1
|
Siuba MT, Detloff L, St Jean M, McCurry KR, Duggal A, Krishnan S. Multistate Modeling of Right Ventricular Function on Veno-Venous Extracorporeal Membrane Oxygenation in COVID-ARDS. ASAIO J 2025:00002480-990000000-00685. [PMID: 40257003 DOI: 10.1097/mat.0000000000002445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Affiliation(s)
- Matthew T Siuba
- From the Department of Pulmonary and Critical Care Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, Ohio
| | - Luke Detloff
- Department of Internal Medicine, Community Care Institute, Cleveland Clinic, Cleveland, Ohio
| | - Matthew St Jean
- Department of Internal Medicine, Community Care Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kenneth R McCurry
- Department of Lung Transplant Surgery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Abhijit Duggal
- From the Department of Pulmonary and Critical Care Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sudhir Krishnan
- From the Department of Pulmonary and Critical Care Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
2
|
Stukov Y, Rackauskas M, Maybauer MO. The ProtekDuo Cannula for Venopulmonary ECMO as Bridge to Lung Transplantation: A Single Center Case Series. Ann Card Anaesth 2025; 28:190-192. [PMID: 40110951 PMCID: PMC12058063 DOI: 10.4103/aca.aca_194_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 03/22/2025] Open
Abstract
ABSTRACT Venovenous extracorporeal membrane oxygenation is the most commonly used mode of support in pre-lung transplant recipients. In patients who experience right ventricular dysfunction, venopulmonary ECMO is an excellent option to preserve RV function. We retrospectively reviewed patients who were supported with venopulmonary ECMO. Descriptive analysis, patient characteristics, ECMO outcomes, and survival were assessed. The primary outcome was mortality. Mean age was 45.5 ± 15.63, mean ECMO hours 1391.75 ± 1239.01. 4 patients had right ventricular dysfunction. All patients received bilateral orthotopic lung transplant. One-year survival was 100% for all patients. Venopulmonary extracorporeal membrane oxygenation can be safely used to bridge patients with end-stage lung disease to lung transplantation.
Collapse
Affiliation(s)
- Yuriy Stukov
- Division of Thoracic Surgery, Department of Surgery, University of Florida, FL, USA
| | - Mindaugas Rackauskas
- Division of Thoracic Surgery, Department of Surgery, University of Florida, FL, USA
| | - Marc O. Maybauer
- Division of Critical Care Medicine, Department of Anesthesiology, University of Florida, FL, USA
- Department of Anesthesiology and Intensive Care Medicine, Philipps University, Marburg, Germany
- Critical Care Research Group, University of Queensland and the Prince Charles Hospital, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Al-Husinat L, Azzam S, Al Sharie S, Araydah M, Battaglini D, Abushehab S, Cortes-Puentes GA, Schultz MJ, Rocco PRM. A narrative review on the future of ARDS: evolving definitions, pathophysiology, and tailored management. Crit Care 2025; 29:88. [PMID: 39994815 PMCID: PMC11852867 DOI: 10.1186/s13054-025-05291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe complication of critical illness, characterized by bilateral lung infiltrates and hypoxemia. Its clinical and pathophysiological heterogeneity poses challenges for both diagnosis and treatment. This review outlines the evolution of ARDS definitions, discusses the underlying pathophysiology of ARDS, and examines the clinical implications of its heterogeneity. Traditional ARDS definitions required invasive mechanical ventilation and relied on arterial blood gas measurements to calculate the PaO2/FiO2 ratio. Recent updates have expanded these criteria to include patients receiving noninvasive respiratory support, such as high-flow nasal oxygen, and the adoption of the SpO2/FiO2 ratio as an alternative to the PaO2/FiO2 ratio. While these changes broaden the diagnostic criteria, they also introduce additional complexity. ARDS heterogeneity-driven by varying etiologies, clinical subphenotypes, and underlying biological mechanisms-highlights the limitations of a uniform management approach. Emerging evidence highlights the presence of distinct ARDS subphenotypes, each defined by unique molecular and clinical characteristics, offering a pathway to more precise therapeutic targeting. Advances in omics technologies-encompassing genomics, proteomics, and metabolomics-are paving the way for precision-medicine approaches with the potential to revolutionize ARDS management by tailoring interventions to individual patient profiles. This paradigm shift from broad diagnostic categories to precise, subphenotype-driven care holds promise for redefining the landscape of treatment for ARDS and, ultimately, improving outcomes in this complex, multifaceted syndrome.
