1
|
Han JH, Jung M, Chung K, Jung SH, Lee H, Choi CH, Kim SH. Clinical Impact of Meniscal Scaffold Implantation in Patients with Meniscal Tears: A Systematic Review. Clin Orthop Surg 2025; 17:112-122. [PMID: 39912078 PMCID: PMC11791501 DOI: 10.4055/cios24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 02/07/2025] Open
Abstract
Background Meniscal scaffold implantation has been introduced as a treatment for meniscal injuries, but there is still no clear consensus on its clinical impact, including its chondroprotective effect. This review aimed to assess the chondroprotective effects, clinical outcomes, and survivorship of meniscal scaffold implantation compared to meniscectomy, as well as among different types of scaffolds. Methods A comprehensive search strategy was performed on the databases of PubMed, Embase, Cochrane Library, and Google Scholar, encompassing articles published until June 1, 2024. Randomized controlled trials (RCT) and comparative studies published in English that reported results using collagen meniscal implant (CMI) and polyurethane meniscal scaffold for meniscal tear were included. Results A total of 421 studies were initially identified across databases, and a systematic review was conducted on 8 studies involving 596 patients. Among the 5 studies that addressed the chondroprotective effect, none found that meniscal scaffolds had a higher chondroprotective effect compared to meniscectomy. In studies comparing CMI and meniscectomy, the Lysholm score results showed a mean difference (MD) range between -5.90 and -4.40. In the case of visual analog scale score, the MD ranged from -1.0 to 1.0. In studies comparing polyurethane meniscal scaffolds and CMI, the Tegner score results showed an MD range of -2.0 to 0.4. Conclusions There was no superiority in chondroprotective effects for both CMI and polyurethane meniscal scaffolds compared to meniscectomy. Although meniscal scaffolds may provide improvements in clinical outcomes, no clinically relevant differences were observed in comparison to meniscectomy. There are no discernible differences between the 2 types of scaffolds.
Collapse
Affiliation(s)
| | - Min Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea
| | - Se-Han Jung
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunjun Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chong-Hyuk Choi
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wang H, Wu J, Yang L, Liu S, Sui X, Guo Q, Chen M. Surgical Therapy and Tissue Engineering for Meniscal Repair. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39083434 DOI: 10.1089/ten.teb.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Meniscal damage is one of the prevalent causes of knee pain, swelling, instability, and functional compromise, frequently culminating in osteoarthritis (OA). Timely and appropriate interventions are crucial to relieve symptoms and prevent or delay the onset of OA. Contemporary surgical treatments include total or partial meniscectomy, meniscal repair, allograft meniscal transplantation, and synthetic meniscal implants, but each presents its specific limitations. Recently, regenerative medicine and tissue engineering have emerged as promising fields, offering innovative prospects for meniscal regeneration and repair. This review delineates current surgical methods, elucidating their specific indications, advantages, and disadvantages. Concurrently, it delves into state-of-the-art tissue engineering techniques aimed at the functional regenerative repair of meniscus. Recommendations for future research and clinical practice are also provided.
Collapse
Affiliation(s)
- Hao Wang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Jie Wu
- Department of Orthopedics, General Hospital of Chinese PLA, Eighth Medical Center, Beijing, China
| | - Liupu Yang
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Shuyun Liu
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Xiang Sui
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Quanyi Guo
- Chinese PLA General Hospital, Institute of Orthopedics, The First Medical Center, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Dong J, Huang M, Lin J, Sun Y, Zhang X, Chen J. Outcome comparison of meniscal allograft transplantation (MAT) and meniscal scaffold implantation (MSI): a systematic review. Int J Surg 2024; 110:5112-5123. [PMID: 38742839 PMCID: PMC11325955 DOI: 10.1097/js9.0000000000001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Although numerous studies have reported successful clinical outcomes of meniscal allograft transplantation (MAT) or meniscal scaffold implantation (MSI), the difference between the outcome of MAT and MSI remains unclear. PURPOSE To compare the overall outcomes and survival rates of MAT and MSI, aiming to provide comprehensive evidence for determining the optimal treatment strategy for meniscal defects. METHODS A systematic review was performed via a comprehensive search of PubMed, Embase, and the Cochrane Library. Studies of MAT or MSI were included according to the inclusion and exclusion criteria. The Lysholm score was chosen as the primary outcome measure, while secondary outcomes encompassed patient-reported outcome measures (PROMs), return to sports (RTS) rates, survival rates, and complication rates. The outcomes were stratified into two groups: MAT group and MSI group, followed by statistical comparison ( P <0.05). The quality of the included studies was assessed by the Cochrane Risk of Bias 2 (RoB2) assessment tool for randomized controlled trials (RCTs) and the Coleman Methodology Score (CMS) for non-randomized controlled trials. RESULTS A total of 3932 patients (2859 MAT, 1073 MSI) in 83 studies (51 MAT, 32 MSI) had the overall significant improvement in all clinical scores. The group MSI had a higher Lysholm score of both preoperative ( P =0.002) and postoperative ( P <0.001) than group MAT; however, the mean improvements were similar between the two groups ( P =0.105). Additionally, MSI had higher improvements of IKDC ( P <0.001), KOOS symptom ( P =0.010), KOOS pain ( P =0.036), and KOOS ADL ( P =0.004) than MAT. Interestingly, MAT had higher preoperative ( P =0.018) and less postoperative VAS pain ( P =0.006), which was more improved in MAT ( P <0.001). Compared with MAT, MSI had a higher 10-year survival rate ( P =0.034), a similar mid-term survival rate MAT ( P =0.964), and a lower complication rate ( P <0.001). CONCLUSION Both MAT and MSI could have good clinical outcomes after surgery with a similar improvement in Lysholm score. MSI had a higher 10-year survival rate and fewer complications than MAT. LEVEL OF EVIDENCE Level IV, systematic review.
