University School of Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Fethi Gul
- Department of Critical Care Medicine, Marmara University School of Medicine, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - R Phillip Dellinger
- Division of Critical Care Medicine, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
27
|
Scheeren TWL, Bakker J, De Backer D, Annane D, Asfar P, Boerma EC, Cecconi M, Dubin A, Dünser MW, Duranteau J, Gordon AC, Hamzaoui O, Hernández G, Leone M, Levy B, Martin C, Mebazaa A, Monnet X, Morelli A, Payen D, Pearse R, Pinsky MR, Radermacher P, Reuter D, Saugel B, Sakr Y, Singer M, Squara P, Vieillard-Baron A, Vignon P, Vistisen ST, van der Horst ICC, Vincent JL, Teboul JL. Current use of vasopressors in septic shock. Ann Intensive Care 2019; 9:20. [PMID: 30701448 PMCID: PMC6353977 DOI: 10.1186/s13613-019-0498-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Background Vasopressors are commonly applied to restore and maintain blood pressure in patients with sepsis. We aimed to evaluate the current practice and therapeutic goals regarding vasopressor use in septic shock as a basis for future studies and to provide some recommendations on their use. Methods From November 2016 to April 2017, an anonymous web-based survey on the use of vasoactive drugs was accessible to members of the European Society of Intensive Care Medicine (ESICM). A total of 17 questions focused on the profile of respondents, triggering factors, first choice agent, dosing, timing, targets, additional treatments, and effects of vasopressors. We investigated whether the answers complied with current guidelines. In addition, a group of 34 international ESICM experts was asked to formulate recommendations for the use of vasopressors based on 6 questions with sub-questions (total 14). Results A total of 839 physicians from 82 countries (65% main specialty/activity intensive care) responded. The main trigger for vasopressor use was an insufficient mean arterial pressure (MAP) response to initial fluid resuscitation (83%). The first-line vasopressor was norepinephrine (97%), targeting predominantly a MAP > 60–65 mmHg (70%), with higher targets in patients with chronic arterial hypertension (79%). The experts agreed on 10 recommendations, 9 of which were based on unanimous or strong (≥ 80%) agreement. They recommended not to delay vasopressor treatment until fluid resuscitation is completed but rather to start with norepinephrine early to achieve a target MAP of ≥ 65 mmHg. Conclusion Reported vasopressor use in septic shock is compliant with contemporary guidelines. Future studies should focus on individualized treatment targets including earlier use of vasopressors.
Collapse
Affiliation(s)
- Thomas W L Scheeren
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700RB, Groningen, The Netherlands.
| | - Jan Bakker
- New York University Medical Center, New York, USA.,Columbia University Medical Center, New York, USA.,Erasmus MC University Medical Center, Rotterdam, Netherlands.,Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Djillali Annane
- Department of Intensive Care Medicine, School of Medicine Simone Veil, Raymond Poincaré Hospital (APHP), University of Versailles-University Paris Saclay, 104 boulevard Raymond Poincaré, 92380, Garches, France
| | - Pierre Asfar
- Département de Médecine Intensive-Réanimation et de Médecine Hyperbare, Centre Hospitalier Universitaire Angers, Institut MITOVASC, CNRS, UMR 6214, INSERM U1083, Angers University, Angers, France
| | - E Christiaan Boerma
- Department of Intensive Care, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Maurizio Cecconi
- Department of Anaesthesia and Intensive Care Units, Humanitas Research Hospital and Humanitas University, Milan, Italy
| | - Arnaldo Dubin
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata y Servicio de Terapia Intensiva, Sanatorio Otamendi, Buenos Aires, Argentina
| | - Martin W Dünser
- Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital and Johannes Kepler University Linz, Linz, Austria
| | - Jacques Duranteau
- Assistance Publique des Hopitaux de Paris, Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Anthony C Gordon
- Section of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK
| | - Olfa Hamzaoui
- Assistance Publique-Hôpitaux de Paris Paris-Sud University Hospitals, Intensive Care Unit, Antoine Béclère Hospital, Clamart, France
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc Leone
- Assistance Publique Hôpitaux de Marseille, Service d'Anesthésie et de Réanimation CHU Nord, Aix Marseille Université, Marseille, France
| | - Bruno Levy
- Service de Réanimation Médicale Brabois et pôle cardio-médico-chirurgical, CHRU, INSERM U1116, Université de Lorraine, Brabois, 54500, Vandoeuvre les Nancy, France
| | - Claude Martin
- Assistance Publique Hôpitaux de Marseille, Service d'Anesthésie et de Réanimation CHU Nord, Aix Marseille Université, Marseille, France
| | - Alexandre Mebazaa
- Department of Anesthesia, Burn and Critical Care, APHP Hôpitaux Universitaires Saint Louis Lariboisière, U942 Inserm, Université Paris Diderot, Paris, France
| | - Xavier Monnet
- Assistance Publique-Hôpitaux de Paris, Paris-Sud University Hospitals, Medical Intensive Care Unit, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Paris-Saclay University, Le Plessis-Robinson, France
| | - Andrea Morelli
- Department of Cardiovascular, Respiratory, Nephrological, Anesthesiological and Geriatric Sciences, University of Rome "La Sapienza", Rome, Italy
| | - Didier Payen
- INSERM 1160 and Hôpital Lariboisière, APHP, University Paris 7 Denis Diderot, Paris, France
| | | | - Michael R Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| | - Daniel Reuter
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Centre, Rostock, Germany
| | - Bernd Saugel
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yasser Sakr
- Department of Anesthesiology and Intensive Care, Uniklinikum Jena, Jena, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pierre Squara
- ICU Department, Réanimation CERIC, Clinique Ambroise Paré, Neuilly, France
| | - Antoine Vieillard-Baron
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, University Hospital Ambroise Paré, Boulogne-Billancourt, France.,INSERM U-1018, CESP, Team 5, University of Versailles Saint-Quentin en Yvelines, Villejuif, France
| | - Philippe Vignon
- Medical-Surgical Intensive Care Unit, INSERM CIC-1435, Teaching Hospital of Limoges, University of Limoges, Limoges, France
| | - Simon T Vistisen
- Institute of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Iwan C C van der Horst
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Louis Teboul
- Service de Réanimation Médicale, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
[Consensus document for sepsis code implementation and development in the Community of Madrid]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2019; 32:400-409. [PMID: 31345006 PMCID: PMC6719654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The consensus paper for the implementation and development of the sepsis code, finished in April 2017 is presented here. It was adopted by the Regional Office of Health as a working document for the implementation of the sepsis code in the Community of Madrid, both in the hospital setting (acute, middle and long-stay hospitals) and in Primary Care and Out-of-Hospital Emergency Services. It is now published without changes with respect to the original version, having only added the most significant bibliographical references. The document is divided into four parts: introduction, initial detection and assessment, early therapy and organizational recommendations. In the second to fourth sections, 25 statements or proposals have been included, agreed upon by the authors after several face-to-face meetings and an extensive "online" discussion. The annex includes nine tables that are intended as a practical guide to the activation of the sepsis code. Both the content of the recommendations and their formal writing have been made taking into account their applicability in all areas to which they are directed, which may have very different structural and functional characteristics and features, so that we have deliberately avoided a greater degree of concretion: the objective is not that the sepsis code is organized and applied identically in all of them, but that the health resources work in a coordinated manner aligned in the same direction.
Collapse
|