Collapse
Affiliation(s)
- Lou'i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman, Jordan
| | - Mohammad Araydah
- Department of Internal Medicine, Istishari Hospital, Amman, Jordan
| | - Denise Battaglini
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genoa, Italy
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Suhib Abushehab
- Department of Medicine, University Hospitals Bristol and Weston NHS Foundation Trust (UHBW), Bristol, UK
| | | | - Marcus J Schultz
- Department of Intensive Care, Amsterdam UMC, Locatie AMC, Amsterdam, The Netherlands
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University Wien, Vienna, Austria
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Lyhne MD, Yuriditsky E, Zochios V, Dragsbaek SJ, Hansen JV, Andersen MJ, Mellemkjær S, Kabrhel C, Andersen A. Pulmonary Artery Pulsatility Index in Acute and Chronic Pulmonary Embolism. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:363. [PMID: 40005479 PMCID: PMC11857435 DOI: 10.3390/medicina61020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: The pulmonary artery pulsatility index (PAPi) is an emerging marker of right ventricular (RV) injury but has not been well investigated in acute pulmonary embolism (PE) or chronic thromboembolic pulmonary hypertension (CTEPH). We aimed to investigate its discriminatory capabilities and ability to detect therapeutic effects in acute PE and CTEPH. Materials and Methods: This was a secondary analysis of data from both experimental studies of autologous PE and human studies of acute PE and CTEPH. PAPi was calculated and compared in (1) PE versus sham and (2) before and after interventions aimed at reducing RV afterload in PE and CTEPH. The correlations between PAPi, cardiac output, and RV to pulmonary artery coupling were investigated. Results: PAPi did not differ between animals with acute PE versus sham, nor was it affected by clot burden (p = 0.673) or at a 30-day follow-up (p = 0.242). Pulmonary vasodilatation with oxygen was associated with a reduction in PAPi (4.9 [3.7-7.8] vs. 4.0 [3.2-5.6], p = 0.016), whereas positive inotropes increased PAPi in the experimental PE. In humans, PAPi did not change consistently with interventions. Balloon pulmonary angioplasty did not significantly increase PAPi (6.5 [4.3-10.7] vs. 9.8 [6.8-14.2], p = 0.1) in patients with CTEPH, and a non-significant reduction in PAPi (4.3 ± 1.6 vs. 3.3 ± 1.2, p = 0.074) was observed in patients with acute PE who received sildenafil. PAPi did not correlate well with cardiac output or measures of RV to pulmonary artery coupling in either species. Conclusions: PAPi did not detect acute, experimental PE or changes as a result of therapeutic interventions in patients with hemodynamically stable acute PE or CTEPH. However, it did change with pharmacological interventions in the experimental PE. Further research should establish its utility in detecting and monitoring RV injury in different clinical phenotypes of acute PE and CTEPH.
Collapse
Affiliation(s)
- Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (S.J.D.); (J.V.H.); (A.A.)
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Eugene Yuriditsky
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Vasileios Zochios
- Department of Critical Care Medicine and ECMO, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester LE3 9QP, UK;
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
| | - Simone Juel Dragsbaek
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (S.J.D.); (J.V.H.); (A.A.)
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.J.A.); (S.M.)
| | - Jacob Valentin Hansen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (S.J.D.); (J.V.H.); (A.A.)
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.J.A.); (S.M.)
| | - Mads Jønsson Andersen
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.J.A.); (S.M.)
| | - Søren Mellemkjær
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.J.A.); (S.M.)
| | - Christopher Kabrhel
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Emergency Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Asger Andersen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark; (S.J.D.); (J.V.H.); (A.A.)
- Department of Cardiology, Aarhus University Hospital, 8200 Aarhus N, Denmark; (M.J.A.); (S.M.)
| |
Collapse
|
5
|
Luk A, Teijeiro-Paradis R, Kochan A, Billia F, Douflé G, Magder S, Mendelson AA, McGuinty C, Granton J. The Etiology and Management of Critical Acute Right Heart Failure. Can J Cardiol 2025:S0828-282X(25)00113-8. [PMID: 39938716 DOI: 10.1016/j.cjca.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Right ventricular failure contributes to the morbidity and mortality of acute myocardial function, massive pulmonary embolism, and chronic pulmonary hypertension. Understanding how the normal physiology of the right ventricle (RV) is disrupted is integral to managing patients who present with RV decompensation. Therapeutic advances in mechanical circulatory support, pharmacotherapies to reduce afterload, mechanical and chemical lytic therapies for acute pulmonary embolism have improved outcomes of patients by offloading the RV. In this report we provide an overview of the physiology of the RV, medical management (volume optimization, hemodynamic targets, rhythm management), along with critical care-specific topics (induction with mechanical ventilation, sedation strategies, and mechanical circulatory support) and provide a framework for managing patients who present with leveraging principles of preload, contractility, and afterload. Last, because of the complexity of right ventricular failure management, and the complexity of presentation, we also discuss the role of team-based approach (cardiogenic shock and pulmonary embolism response teams), and highlight its benefits at improving outcomes.