Collapse
Affiliation(s)
- Jize Dong
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Hongkou District
| | - Moran Huang
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Hongkou District
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Hongkou District
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Hongkou District
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Hongkou District
| |
Collapse
|
4
|
Chen K, Aggarwal S, Baker H, Athiviraham A. Biologic Augmentation of Isolated Meniscal Repair. Curr Rev Musculoskelet Med 2024; 17:223-234. [PMID: 38652368 PMCID: PMC11156815 DOI: 10.1007/s12178-024-09898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW The limited blood supply and intrinsic healing capacity of the meniscus contributes to suboptimal tissue regeneration following injury and surgical repair. Biologic augmentation techniques have been utilized in combination with isolated meniscal repair to improve tissue regeneration. Several innovative strategies such as Platelet-Rich Plasma (PRP), fibrin clots, mesenchymal stem cells (MSCs), bone marrow stimulation, meniscal scaffolds, and meniscal wrapping, are being explored to enhance repair outcomes. This article provides a comprehensive review of recent findings and conclusions regarding biologic augmentation techniques. RECENT FINDINGS Studies on PRP reveal mixed outcomes, with some suggesting benefits in reducing failure rates of isolated meniscal repair, while others question its efficacy. Fibrin clots and PRF (Platelet-rich fibrin), although promising, show inconsistent results and lack sufficient evidence for definitive conclusions. MSCs demonstrate potential in preclinical studies, but clinical trials have been limited and inconclusive. Bone marrow stimulation appears effective in certain contexts, but its broader applicability remains uncertain. Meniscal scaffolds, including CMI (Collagen Meniscal Implants) and Actifit (polyurethane scaffolds), show encouraging short- and mid-term outcomes but have not consistently surpassed traditional methods in the long term. Meniscal wrapping is infrequently studied but demonstrates positive short-term results with certain applications. The review reveals a diverse range of outcomes for biologic augmentation in meniscal repair. While certain techniques show promise, particularly in specific scenarios, the overall efficacy of these methods has yet to reach a consensus. The review underscores the necessity for standardized, high-quality research to establish the definitive effectiveness of these biologic augmentation methods.
Collapse
Affiliation(s)
- Kevin Chen
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Sarthak Aggarwal
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Hayden Baker
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, 5841 S. Maryland Ave MC 3079, Chicago, IL, 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, 5841 S. Maryland Ave MC 3079, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Lucidi GA, Agostinone P, Di Paolo S, Grassi A, Pierangeli A, Dal Fabbro G, Zaffagnini S. Loss of chondroprotection of medial collagen meniscus implant (CMI) at 20-year follow-up. J ISAKOS 2024; 9:116-121. [PMID: 37979692 DOI: 10.1016/j.jisako.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVE The mid-term results of the collagen meniscus implant (CMI) procedure for the replacement of partial meniscus defects have already been described. However, there is a paucity of long-term comparative studies. This study aimed to compare the clinical outcomes, failures, and osteoarthritis progression of patients who underwent partial medial meniscectomy and medial CMI implantation. METHODS Thirty-six nonconsecutive patients with medial meniscus injuries that underwent medial CMI (MCMI) implantation or partial medial meniscectomy (PMM) between 1997 and 2000 were included in a prospective study with an intermediate 10-year follow-up examination and a final follow-up examination at 20-year follow-up. Outcome measures at the 20-year follow-up included the Lysholm score, visual analogue scale (VAS) for pain, International Knee Documentation Committee (IKDC) knee form , and Tegner activity level. Bilateral weight-bearing radiographs were also performed to evaluate hip-knee-angle (HKA) and the medial joint line height (JL). Data regarding complications and failures were also collected. RESULTS At the 20-year follow-up, 31 patients (83% follow-up rate) with a mean age of 60.7 ± 8.9 years were included in the final analysis (21.1 ± 1.2 years follow-up). Four reoperations and one failure per group were reported. When comparing the clinical results of the two groups, no difference was found considering the Lysholm score, Knee Injury and Osteoarthritis Outcome Score (KOOS), Tegner, and the IKDC. Moreover, 20 patients underwent radiographic examination (10 MCMI, 10 MM), and no statistically significant difference was reported concerning the JL, HKA, and the presence and incidence of osteoarthritis between the two groups. CONCLUSION The CMI implant for partial medial meniscectomy provided good long-term results and a low failure rate. However, differently from the 10 years follow-up, the clinical and the radiological outcomes were not superior compared to the medial meniscectomy group. The present study's result suggests that using a medial scaffold is not chondroprotective. LEVEL OF EVIDENCE III, Prospective case-control study.
Collapse
Affiliation(s)
- Gian Andrea Lucidi
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Dipartimento di Scienze Biomediche e Neuromotorie DIBINEM, Università di Bologna, Bologna, 40126, Italy.
| | - Piero Agostinone
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Stefano Di Paolo
- Dipartimento di Scienze per la Qualità della Vita QUVI, Università di Bologna, Bologna, 40136, Italy
| | - Alberto Grassi
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Andrea Pierangeli
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Giacomo Dal Fabbro
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Stefano Zaffagnini
- II Clinica Ortopedica e Traumatologica, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| |
Collapse
|
6
|
Noh S, Jin YJ, Shin DI, Kwon HJ, Yun HW, Kim KM, Park JY, Chung JY, Park DY. Selective Extracellular Matrix Guided Mesenchymal Stem Cell Self-Aggregate Engineering for Replication of Meniscal Zonal Tissue Gradient in a Porcine Meniscectomy Model. Adv Healthc Mater 2023; 12:e2301180. [PMID: 37463568 DOI: 10.1002/adhm.202301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Degenerative meniscus tears (DMTs) are prevalent findings in osteoarthritic knees, yet current treatment is mostly limited to arthroscopic partial meniscectomy rather than regeneration, which further exacerbates arthritic changes. Translational research regarding meniscus regeneration is hindered by the complex, composite nature of the meniscus which exhibit a gradient from inner cartilage-like tissue to outer fibrous tissue, as well as engineering hurdles often requiring growth factors and cross-linking agents. Here, a meniscus zonal tissue gradient is proposed using zone-specific decellularized meniscus extracellular matrix (DMECM) and autologous synovial mesenchymal stem cells (SMSC) via self-aggregation without the use of growth factors or cross-linking agents. Combination with zone-specific DMECM during self-aggregation of MSCs forms zone-specific meniscus tissue that reflects the respective DMECM harvest site. The implantation of these constructs leads to the regeneration of meniscus tissue resembling the native meniscus, demonstrating inner cartilaginous and outer fibrous characteristics as well as recovery of native meniscal microarchitecture in a porcine partial meniscectomy model at 6 months. In all, the findings offer a potential regenerative therapy for DMTs that may improve current partial meniscectomy-based patient care.
Collapse
Affiliation(s)
- Sujin Noh
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Yong Jun Jin
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Dong Il Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyeon Jae Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Hee-Woong Yun
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Kyu Min Kim
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
| | - Jae-Young Park
- Department of Orthopedics Surgery, CHA University Bundang Medical Center, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Jun Young Chung
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
| | - Do Young Park
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, 16499, Republic of Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Republic of Korea
- Ajou University, Leading Convergence of Healthcare and Medicine, Institute of Science & Technology (ALCHeMIST), Suwon, 16499, Republic of Korea
| |
Collapse
|
7
|
Yang J, Wang H, Zhou Y, Duan L, Schneider KH, Zheng Z, Han F, Wang X, Li G. Silk Fibroin/Wool Keratin Composite Scaffold with Hierarchical Fibrous and Porous Structure. Macromol Biosci 2023; 23:e2300105. [PMID: 37247409 DOI: 10.1002/mabi.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Indexed: 05/31/2023]
Abstract
The present study describes a silk microfiber reinforced meniscus scaffold (SMRMS) with hierarchical fibrous and porous structure made from silk fibroin (SF) and wool keratin (WK) using electrospinning and freeze-drying technology. This study focuses on the morphology, secondary structure, mechanical properties, and water absorption properties of the scaffold. The cytotoxicity and biocompatibility of SMRMS are assessed in vivo and in vitro. The scaffold shows hierarchical fibrous and porous structure, hierarchical pore size distribution (ranges from 50 to 650 µm), robust mechanical properties (compression strength can reach at 2.8 MPa), and stable biodegradability. A positive growth condition revealed by in vitro cytotoxicity testing indicates that the scaffold is not hazardous to cells. In vivo assessments of biocompatibility reveal that only a mild inflammatory reaction is present in implanted rat tissue. Meniscal scaffold made of SF/WK composite shows a potential application prospect in the meniscal repair engineering field with its development.
Collapse
Affiliation(s)
- Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Huan Wang
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yuhang Zhou
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Waehringer Gurtel 18-20, Vienna, 1090, Austria
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fengxuan Han
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
8
|
de Chanterac A, Garetier M, Gunepin FX, Baynat C, Danguy des Déserts M, Perchoc A, Letissier H, Andro C. ACTIfit™: 38% full resorption at 8 years in a cohort of 18 cases. Orthop Traumatol Surg Res 2023; 109:103616. [PMID: 37028595 DOI: 10.1016/j.otsr.2023.103616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 04/08/2023]
Abstract
BACKGROUND Preserving meniscal tissue is a major priority in young, physically active patients. Extensive meniscal defects may result in exercise pain and premature osteoarthritis. ACTIfit™ is a synthetic meniscal substitute that may improve short-term functional scores via biological integration with meniscal tissue regeneration. However, long-term data on the lifespan and chondroprotective effect of this newly formed tissue are lacking. The primary objective of this study was to assess the biological integration of ACTIfit™ based on magnetic resonance imaging (MRI) findings. The secondary objective was to evaluate long-term clinical outcomes. HYPOTHESIS The ACTIfit™ meniscal substitute undergoes biological integration over time, suggesting chondroprotective potential. MATERIALS AND METHODS A 2014 report by Baynat et al. described the 2-year clinical and radiological outcomes of 18 patients after ACTIfit™ implantation at the Clermont-Tonnerre military teaching hospital (Brest, France). The patients had chronic knee pain of at least 6 months' duration after failure of primary meniscal surgery with segmental meniscal defects. Mean age was 34.0±7.9 years. A concomitant procedure was performed in 13 (60%) patients, including osteotomy in 8 and ligament reconstruction in 5. For the current study, the clinical and radiological follow-up was at least 8 years. Assessments were with the Genovese grading scale for substitute morphology on MRI scans, International Cartilage Research Society (ICRS) score for osteoarthritis progression, and Lysholm score for clinical outcome. Failure was defined as total substitute resorption (Genovese morphology grade 1) or revision surgery with implant removal, conversion to meniscus allografting, or arthroplasty. RESULTS MRI scans were available for 12 (66%) patients. The reason for not having long-term MRI scans was surgery for substitute removal or arthroplasty in 3 of the remaining 6 patients. Complete implant resorption (Genovese grade 1) was noted in 7/12 (58%) patients and osteoarthritis progression to ICRS grade 3 in 4/12 (33%) patients. At last follow-up, the mean Lysholm score was significantly improved vs. baseline (79±15 vs. 55±13, P=0.005). CONCLUSION The frequency of complete ACTIfit™ resorption 8 years after implantation was high. This finding argues against ability of this substitute to induce the regeneration of durable meniscal tissue with a chondroprotective effect. The clinical outcome score was significantly improved at last follow-up. However, no conclusions can be drawn regarding the effectiveness of ACTIfit™ given the high frequency of concomitant surgical procedures. LEVEL OF EVIDENCE IV, retrospective observational cohort.
Collapse
Affiliation(s)
- Antoine de Chanterac
- Service de chirurgie crthopédique et traumatologique, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France.