Collapse
Affiliation(s)
- Adriana Luk
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| | | | - Andrew Kochan
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| | - Ghislaine Douflé
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Sheldon Magder
- Department of Critical Care, McGill University Health Centre, Montreal, Quebec, Canada
| | - Asher A Mendelson
- Section of Critical Care, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - John Granton
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zochios V, Yusuff H, Schmidt M. Personalizing Permissive Hypercapnia in Acute Severe Respiratory Failure. J Cardiothorac Vasc Anesth 2025; 39:355-359. [PMID: 39721922 DOI: 10.1053/j.jvca.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Affiliation(s)
- Vasileios Zochios
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK; Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Hakeem Yusuff
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK; Department of Respiratory Sciences, University of Leicester, Leicester, UK; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Leicester, UK
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, AP-HP, Service de médecine intensive-réanimation, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Dugar SP, Sato R, Charlton M, Hasegawa D, Antonini MV, Nasa P, Yusuff H, Schultz MJ, Harnegie MP, Ramanathan K, Shekar K, Schmidt M, Zochios V, Duggal A. Right Ventricular Injury Definition and Management in Veno-Venous Extracorporeal Membrane Oxygenation. ASAIO J 2025:00002480-990000000-00617. [PMID: 39787611 DOI: 10.1097/mat.0000000000002369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Right ventricular injury (RVI) in respiratory failure receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is associated with significant mortality. A scoping review is necessary to map the current literature and guide future research regarding the definition and management of RVI in patients receiving VV ECMO. We searched for relevant publications on RVI in patients receiving VV ECMO in Medline, EMBASE, and Web of Science. Of 1,868 citations screened, 30 studies reported on RVI (inclusive of right ventricular dilation, right ventricular dysfunction, and right ventricular failure) during VV ECMO. Twenty-three studies reported on the definition of RVI including echocardiographic indices of RV function and dimensions, whereas 13 studies reported on the management of RVI, including veno-pulmonary (VP) ECMO, veno-arterial (VA) ECMO, positive inotropic agents, pulmonary vasodilators, ultra-lung-protective ventilation (Ultra-LPV), and optimization of positive end-expiratory pressure (PEEP). The definitions of RVI in patients receiving VV ECMO used in the literature are heterogeneous. Despite the high incidence of RVI during VV ECMO support and its strong association with mortality, studies investigating therapeutic strategies for RVI are also lacking. To fill the existing knowledge gaps, a consensus on the definition of RVI and research investigating RV-targeted therapies during VV ECMO is urgently warranted.
Collapse
Affiliation(s)
- Siddharth Pawan Dugar
- From the Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ryota Sato
- Division of Critical Care Medicine, Department of Medicine, The Queen's Medical Center, Honolulu, Hawaii
| | - Matthew Charlton
- University Hospitals of Leicester National Health Service Trust, Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Daisuke Hasegawa
- Department of Internal Medicine, Mount Sinai Beth Israel, New York, New York
| | - Marta Velia Antonini
- Intensive Care Unit, Bufalini Hospital, Azienda Unità Sanitaria Locale della Romagna, Cesena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Prashant Nasa
- Critical Care Medicine, NMC Specialty Hospital, Dubai, United Arab Emirates
- Internal Medicine, College of Medicine and Health Sciences, Abu Dhabi, United Arab Emirates
| | - Hakeem Yusuff
- NIHR Leicester Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
- National University Hospital, Singapore, Singapore
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Anaesthesiology, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Mary Pat Harnegie
- The Cleveland Clinic Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, Ohio
| | - Kollengode Ramanathan
- National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiran Shekar
- Adult Intensive Care Services, Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia
- Queensland University of Technology, Brisbane, Queensland, Australia
- University of Queensland, Brisbane and Bond University, Gold Coast, Queensland, Australia
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, AP-HP, Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Paris, France
| | - Vasileios Zochios
- University Hospitals of Leicester National Health Service Trust, Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, Leicester, United Kingdom
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abhijit Duggal
- From the Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Wang Q, Zou T, Zeng X, Bao T, Yin W. Establishment of seven lung ultrasound phenotypes: a retrospective observational study of an LUS registry. BMC Pulm Med 2024; 24:483. [PMID: 39363211 PMCID: PMC11450992 DOI: 10.1186/s12890-024-03299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Lung phenotypes have been extensively utilized to assess lung injury and guide precise treatment. However, current phenotypic evaluation methods rely on CT scans and other techniques. Although lung ultrasound (LUS) is widely employed in critically ill patients, there is a lack of comprehensive and systematic identification of LUS phenotypes based on clinical data and assessment of their clinical value. METHODS Our study was based on a retrospective database. A total of 821 patients were included from September 2019 to October 2020. 1902 LUS examinations were performed in this period. Using a dataset of 55 LUS examinations focused on lung injuries, a group of experts developed an algorithm for classifying LUS phenotypes based on clinical practice, expert experience, and lecture review. This algorithm underwent validation and refinement with an additional 140 LUS images, leading to five iterative revisions and the generation of 1902 distinct LUS phenotypes. Subsequently, a validated machine learning algorithm was applied to these phenotypes. To assess the algorithm's effectiveness, experts manually verified 30% of the phenotypes, confirming its efficacy. Using K-means cluster analysis and expert image selection from the 1902 LUS examinations, we established seven distinct LUS phenotypes. To further explore the diagnostic value of these phenotypes for clinical diagnosis, we investigated their auxiliary diagnostic capabilities. RESULTS A total of 1902 LUS phenotypes were tested by randomly selecting 30% to verify the phenotypic accuracy. With the 1902 LUS phenotypes, seven lung ultrasound phenotypes were established through statistical K-means cluster analysis and expert screening. The acute respiratory distress syndrome (ARDS) exhibited gravity-dependent phenotypes, while the cardiogenic pulmonary edema exhibited nongravity phenotypes. The baseline characteristics of the 821 patients included age (66.14 ± 11.76), sex (560/321), heart rate (96.99 ± 23.75), mean arterial pressure (86.5 ± 13.57), Acute Physiology and Chronic Health Evaluation II (APACHE II)score (20.49 ± 8.60), and duration of ICU stay (24.50 ± 26.22); among the 821 patients, 78.8% were cured. In severe pneumonia patients, the gravity-dependent phenotype accounted for 42% of the cases, whereas the nongravity-dependent phenotype constituted 58%. These findings highlight the value of applying different LUS phenotypes in various diagnoses. CONCLUSIONS Seven sets of LUS phenotypes were established through machine learning analysis of retrospective data; these phenotypes could represent the typical characteristics of patients with different types of critical illness.