| | - Marc Garetier
- Service de chirurgie crthopédique et traumatologique, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - François-Xavier Gunepin
- Service de chirurgie orthopédique et traumatologique, clinique mutualiste de la Portes de l'Orient, Lorient, France
| | - Cécile Baynat
- Service de chirurgie orthopédique et traumatologique, clinique mutualiste de la Portes de l'Orient, Lorient, France
| | - Marc Danguy des Déserts
- Service de chirurgie crthopédique et traumatologique, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - Arnaud Perchoc
- Service de chirurgie crthopédique et traumatologique, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| | - Hoel Letissier
- LaTIM, Inserm, UMR 1101, SFR IBSAM, avenue Foch, 29200 Brest, France; Service de chirurgie orthopédique et traumatologique, hôpital de la Cavale Blanche, boulevard Tanguy Prigent, 29200 Brest, France
| | - Christophe Andro
- Service de chirurgie crthopédique et traumatologique, hôpital d'Instruction des Armées Clermont-Tonnerre, Brest, France
| |
Collapse
|
9
|
Zaffagnini S, Romandini I, Filardo G, Dal Fabbro G, Grassi A. Meniscal allograft transplantation, anterior cruciate ligament reconstruction, and valgus high tibial osteotomy for meniscal-deficient, unstable, and varus knees: surgical technique and clinical outcomes. INTERNATIONAL ORTHOPAEDICS 2023; 47:2523-2535. [PMID: 37316682 DOI: 10.1007/s00264-023-05846-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE The aim of this study was to determine the clinical and functional outcome of a salvage surgical approach with the combined procedures meniscal allograft transplantation (MAT), anterior cruciate ligament reconstruction (ACLR), and high tibial osteotomy (HTO), in a cohort of patients treated for complex knee lesions evaluated up to a mid-term follow-up. METHODS Eight patients (38.8 ± 4.6 years, 88% males) were treated arthroscopically with MAT without bone plugs combined with primary or revision ACLR and HTO and evaluated at basal, at a minimum of two years (short follow-up), and at a mean follow-up of 5.1 years (mid-term follow-up) with the VAS score for pain, Lysholm score, IKDC subjective score, WOMAC Osteoarthritis index, and Tegner score. Physical examination (Lachman and pivot-shift tests, arthrometer assessment) and radiographic evaluation (pre- and post-operative x-rays) were obtained. Complications and failures were also recorded. RESULTS A statistically significant improvement was observed from baseline to five years in all clinical scores. In particular, the IKDC subjective score improved from 33.3 ± 20.7 to 73.1 ± 18.4 at short follow-up (p < 0.05), up to 78.3 ± 9.8 at the final follow-up (p < 0.05). A similar trend was demonstrated with the Lysholm, VAS, WOMAC, and Tegner score, even though only one patient reached the pre-injury activity level. Two patients had a worsening of the Kellgren-Lawrence (KL) grade from preoperative (grade 1) to final follow-up (grade 2). No major complications and surgical failures were documented. CONCLUSION The combined procedure of MAT, ACLR, and HTO presents few complications and failures and showed to be a valid option to reduce pain, recover knee function, and slow down the osteoarthritis process even in complex patients, with good and stable results up to a mid-term follow-up.
Collapse
Affiliation(s)
- Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Iacopo Romandini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Giacomo Dal Fabbro
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Alberto Grassi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| |
Collapse
|
10
|
Kohli S, Schwenck J, Barlow I. Failure rates and clinical outcomes of synthetic meniscal implants following partial meniscectomy: a systematic review. Knee Surg Relat Res 2022; 34:27. [PMID: 35692048 PMCID: PMC9190156 DOI: 10.1186/s43019-022-00155-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background Meniscal injury is one of the most common indications for knee surgery. The advent of meniscal repair techniques has facilitated meniscal preservation in suitable cases. Meniscal substitution with scaffolds may be advantageous following partial meniscal resection. There are three main scaffolds in current clinical use; Collagen Meniscal Implant (CMI Stryker Corporation, Kalamazoo, MI, USA), Actifit (Actifit, Orteq Ltd, London, UK) and NUsurface (Active Implants, LLC). The purpose of this systematic review was to compare clinical outcomes and failure rates of patients who have had implantation with these meniscal scaffolds. Methods MEDLINE and EMBASE databases were searched for studies that included patients who had surgical implantation with Actifit or CMI. Eligibility criteria included papers that described both clinical outcomes and failure rates of these implants, a mean follow up of 5 years and studies published in English. A Google search was also performed to identify any grey literature. Results Five Level IV studies were found for Actifit. One Level II, one Level III and four Level IV studies were found for the CMI implant. One Level II study was identified for the NUsurface scaffold with a follow-up 12 months and was included for completeness. Overall, 262 patients were treated with Actifit, 109 with CMI and 65 with NUsurface. Failure rates for Actifit were 18% (range 6.3–31.8%) with a mean follow up of 66.8 months, and for CMI 6.5% (range 0–11.8%) with a mean follow up of 97.1 months. The NUsurface failure rate was 16.9% at 12 months. Clinical outcomes such as VAS, Tegner and Lysholm scores improved significantly post-operatively. However, there was a high volume of concurrent procedures, such as anterior cruciate ligament reconstructions and high tibial osteotomies in each study group; 118 (45%) for Actifit and 53 (45%) for CMI. Conclusion The evidence for meniscal scaffold use is insufficient to suggest that they could potentially improve clinical outcomes in patients post-meniscal resection. This is largely due to the high proportion of concurrent procedures performed at index procedure for both CMI and Actifit. On the basis of current evidence, the use of meniscal scaffolds as a sole treatment for partial meniscal defects cannot be recommended, owing to the relatively high failure rate and paucity of clinical data.
Collapse
|
11
|
Wang L, Jiang J, Lin H, Zhu T, Cai J, Su W, Chen J, Xu J, Li Y, Wang J, Zhang K, Zhao J. Advances in Regenerative Sports Medicine Research. Front Bioeng Biotechnol 2022; 10:908751. [PMID: 35646865 PMCID: PMC9136559 DOI: 10.3389/fbioe.2022.908751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Regenerative sports medicine aims to address sports and aging-related conditions in the locomotor system using techniques that induce tissue regeneration. It also involves the treatment of meniscus and ligament injuries in the knee, Achilles’ tendon ruptures, rotator cuff tears, and cartilage and bone defects in various joints, as well as the regeneration of tendon–bone and cartilage–bone interfaces. There has been considerable progress in this field in recent years, resulting in promising steps toward the development of improved treatments as well as the identification of conundrums that require further targeted research. In this review the regeneration techniques currently considered optimal for each area of regenerative sports medicine have been reviewed and the time required for feasible clinical translation has been assessed. This review also provides insights into the direction of future efforts to minimize the gap between basic research and clinical applications.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Tonghe Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Wei Su
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jiebo Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Wang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’ Hospital, Shanghai, China
- *Correspondence: Kai Zhang, ; Jinzhong Zhao,
| |
Collapse
|
12
|
A Comparison Between Polyurethane and Collagen Meniscal Scaffold for Partial Meniscal Defects: Similar Positive Clinical Results at a Mean of 10 Years of Follow-Up. Arthroscopy 2022; 38:1279-1287. [PMID: 34571182 DOI: 10.1016/j.arthro.2021.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare, at long-term follow-up, the clinical outcomes and failures of collagen and polyurethane meniscal scaffolds for the treatment of partial meniscal defects. METHODS Patients affected by partial meniscal defect with intact anterior and posterior meniscal attachments and an intact rim at the circumference of the missing meniscus were included, treated with a collagen meniscal implant or with polyurethane scaffold, and clinically evaluated by analysis of the subjective International Knee Documentation Committee score, the visual analog scale score for the evaluation of knee function and symptoms, and the Tegner score to assess the activity level. RESULTS After 3 patients dropped out, a total of 47 patients, comprising 31 men and 16 women, with a mean age of 43 ± 14.1 years and mean body mass index of 25 ± 1.4, were clinically evaluated up to a mean of 10 years' follow-up. The International Knee Documentation Committee score improved from 42.9 ± 15.9 to 67.4 ± 12.4 (P < .0005) in the polyurethane implant group and from 46.8 ± 16.7 to 62.1 ± 22.6 (P < .0005) in the collagen meniscal implant group. The visual analog scale score decreased significantly from baseline values of 5.4 ± 2.3 and 4.4 ± 1.7, to 3.4 ± 2.5 and 2.7 ± 2.4, respectively, at final follow-up in the polyurethane implant (P = .002) and collagen meniscal implant (P < .0005) groups. The Tegner score improved in both groups without reaching the preinjury activity level. No significant differences in the scores were found between the polyurethane and collagen scaffold groups. A total of 10 implants failed, 5 per group, for a cumulative failure rate of 21.3%, with no differences between the 2 scaffolds. CONCLUSIONS The long-term comparison showed positive and similar results for both polyurethane- and collagen-based meniscal scaffolds, with an implant survival rate of about 80% at 10 years of follow-up and no differences in terms of pain, function, and activity level. LEVEL OF EVIDENCE Level IV, case-control comparative study.