Collapse
Affiliation(s)
- Qian Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan Province, 610081, China
| | - Tongjuan Zou
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
- Visualization Diagnosis and Treatment & Artificial Intelligence Laboratory, Institute of Critical Care Medicine Research, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xueying Zeng
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
- Visualization Diagnosis and Treatment & Artificial Intelligence Laboratory, Institute of Critical Care Medicine Research, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Ting Bao
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wanhong Yin
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
- Visualization Diagnosis and Treatment & Artificial Intelligence Laboratory, Institute of Critical Care Medicine Research, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
9
|
Zochios V, Nasa P, Yusuff H, Schultz MJ, Antonini MV, Duggal A, Dugar S, Ramanathan K, Shekar K, Schmidt M. Definition and management of right ventricular injury in adult patients receiving extracorporeal membrane oxygenation for respiratory support using the Delphi method: a PRORVnet study. Expert position statements. Intensive Care Med 2024; 50:1411-1425. [PMID: 39102027 PMCID: PMC11838017 DOI: 10.1007/s00134-024-07551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is an integral part of the management algorithm of patients with severe respiratory failure refractory to evidence-based conventional treatments. Right ventricular injury (RVI) pertaining to abnormalities in the dimensions and/or function of the right ventricle (RV) in the context of VV-ECMO significantly influences mortality. However, in the absence of a universally accepted RVI definition and evidence-based guidance for the management of RVI in this very high-risk patient cohort, variations in clinical practice continue to exist. METHODS Following a systematic search of the literature, an international Steering Committee consisting of eight healthcare professionals involved in the management of patients receiving ECMO identified domains and knowledge gaps pertaining to RVI definition and management where the evidence is limited or ambiguous. Using a Delphi process, an international panel of 52 Experts developed Expert position statements in those areas. The process also conferred RV-centric overarching open questions for future research. Consensus was defined as achieved when 70% or more of the Experts agreed or disagreed on a Likert-scale statement or when 80% or more of the Experts agreed on a particular option in multiple-choice questions. RESULTS The Delphi process was conducted through four rounds and consensus was achieved on 31 (89%) of 35 statements from which 24 Expert position statements were derived. Expert position statements provided recommendations for RVI nomenclature in the setting of VV-ECMO, a multi-modal diagnostic approach to RVI, the timing and parameters of diagnostic echocardiography, and VV-ECMO settings during RVI assessment and management. Consensus was not reached on RV-protective driving pressure thresholds or the effect of prone positioning on patient-centric outcomes. CONCLUSION The proposed definition of RVI in the context of VV-ECMO needs to be validated through a systematic aggregation of data across studies. Until further evidence emerges, the Expert position statements can guide informed decision-making in the management of these patients.
Collapse
Affiliation(s)
- Vasileios Zochios
- Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, University Hospitals of Leicester National Health Service Trust, Glenfield, Groby Road, Leicester, LE3 9QP, UK.
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Prashant Nasa
- Critical Care Medicine, NMC Specialty Hospital, Dubai, United Arab Emirates
- Internal Medicine, College of Medicine and Health Sciences, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hakeem Yusuff
- Glenfield Hospital Extracorporeal Membrane Oxygenation Unit, University Hospitals of Leicester National Health Service Trust, Glenfield, Groby Road, Leicester, LE3 9QP, UK
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Anesthesiology, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Marta Velia Antonini
- Intensive Care Unit, Bufalini Hospital, AUSL Della Romagna, Cesena, Italy
- PhD program in Cardio-Nephro-Thoracic Sciences, University of Bologna, Bologna, Italy
| | - Abhijit Duggal
- Department of Critical Care Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Kollengode Ramanathan
- National University Hospital, Singapore, 119074, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kiran Shekar
- Adult Intensive Care Services, The Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, QLD, Australia
- Queensland University of Technology, Brisbane, QLD, Australia
- University of Queensland, Brisbane and Bond University, Gold Coast, QLD, Australia
| | - Matthieu Schmidt
- Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, AP-HP, Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
10
|
Fraile-Gutiérrez V, Zapata-Fenor L, Blandino-Ortiz A, Guerrero-Mier M, Ochagavia-Calvo A. Right ventricular dysfunction in the critically ill. Echocardiographic evaluation. Med Intensiva 2024; 48:528-542. [PMID: 39079775 DOI: 10.1016/j.medine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024]
Abstract
Right ventricular dysfunction is common in critically ill patients, and is associated with increased mortality. Its diagnosis moreover remains challenging. In this review, we aim to outline the potential mechanisms underlying abnormal biomechanics of the right ventricle and the different injury phenotypes. A comprehensive understanding of the pathophysiology and natural history of right ventricular injury can be informative for the intensivist in the diagnosis and management of this condition, and may serve to guide individualized treatment strategies. We describe the main recommended parameters for assessing right ventricular systolic and diastolic function. We also define how to evaluate cardiac output and pulmonary circulation pressures with echocardiography, with a focus on the diagnosis of acute cor pulmonale and relevant applications in critical disorders such as distress, septic shock, and right ventricular infarction.
Collapse
Affiliation(s)
| | - Lluis Zapata-Fenor
- Department of Intensive Care Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aaron Blandino-Ortiz
- Department of Intensive Care Medicine, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Manuel Guerrero-Mier
- Department of Intensive Care Medicine, Hospital Universitario Virgen de Valme, Seville, Spain
| | - Ana Ochagavia-Calvo
- Department of Intensive Care Medicine, Hospital Universitario de Bellvitge de L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
11
|
Capoccia M, Brewer JM, Rackauskas M, Becker TK, Maybauer DM, Stukov Y, Lorusso R, Maybauer MO. Outcome of Veno-Pulmonary Extracorporeal Life Support in Lung Transplantation Using ProtekDuo Cannula: A Systematic Review and Description of Configurations. J Clin Med 2024; 13:4111. [PMID: 39064150 PMCID: PMC11277848 DOI: 10.3390/jcm13144111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Refractory end-stage pulmonary failure may benefit from extracorporeal life support (ECLS) as a bridge to lung transplantation. Veno-venous (VV) extracorporeal membrane oxygenation (ECMO) has been recommended for patients who have failed conventional medical therapy and mechanical ventilation. Veno-arterial (VA) ECMO may be used in patients with acute right ventricular (RV) failure, haemodynamic instability, or refractory respiratory failure. Peripheral percutaneous approaches, either dual-site single-lumen cannulation for veno-pulmonary (VP) ECMO or single-site dual-lumen (dl)VP ECMO, using the ProtekDuo right ventricular assist device (RVAD) cannula, has made this configuration a desirable option as a bridge to transplantation. These configurations support the right ventricle, prevent recirculation by placing the tricuspid and pulmonary valve between the drainage and return cannulas, provide the direct introduction of oxygenated blood into the pulmonary artery, and have been shown to decrease the incidence of acute kidney injury (AKI), requiring continuous renal replacement therapy (CRRT) in certain disease states. This promotes haemodynamic stability, potential sedation-weaning trials, extubation, mobilisation, and pre-transplant rehabilitation. Methods: A web-based literature search in PubMed and EMBASE was undertaken based on a combination of keywords. The PICOS and PRISMA approaches were used. Results: Four case series were identified out of 323 articles, with a total of 34 patients placed on VP ECMO as a bridge to lung transplantation. All relevant data are reviewed and integrated into the Discussion. Conclusions: Despite the limited available evidence, the use of ProtekDuo has become very promising for the management of end-stage lung disease as a bridge to lung transplantation.
Collapse
Affiliation(s)
- Massimo Capoccia
- South Yorkshire Cardiothoracic Centre, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Joseph M. Brewer
- Nazih Zuhdi Transplant Institute, Specialty Critical Care and Acute Circulatory Support Service, INTEGRIS Baptist Medical Center, Oklahoma City, OK 73112, USA;
- Queen’s University Health Quality Programs, Kingston, ON K7L 3N6, Canada
| | - Mindaugas Rackauskas
- Department of Surgery, Division of Thoracic Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (M.R.); (Y.S.)
| | - Torben K. Becker
- Department of Emergency Medicine, Division of Critical Care Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Dirk M. Maybauer
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University, 35032 Marburg, Germany;
| | - Yuriy Stukov
- Department of Surgery, Division of Thoracic Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (M.R.); (Y.S.)
| | - Roberto Lorusso
- Extracorporeal Life Support (ECLS) Centrum, Cardio-Thoracic Surgery and Cardiology Department, Heart & Vascular Center, Maastricht University Medical Center (MUMC), 6229 ER Maastricht, The Netherlands;
- Cardiovascular Research Institute (CARIM), 6229 ER Maastricht, The Netherlands
| | - Marc O. Maybauer
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University, 35032 Marburg, Germany;
- Department of Anesthesiology, Division of Critical Care Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Brisbane 4032, Australia
| |
Collapse
|
12
|
Dimarakis I, Aldea GS. Commentary: Extreme cardiorespiratory pathophysiology: Critical care evolution in response to a pandemic. J Thorac Cardiovasc Surg 2024; 167:1842-1844. [PMID: 36764913 PMCID: PMC9859641 DOI: 10.1016/j.jtcvs.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Affiliation(s)
- Ioannis Dimarakis
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington Medical Center, Seattle, Wash.
| | - Gabriel S Aldea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington Medical Center, Seattle, Wash
| |
Collapse
|
13
|
Bowcock E, Huang S, Yeo R, Walisundara D, Duncan CF, Pathan F, Strange G, Playford D, Orde S. The value of right ventricular to pulmonary arterial coupling in the critically ill: a National Echocardiography Database of Australia (NEDA) substudy. Ann Intensive Care 2024; 14:10. [PMID: 38228991 DOI: 10.1186/s13613-024-01242-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Right ventricular (RV) function is tightly coupled to afterload, yet echocardiographic indices of RV function are frequently assessed in isolation. Normalizing RV function for afterload (RV-PA coupling) using a simplified ratio of tricuspid annular plane systolic excursion (TAPSE)/ tricuspid regurgitant velocity (TRV) could help to identify RV decompensation and improve risk stratification in critically ill patients. This is the first study to explore the distribution of TAPSE/TRV ratio and its prognostic relevance in a large general critical care cohort. METHODS We undertook retrospective analysis of echocardiographic, clinical, and mortality data of intensive care unit (ICU) patients between January 2012 and May 2017. A total of 1077 patients were included and stratified into tertile groups based on TAPSE/TRV ratio: low (< 5.9 mm.(m/s)-1), middle (≥ 5.9-8.02 mm.(m/s)-1), and high (≥ 8.03 mm.(m/s)-1). The distribution of the TAPSE/TRV ratio across ventricular function subtypes of normal, isolated left ventricular (LV), isolated RV, and biventricular dysfunction was explored. The overall prognostic relevance of the TAPSE/TRV ratio was tested, including distribution across septic, cardiovascular, respiratory, and neurological subgroups. RESULTS Higher proportions of ventricular dysfunctions were seen in low TAPSE/TRV tertiles. TAPSE/TRV ratio is impacted by LV systolic function but to a lesser extent than RV dysfunction or biventricular dysfunction. There was a strong inverse relationship between TAPSE/TRV ratio and survival. After multivariate analysis, higher TAPSE/TRV ratios (indicating better RV-PA coupling) were independently associated with lower risk of death in ICU (HR 0.927 [0.872-0.985], p < 0.05). Kaplan-Meier analysis demonstrated higher overall survival in middle and high tertiles compared to low tertiles (log rank p < 0.0001). The prognostic relevance of TAPSE/TRV ratio was strongest in respiratory and sepsis subgroups. Patients with TAPSE/TRV < 5.9 mm (m/s)-1 had a significantly worse prognosis than those with higher TAPSE/TRV ratios. CONCLUSION The TAPSE/TRV ratio has prognostic relevance in critically ill patients. The prognostic power may be stronger in respiratory and septic subgroups. Larger prospective studies are needed to investigate the role of TAPSE/TRV in pre-specified subgroups including its role in clinical decision-making.