Collapse
|
13
|
Kluyskens L, Debieux P, Wong KL, Krych AJ, Saris DBF. Biomaterials for meniscus and cartilage in knee surgery: state of the art. J ISAKOS 2022; 7:67-77. [PMID: 35543667 DOI: 10.1136/jisakos-2020-000600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Meniscus and cartilage injuries of the knee joint lead to cartilage degeneration and osteoarthritis (OA). The research on biomaterials and artificial implants as substitutes in reconstruction and regeneration has become a main international focus in order to solve clinical problems such as irreparable meniscus injury, postmeniscectomy syndrome, osteochondral lesions and generalised chronic OA. In this review, we provide a summary of biomaterials currently used in clinical practice as well as state-of-the-art tissue engineering strategies and technologies that are developed for articular cartilage and meniscus repair and regeneration. The literature was reviewed over the last 5 years on clinically used meniscus and cartilage repair biomaterials, such as Collagen Meniscal Implant, Actifit, NUsurface, TruFit, Agili-C and MaioRegen. There are clinical advantages for these biomaterials and the application of these treatment options should be considered individually. Standardised evaluation protocols are needed for biological and mechanical assessment and comparison between different scaffolds, and long-term randomised independent clinical trials with large study numbers are needed to provide more insight into the use of these biomaterials. Surgeons should become familiar and stay up to date with evolving repair options to improve their armamentarium for meniscal and cartilage defects.
Collapse
Affiliation(s)
- Louis Kluyskens
- Orthopedics, AZ Monica Antwerpen, Antwerpen, Belgium; Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA.
| | - Pedro Debieux
- Department of Orthopedics and Traumatology, Universidade Federal de São Paulo, Sao Paulo, São Paulo, Brazil; Department of Orthopaedic Surgery, Hospital Israelita Albert Einstein, Sao Paulo, São Paulo, Brazil
| | - Keng Lin Wong
- Department of Orthopaedic Surgery, Sengkang General Hospital, Singapore; Department of Orthopaedic Surgery, National University of Singapore, Singapore
| | - Aaron J Krych
- Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Daniel B F Saris
- Department of Orthopaedic Surgery, Mayo Clinic Rochester, Rochester, Minnesota, USA; Department of Orthopedic Surgery, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
14
|
No differences in clinical outcome between CMI and Actifit meniscal scaffolds: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2022; 30:328-348. [PMID: 33864114 DOI: 10.1007/s00167-021-06548-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To compare the results of two meniscal scaffolds, CMI and Actifit, for the treatment of partial meniscal lesions. METHODS A systematic review was performed on the PubMed, Web of Science, Scopus, Embase, and Cochrane databases in January 2021, including randomized controlled trails (RCTs) and prospective and retrospective observational studies on the clinical results of meniscal scaffolds. A meta-analysis of the clinical results was performed; the rate of failures was recorded, as well as radiological results. The quality of the included studies was assessed with a modified Coleman Methodology Score (CMS). RESULTS The search identified 37 studies (31 in the last 10 years): 2 RCTs, 5 comparative studies, 26 prospective and 4 retrospective series on a total of 1276 patients (472 CMI, 804 Actifit). The quality of evidence was generally low. An overall significant improvement in all clinical scores was documented for both scaffolds. The meta-analysis showed no differences between the two scaffolds in terms of patient reported outcome measures and activity level. The meta-analysis on the risk of failures documented a risk of failures of 7% in the CMI and of 9% in the Actifit group. CONCLUSIONS There is a growing interest on the results of meniscal scaffolds, with most studies published recently. However, long-term data on the Actifit scaffold and high-level comparative studies are missing. Both CMI and Actifit offered good clinical results with a significant and comparable improvement in symptoms and function, and with a low number of failures over time. Accordingly, with the proper indication, their use may be encouraged in the clinical practice. LEVEL OF EVIDENCE Level IV.
Collapse
|
15
|
Veronesi F, Di Matteo B, Vitale N, Filardo G, Visani A, Kon E, Fini M. Biosynthetic scaffolds for partial meniscal loss: A systematic review from animal models to clinical practice. Bioact Mater 2021; 6:3782-3800. [PMID: 33898878 PMCID: PMC8044909 DOI: 10.1016/j.bioactmat.2021.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute or degenerative meniscus tears are the most common knee lesions. Meniscectomy provides symptomatic relief and functional recovery only in the short- to mid-term follow-up but significantly increases the risk of osteoarthritis. For this reason, preserving the meniscus is key, although it remains a challenge. Allograft transplants present many disadvantages, so during the last 20 years preclinical and clinical research focused on developing and investigating meniscal scaffolds. The aim of this systematic review was to collect and evaluate all the available evidence on biosynthetic scaffolds for meniscus regeneration both in vivo and in clinical studies. Three databases were searched: 46 in vivo preclinical studies and 30 clinical ones were found. Sixteen natural, 15 synthetic, and 15 hybrid scaffolds were studied in vivo. Among them, only 2 were translated into clinic: the Collagen Meniscus Implant, used in 11 studies, and the polyurethane-based scaffold Actifit®, applied in 19 studies. Although positive outcomes were described in the short- to mid-term, the number of concurrent procedures and the lack of randomized trials are the major limitations of the available clinical literature. Few in vivo studies also combined the use of cells or growth factors, but these augmentation strategies have not been applied in the clinical practice yet. Current solutions offer a significant but incomplete clinical improvement, and the regeneration potential is still unsatisfactory. Building upon the overall positive results of these "old" technologies to address partial meniscal loss, further innovation is urgently needed in this field to provide patients better joint sparing treatment options.
Collapse
Affiliation(s)
- F. Veronesi
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - B. Di Matteo
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- First Moscow State Medical University - Sechenov University, Bol'shaya Pirogovskaya Ulitsa, 19c1, 119146, Moscow, Russia
| | - N.D. Vitale
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - G. Filardo
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - A. Visani
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - E. Kon
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20090, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - M. Fini
- Complex Structure of Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
16
|
Klarmann GJ, Gaston J, Ho VB. A review of strategies for development of tissue engineered meniscal implants. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100026. [PMID: 36824574 PMCID: PMC9934480 DOI: 10.1016/j.bbiosy.2021.100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/09/2022] Open
Abstract
The meniscus is a key stabilizing tissue of the knee that facilitates proper tracking and movement of the knee joint and absorbs stresses related to physical activity. This review article describes the biology, structure, and functions of the human knee meniscus, common tears and repair approaches, and current research and development approaches using modern methods to fabricate a scaffold or tissue engineered meniscal replacement. Meniscal tears are quite common, often resulting from sports or physical training, though injury can result without specific contact during normal physical activity such as bending or squatting. Meniscal injuries often require surgical intervention to repair, restore basic functionality and relieve pain, and severe damage may warrant reconstruction using allograft transplants or commercial implant devices. Ongoing research is attempting to develop alternative scaffold and tissue engineered devices using modern fabrication techniques including three-dimensional (3D) printing which can fabricate a patient-specific meniscus replacement. An ideal meniscal substitute should have mechanical properties that are close to that of natural human meniscus, and also be easily adapted for surgical procedures and fixation. A better understanding of the organization and structure of the meniscus as well as its potential points of failure will lead to improved design approaches to generate a suitable and functional replacement.
Collapse
Affiliation(s)
- George J. Klarmann
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA,Corresponding author at: USU-4D Bio³ Center, 9410 Key West Ave., Rockville, MD 20850, USA.
| | - Joel Gaston
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA,The Geneva Foundation, 917 Pacific Ave., Tacoma, WA 98402, USA
| | - Vincent B. Ho
- 4D Bio³ Center, Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Polyurethane scaffold implants for partial meniscus lesions: delayed intervention leads to an inferior outcome. Knee Surg Sports Traumatol Arthrosc 2021; 29:109-116. [PMID: 31654130 DOI: 10.1007/s00167-019-05760-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of this study was to assess the clinical outcomes of the implantation of an aliphatic polyurethane scaffold for the treatment of partial loss of meniscal tissue at a mean follow-up of 36 months. METHODS A retrospective review on prospectively collected data was performed on patients who underwent implantation of an aliphatic polyurethane-based synthetic meniscal scaffold. Patients were evaluated for demographics data, lesion and implant characteristics (sizing, type and number of meniscal sutures), previous and combined surgeries and complications. Clinical parameters were rated using NRS, IKDC subjective, Lysholm, KOOS, and Tegner activity score, both preoperatively and at final follow-up. RESULTS Sixty-seven patients were evaluated at a mean follow-up of 36 months (48 M and 19 F; mean age 40.8 ± 10.6 years; mean BMI 25.4 ± 4.3). The scaffold was implanted on the medial side in 54 cases, and on the lateral one in 13. Forty-seven patients had undergone previous surgical treatment at the same knee and 45 required combined surgical procedures. All evaluated scores improved significantly from the baseline. Among possible prognostic factors, a delayed scaffold implantation had lower post-operative clinical scores: IKDC subjective (P = 0.049), KOOS Sport (P = 0.044), KOOS total (p = 0.011), and Tegner (P = 0.03) scores at follow-up. CONCLUSIONS The polyurethane meniscal scaffold implantation led to a significant clinical benefit in a large number of patients. A delayed intervention correlated with worse results. LEVEL OF EVIDENCE IV.
Collapse
|
18
|
MR variability of collagen meniscal implant remodelling in patients with good clinical outcome. Knee Surg Sports Traumatol Arthrosc 2021; 29:90-99. [PMID: 31563990 DOI: 10.1007/s00167-019-05715-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Collagen meniscal implants (CMI) have variable imaging findings on MRI and it remains ambiguous, if alterations may be present in asymptomatic patients. The aim was, to evaluate MR morphological characteristics and volume of CMI in the early, mid- and long-term follow-up. METHODS Fifty-seven patients (mean age, 43.6±11 years; 41 male/16 female) with good clinical outcome (subjective visual analogue scale for satisfaction < 2 and a Lysholm-score ≥ 84) after CMI were assessed retrospectively using MRI 1, 2 and 3-8 years postoperatively. CMI morphology, signal intensity (SI), homogeneity and size were assessed and a meniscal score was calculated. Chondral defects and bone marrow edema pattern were reported and summarized in a chondral score. Meniscal extrusion and volume were evaluated. Intra- and inter-reader reliabilities were calculated. Spearman and partial correlations were used (p < 0.05). RESULTS One year postoperatively, the CMI varied in size [10% (4/40) normal, 30% (12/40) small, 60% (24/40) hypertrophic] and was hyperintense and inhomogeneous in all patients. At long-term follow-up, the size of CMI decreased [6% (1/17) resorbed, 18% (3/17) normal, 41% (7/17) small, 35% (6/17) hypertrophic]. The SI of the CMI changed to normal in only 13% (2/16). The majority was still hyperintense [87% (14/16)]. Less meniscal extrusion was present in the follow-up [71% (11/16) versus initially 93% (37/40)]. The meniscal score improved significantly (ρ = 0.28). Over time, full-thickness femoral chondral defects were increasingly present [65% (10/17) versus initially 33% (13/40)] and the chondral score worsened significantly (p = 0.017). CONCLUSION Abnormal and inhomogeneous SI and irregular margins of the early postoperative CMI on MRI are findings seen in patients with good clinical results and should not necessarily be overcalled when reporting MRI. These features tend to decrease over time. LEVEL OF EVIDENCE IV.