Collapse
Affiliation(s)
- Emma Bowcock
- Intensive Care Medicine, Nepean Hospital, Sydney, Australia.
- University of Sydney, Sydney, Australia.
| | - Stephen Huang
- Intensive Care Medicine, Nepean Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Rachel Yeo
- Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | | | - Chris F Duncan
- Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Faraz Pathan
- University of Sydney, Sydney, Australia
- Department of Cardiology, Nepean Hospital, Sydney, Australia
| | - Geoffrey Strange
- University of Sydney, Sydney, Australia
- The University of Notre Dame, Fremantle, Australia
| | | | - Sam Orde
- Intensive Care Medicine, Nepean Hospital, Sydney, Australia
- University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Zaaqoq AM, Yusuff H, Shekar K, Antonini MV, Zochios V. From Protecting the Lung to Protecting the Heart and the Lung in Acute Respiratory Distress Syndrome. J Cardiothorac Vasc Anesth 2024; 38:342-343. [PMID: 38030426 DOI: 10.1053/j.jvca.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Akram M Zaaqoq
- Department of Anesthesiology, Division of Critical Care, University of Virginia, Charlottesville, VA.
| | - Hakeem Yusuff
- Department of Anesthesia and Intensive Care Medicine, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Kiran Shekar
- Adult Intensive Care Services, Prince Charles Hospital, Metro North Hospital and Health Service, Brisbane, Queensland, Australia; Queensland University of Technology, Brisbane, Queensland, Australia; University of Queensland, Brisbane and Bond University,Gold Coast, Queensland, Australia
| | - Marta V Antonini
- Intensive Care Unit, Bufalini Hospital, AUSL della Romagna, Cesena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Vasileios Zochios
- Department of Anesthesia and Intensive Care Medicine, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Cardiovascular Sciences, College of Life Sciences,University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Yusuff H, Chawla S, Sato R, Dugar S, Bangash MN, Antonini MV, Shelley B, Valchanov K, Roscoe A, Scott J, Akhtar W, Rosenberg A, Dimarakis I, Khorsandi M, Zochios V. Mechanisms of Acute Right Ventricular Injury in Cardiothoracic Surgical and Critical Care Settings: Part 2. J Cardiothorac Vasc Anesth 2023; 37:2318-2326. [PMID: 37625918 DOI: 10.1053/j.jvca.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023]
Abstract
The right ventricle (RV) is intricately linked in the clinical presentation of critical illness; however, the basis of this is not well-understood and has not been studied as extensively as the left ventricle. There has been an increased awareness of the need to understand how the RV is affected in different critical illness states. In addition, the increased use of point-of-care echocardiography in the critical care setting has allowed for earlier identification and monitoring of the RV in a patient who is critically ill. The first part of this review describes and characterizes the RV in different perioperative states. This second part of the review discusses and analyzes the complex pathophysiologic relationships between the RV and different critical care states. There is a lack of a universal RV injury definition because it represents a range of abnormal RV biomechanics and phenotypes. The term "RV injury" (RVI) has been used to describe a spectrum of presentations, which includes diastolic dysfunction (early injury), when the RV retains the ability to compensate, to RV failure (late or advanced injury). Understanding the mechanisms leading to functional 'uncoupling' between the RV and the pulmonary circulation may enable perioperative physicians, intensivists, and researchers to identify clinical phenotypes of RVI. This, consequently, may provide the opportunity to test RV-centric hypotheses and potentially individualize therapies.