Collapse
|
19
|
de Caro F, Perdisa F, Dhollander A, Verdonk R, Verdonk P. Meniscus Scaffolds for Partial Meniscus Defects. Clin Sports Med 2020; 39:83-92. [DOI: 10.1016/j.csm.2019.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Kopf S, Beaufils P, Hirschmann MT, Rotigliano N, Ollivier M, Pereira H, Verdonk R, Darabos N, Ntagiopoulos P, Dejour D, Seil R, Becker R. Management of traumatic meniscus tears: the 2019 ESSKA meniscus consensus. Knee Surg Sports Traumatol Arthrosc 2020; 28:1177-1194. [PMID: 32052121 PMCID: PMC7148286 DOI: 10.1007/s00167-020-05847-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE The importance of meniscus integrity in the prevention of early osteoarthritis is well known, and preservation is accepted as the primary goal. The purpose of the ESSKA (European Society for Sports Traumatology, Knee Surgery and Arthroscopy) European consensus on traumatic meniscus tears was to provide recommendations for the treatment of meniscus tears based on both scientific evidence and the clinical experience of knee experts. METHODS Three groups of surgeons and scientists elaborated and ratified the so-called formal consensus process to define the recommendations for the management of traumatic meniscus tears. A traumatic meniscus tear was defined as a tear with an acute onset of symptoms caused by a sufficient trauma. The expert groups included a steering group of eight European surgeons and scientists, a rating group of another nineteen European surgeons, and a peer review group. The steering group prepared twenty-seven question and answer sets based on the scientific literature. The quality of the answers received grades of A (a high level of scientific support), B (scientific presumption), C (a low level of scientific support) or D (expert opinion). These question and answer sets were then submitted to and evaluated by the rating group. All answers were scored from 1 (= totally inappropriate) to 9 (= totally appropriate) points. Thereafter, the comments of the members of the rating group were incorporated by the steering group and the consensus was submitted to the rating group a second time. Once a general consensus was reached between the steering and rating groups, the finalized question and answer sets were submitted for final review by the peer review group composed of representatives of the ESSKA-affiliated national societies. Eighteen representatives replied. RESULTS The review of the literature revealed a rather low scientific quality of studies examining the treatment of traumatic meniscus tears. Of the 27 questions, only one question received a grade of A (a high level of scientific support), and another received a grade of B (scientific presumption). The remaining questions received grades of C and D. The mean rating of all questions by the rating group was 8.2 (95% confidence interval 8.1-8.4). A general agreement that MRI should be performed on a systematic basis was not achieved. However, MRI was recommended when arthroscopy would be considered to identify concomitant pathologies. In this case, the indication for MRI should be determined by a musculoskeletal specialist. Based on our data, stable left in situ lateral meniscus tears appear to show a better prognosis than medial tears. When repair is required, surgery should be performed as early as possible. Evidence that biological enhancement such as needling or the application of platelet-rich plasma would improve healing was not identified. Preservation of the meniscus should be considered as the first line of treatment because of an inferior clinical and radiological long-term outcome after partial meniscectomy compared to meniscus repair. DISCUSSION The consensus was generated to present the best possible recommendations for the treatment of traumatic meniscus tears and provides some groundwork for a clinical decision-making process regarding the treatment of meniscus tears. Preservation of the meniscus should be the first line of treatment when possible, because the clinical and radiological long-term outcomes are worse after partial meniscectomy than after meniscus preservation. The consensus clearly states that numerous meniscus tears that were considered irreparable should be repaired, e.g., older tears, tears in obese patients, long tears, etc. LEVEL OF EVIDENCE: II.
Collapse
Affiliation(s)
- Sebastian Kopf
- Center of Orthopaedics and Traumatology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| | - Philippe Beaufils
- grid.418080.50000 0001 2177 7052Orthopaedics Department, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Michael T. Hirschmann
- Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland (Bruderholz, Liestal, Laufen) and University of Basel, Basel, Switzerland
| | - Niccolò Rotigliano
- Department of Orthopaedic Surgery and Traumatology, Kantonsspital Baselland (Bruderholz, Liestal, Laufen) and University of Basel, Basel, Switzerland
| | - Matthieu Ollivier
- Department of Orthopedics and Traumatology, Institute of Movement and Locomotion, St. Marguerite Hospital, 270 Boulevard Sainte Marguerite, BP 29, 13274 Marseille, France
| | - Helder Pereira
- grid.10328.380000 0001 2159 175XOrthopedic Department Centro Hospitalar Póvoa de Varzim, Vila do Conde and ICVS/3 Bs Associated Laboratory, Minho University, Braga, Portugal
| | - Rene Verdonk
- grid.411326.30000 0004 0626 3362Department of Orthopaedic Surgery and Traumatology, University Hospital Erasmus Bruxelles, Bruxelles, Belgium
| | - Nikica Darabos
- grid.412688.10000 0004 0397 9648Department of Traumatology, Bone and Joint Surgery, Clinic of Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - David Dejour
- Orthopaedic Department, Lyon-Ortho-Clinic, Clinique de La Sauvegarde, Avenue Ben Gourion, 69009 Lyon, France
| | - Romain Seil
- grid.418041.80000 0004 0578 0421Service de Chirurgie Orthopédique, Centre Hospitalier de Luxembourg-Clinique d’ Eich, 78, 1460 Rue d’ Eich, Luxembourg ,grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 78, 1460 Rue d’Eich, Luxembourg
| | - Roland Becker
- Department of Orthopedics and Traumatology, Centre of Joint Replacement, Hospital Brandenburg, Medical School "Theodor Fontane", Hochstrasse 29, 14770, Brandenburg/Havel, Germany.
| |
Collapse
|
21
|
Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC, Athanasiou KA. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 2019; 15:550-570. [PMID: 31296933 PMCID: PMC7192556 DOI: 10.1038/s41584-019-0255-1] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
Abstract
Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.