Collapse
Affiliation(s)
- Hakeem Yusuff
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.
| | - Sanchit Chawla
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Ryota Sato
- Division of Critical Care Medicine, Department of Medicine, The Queen's Medical Center, Honolulu, HI
| | - Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western University Reserve University, Cleveland, OH
| | - Mansoor N Bangash
- Liver Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, United Kingdom; Birmingham Liver Failure Research Group, Institute of Inflammation and Ageing, College of Medical and Dental sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental sciences, University of Birmingham, Birmingham, United Kingdom
| | - Marta Velia Antonini
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL della Romagna, Cesena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Benjamin Shelley
- Department of Cardiothoracic Anesthesia and Intensive Care, Golden Jubilee National Hospital, Clydebank, United Kingdom; Anesthesia, Perioperative Medicine and Critical Care research group, University of Glasgow, Glasgow, United Kingdom
| | - Kamen Valchanov
- Department of Anesthesia and Perioperative Medicine, Singapore General Hospital, Outram Road, Singapore
| | - Andrew Roscoe
- Department of Anesthesia and Perioperative Medicine, Singapore General Hospital, Outram Road, Singapore; Department of Anesthesiology, Singapore General Hospital, National Heart Centre Singapore, Singapore
| | - Jeffrey Scott
- Jackson Health System / Miami Transplant Institute, Miami, FL
| | - Waqas Akhtar
- Royal Brompton and Harefield Hospitals, Part of Guys and St. Thomas's National Health System Foundation Trust, London, United Kingdom
| | - Alex Rosenberg
- Royal Brompton and Harefield Hospitals, Part of Guys and St. Thomas's National Health System Foundation Trust, London, United Kingdom
| | - Ioannis Dimarakis
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA
| | - Maziar Khorsandi
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA
| | - Vasileios Zochios
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
16
|
Zochios V, Shelley B, Antonini MV, Chawla S, Sato R, Dugar S, Valchanov K, Roscoe A, Scott J, Bangash MN, Akhtar W, Rosenberg A, Dimarakis I, Khorsandi M, Yusuff H. Mechanisms of Acute Right Ventricular Injury in Cardiothoracic Surgical and Critical Care Settings: Part 1. J Cardiothorac Vasc Anesth 2023; 37:2073-2086. [PMID: 37393133 DOI: 10.1053/j.jvca.2023.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Affiliation(s)
- Vasileios Zochios
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.
| | - Benjamin Shelley
- Department of Cardiothoracic Anesthesia and Intensive Care, Golden Jubilee National Hospital, Clydebank, United Kingdom; Anesthesia, Perioperative Medicine and Critical Care research group, University of Glasgow, Glasgow, United Kingdom
| | - Marta Velia Antonini
- Anesthesia and Intensive Care Unit, Bufalini Hospital, AUSL della Romagna, Cesena, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Sanchit Chawla
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH
| | - Ryota Sato
- Division of Critical Care Medicine, Department of Medicine, The Queen's Medical Center, Honolulu, HI
| | - Siddharth Dugar
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH; Cleveland Clinic Lerner College of Medicine, Case Western University Reserve University, Cleveland, OH
| | - Kamen Valchanov
- Department of Anesthesia and Perioperative Medicine, Singapore General Hospital, Singapore
| | - Andrew Roscoe
- Department of Anesthesia and Perioperative Medicine, Singapore General Hospital, Singapore; Department of Anesthesiology, Singapore General Hospital, National Heart Center, Singapore
| | - Jeffrey Scott
- Jackson Health System, Miami Transplant Institute, Miami, FL
| | - Mansoor N Bangash
- Liver Intensive Care Unit, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom; Birmingham Liver Failure Research Group, Institute of Inflammation and Ageing, College of Medical and Dental sciences, University of Birmingham, Birmingham, United Kingdom; Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, College of Medical and Dental sciences, University of Birmingham, Birmingham, United Kingdom
| | - Waqas Akhtar
- Royal Brompton and Harefield Hospitals, Part of Guys and St. Thomas's National Health System Foundation Trust, London, United Kingdom
| | - Alex Rosenberg
- Royal Brompton and Harefield Hospitals, Part of Guys and St. Thomas's National Health System Foundation Trust, London, United Kingdom
| | - Ioannis Dimarakis
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA
| | - Maziar Khorsandi
- Division of Cardiothoracic Surgery, University of Washington Medical Center, Seattle, WA
| | - Hakeem Yusuff
- Department of Cardiothoracic Critical Care Medicine and ECMO Unit, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom; Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Zainab A, Gooch M, Tuazon DM. Acute Respiratory Distress Syndrome in Patients with Cardiovascular Disease. Methodist Debakey Cardiovasc J 2023; 19:58-65. [PMID: 37547902 PMCID: PMC10402823 DOI: 10.14797/mdcvj.1244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 08/08/2023] Open
Abstract
Heart and lung interaction within the thoracic cavity is well known during inhalation and exhalation, both spontaneously and during mechanical ventilation. Disease and dysfunction of one organ affect the function of the other. A review of the cause-and-effect relationship between cardiovascular disease and acute respiratory distress syndrome (ARDS) is of significance, as the disease burden of both conditions has both a national and global impact on health care. This literature review examines the relationship between cardiovascular disease and ARDS over the past 25 years.
Collapse
Affiliation(s)
- Asma Zainab
- Methodist DeBakey Heart & Vascular Center, Houston Methodist, Houston, Texas, US
- Weill Cornell Medical College, New York, US
| | | | | |
Collapse
|
18
|
Chotalia M, Patel JM, Bangash MN, Parekh D. Cardiovascular Subphenotypes in ARDS: Diagnostic and Therapeutic Implications and Overlap with Other ARDS Subphenotypes. J Clin Med 2023; 12:jcm12113695. [PMID: 37297890 DOI: 10.3390/jcm12113695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a highly heterogeneous clinical condition. Shock is a poor prognostic sign in ARDS, and heterogeneity in its pathophysiology may be a barrier to its effective treatment. Although right ventricular dysfunction is commonly implicated, there is no consensus definition for its diagnosis, and left ventricular function is neglected. There is a need to identify the homogenous subgroups within ARDS, that have a similar pathobiology, which can then be treated with targeted therapies. Haemodynamic clustering analyses in patients with ARDS have identified two subphenotypes of increasingly severe right ventricular injury, and a further subphenotype of hyperdynamic left ventricular function. In this review, we discuss how phenotyping the cardiovascular system in ARDS may align with haemodynamic pathophysiology, can aid in optimally defining right ventricular dysfunction and can identify tailored therapeutic targets for shock in ARDS. Additionally, clustering analyses of inflammatory, clinical and radiographic data describe other subphenotypes in ARDS. We detail the potential overlap between these and the cardiovascular phenotypes.
Collapse
Affiliation(s)
- Minesh Chotalia
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Jaimin M Patel
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Mansoor N Bangash
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham B15 2SQ, UK
- Department of Anaesthetics and Critical Care, Queen Elizabeth Hospital Birmingham, Birmingham B15 2GW, UK
| |
Collapse
|
19
|
Ganeriwal S, Alves Dos Anjos G, Schleicher M, Hockstein MA, Tonelli AR, Duggal A, Siuba MT. Right ventricle-specific therapies in acute respiratory distress syndrome: a scoping review. Crit Care 2023; 27:104. [PMID: 36907888 PMCID: PMC10008150 DOI: 10.1186/s13054-023-04395-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVE To summarize knowledge and identify gaps in evidence regarding treatment of right ventricular dysfunction (RVD) in acute respiratory distress syndrome (ARDS). DATA SOURCES We conducted a comprehensive search of MEDLINE, Embase, CINAHL, Web of Science, and the Cochrane Central Register of Controlled Trials. STUDY SELECTION Studies were included if they reported effects of treatments on right ventricular function, whether or not the intent was to modify right ventricular function. DATA EXTRACTION Data extraction was performed independently and in duplicate by two authors. Data items included the study design, patient population, type of intervention, comparison group, and RV-specific outcomes. DATA SYNTHESIS Of 1,430 studies screened, 51 studies reporting on 1,526 patients were included. By frequency, the included studies examined the following interventions: ventilator settings (29.4%), inhaled medications (33.3%), extracorporeal life support (13.7%), intravenous or oral medications (13.7%), and prone positioning (9.8%). The majority of the studies were non-randomized experimental studies (53%), with the next most common being case reports (16%). Only 5.9% of studies were RCTs. In total, 27% of studies were conducted with the goal of modifying RV function. CONCLUSIONS Given the prevalence of RVD in ARDS and its association with mortality, the dearth of research on this topic is concerning. This review highlights the need for prospective trials aimed at treating RV dysfunction in ARDS.
Collapse
Affiliation(s)
- Simran Ganeriwal
- Department of Internal Medicine, Community Care Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Mary Schleicher
- The Cleveland Clinic Floyd D. Loop Alumni Library, Cleveland Clinic, Cleveland, OH, USA
| | - Maxwell A Hockstein
- Departments of Emergency Medicine and Critical Care, MedStar Washington Hospital Center, Washington, DC, USA
| | - Adriano R Tonelli
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhijit Duggal
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew T Siuba
- Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Zbiral M, Weber M, König S, Kraft F, Ullrich R, Krenn K. Usefulness and limitations of the acute respiratory distress syndrome definitions in non-intubated patients. A narrative review. Front Med (Lausanne) 2023; 10:1088709. [PMID: 36910485 PMCID: PMC9995400 DOI: 10.3389/fmed.2023.1088709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
According to the Berlin Definition of acute respiratory distress syndrome (ARDS), a positive end-expiratory pressure (PEEP) of at least 5 cmH2O is required to diagnose and grade ARDS. While the Berlin consensus statement specifically acknowledges the role of non-invasive ventilation (NIV) in mild ARDS, this stratification has traditionally presumed a mechanically ventilated patient in the context of moderate to severe ARDS. This may not accurately reflect today's reality of clinical respiratory care. NIV and high-flow nasal cannula oxygen therapy (HFNO) have been used for managing of severe forms of acute hypoxemic respiratory failure with growing frequency, including in patients showing pathophysiological signs of ARDS. This became especially relevant during the COVID-19 pandemic. The levels of PEEP achieved with HFNO have been particularly controversial, and the exact FiO2 it achieves is subject to variability. Pinpointing the presence of ARDS in patients receiving HNFO and the severity in those receiving NIV therefore remains methodically problematic. This narrative review highlights the evolution of the ARDS definition in the context of non-invasive ventilatory support and provides an overview of the parallel development of definitions and ventilatory management of ARDS. It summarizes the methodology applied in clinical trials to classify ARDS in non-intubated patients and the respective consequences on treatment. As ARDS severity has significant therapeutic and prognostic consequences, and earlier treatment in non-intubated patients may be beneficial, closing this knowledge gap may ultimately be a relevant step to improve comparability in clinical trial design and outcomes.
Collapse
Affiliation(s)
- Martin Zbiral
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Maximilian Weber
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Sebastian König
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix Kraft
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Roman Ullrich
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria.,Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Center Vienna, Vienna, Austria
| | - Katharina Krenn
- Department of Anesthesia, General Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|