Collapse
Affiliation(s)
- Heenam Kwon
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Cassandra A Lee
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Nikolaos Paschos
- Division of Sports Medicine, Department of Orthopaedic Surgery, New England Baptist Hospital, Tufts University School of Medicine, Boston, MA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
22
|
Meniscal allograft transplantation combined with anterior cruciate ligament reconstruction provides good mid-term clinical outcome. Knee Surg Sports Traumatol Arthrosc 2019; 27:1914-1923. [PMID: 30083970 DOI: 10.1007/s00167-018-5078-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/23/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE Aim of this study is to document if combined meniscal allograft transplantation (MAT) and ACL reconstruction can improve knee function, reduce pain and allow patients with meniscal defect and ACL lesion to resume sport activities. METHODS Fifty MAT, arthroscopically performed without bone plugs and combined with one-stage primary or revision ACL reconstruction, with or without high tibial osteotomy (HTO), were included. Patients (aged 38.2 ± 10.6 years, 87% males) were evaluated at a mean follow-up of 5 years with Lysholm, Tegner and VAS scores. Patient satisfaction was also recorded, together with complications and failures. RESULTS VAS and Lysholm scores improved significantly (from 63.7 to 24.5 and from 60.6 to 82.7, respectively, p < 0.001), while the Tegner score did not reach pre-injury values (p < 0.001), but it improved significantly compared to pre-surgery values (from 2.8 to 4.6, p < 0.001). Medial MAT reported significantly better results compared to lateral MAT. Patients undergoing concomitant HTO reported a significantly higher decrease of VAS. Younger patients with higher pre-operative pain and lower activity level presented higher satisfaction. Eight patients needed a reoperation. Three patients were considered surgical failures while four were considered clinical failures, for a total of 15% failures. CONCLUSIONS Meniscal allograft transplantation combined with ACL reconstruction represents a safe and suitable treatment, which should be considered as a suitable option in the clinical practice. All evaluated patient profiles, ACL injury in a patient with post-meniscectomy syndrome, failed ACL reconstruction in patients with a meniscus defect, and ACL reconstruction in patients with malalignment due to meniscal defect, benefited from the combined MAT procedure at medium-term follow-up. LEVEL OF EVIDENCE IV.
Collapse
|
23
|
Cinque ME, Dornan GJ, Chahla J, Moatshe G, LaPrade RF. High Rates of Osteoarthritis Develop After Anterior Cruciate Ligament Surgery: An Analysis of 4108 Patients. Am J Sports Med 2018; 46:2011-2019. [PMID: 28982255 DOI: 10.1177/0363546517730072] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) reconstruction ultimately translates into a large economic effect on the health care system owing to the young ages of this population. Purpose/Hypothesis: The purposes were to perform a meta-analysis to determine the prevalence of osteoarthritis after an ACL reconstruction, examining the effects of length of time after surgery, preoperative time interval from injury to surgery, and patient age at the time of surgery. It was hypothesized that the prevalence of PTOA increased with time from surgery and that increased time from injury to surgery and age were also risk factors for the development of PTOA. STUDY DESIGN Meta-analysis. METHODS A meta-analysis of the prevalence of radiographic PTOA after ACL reconstruction was performed of studies with a minimum of 5 years' follow-up, with a level of evidence of 1, 2, or 3. The presence of osteoarthritis was defined according to knee radiographs evaluated with classification based on Kellgren and Lawrence, Ahlbäck, International Knee Documentation Committee, or the Osteoarthritis Research Society International. Metaregression models quantified the relationship between radiographic PTOA prevalence and the mean time from injury to surgery, mean patient age at time of surgery, and mean postoperative follow-up time. RESULTS Thirty-eight studies (4108 patients) were included. Longer postsurgical follow-up time was significantly positively associated with a higher proportion of PTOA development. The model-estimated proportion of PTOA (95% CI) at 5, 10, and 20 years after surgery was 11.3% (6.4%-19.1%), 20.6% (14.9%-27.7%), and 51.6% (29.1%-73.5%), respectively. Increased chronicity of the ACL tear before surgery and increased patient age were also associated with a higher likelihood of PTOA development. CONCLUSION The prevalence of osteoarthritis after an ACL reconstruction significantly increased with time. Longer chronicity of ACL tear and older age at the time of surgery were significantly positively correlated with the development of osteoarthritis. A timely referral and treatment of symptomatic patients are vital to diminish the occurrence of PTOA.
Collapse
Affiliation(s)
- Mark E Cinque
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Grant J Dornan
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jorge Chahla
- Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Gilbert Moatshe
- Steadman Philippon Research Institute, Vail, Colorado, USA.,Oslo University Hospital, Oslo, Norway
| | - Robert F LaPrade
- Steadman Philippon Research Institute, Vail, Colorado, USA.,The Steadman Clinic, Vail, Colorado, USA
| |
Collapse
|
24
|
Gao S, Chen M, Wang P, Li Y, Yuan Z, Guo W, Zhang Z, Zhang X, Jing X, Li X, Liu S, Sui X, Xi T, Guo Q. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater 2018; 73:127-140. [PMID: 29654991 DOI: 10.1016/j.actbio.2018.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022]
Abstract
Low vascularization in meniscus limits its regeneration ability after injury, and tissue engineering is the most promising method to achieve meniscus regeneration. In this study, we fabricated a kind of composite scaffold by decellularized meniscus extracellular matrix/polycaprolactone (DMECM/PCL) electrospinning fibers and porous DMECM, in which DMECM/PCL fibers were used as reinforcing component. The tensile modulus of the composite scaffold in longitudinal and crosswise directions were 8.5 ± 1.9 and 2.3 ± 0.3 MPa, respectively. Besides that, the DMECM/PCL electrospinning fibers enhanced suture resistance of the composite scaffold more than 5 times than DMECM scaffold effectively. In vitro cytocompatibility showed that the porous structure provided by DMECM component facilitated meniscus cells' proliferation. DMECM was also the main component to regulate cell behaviors, which promoted meniscus cells expressing extracellular matrix related genes such as COL I, COL II, SOX9 and AGG. Rabbits with total meniscectomy were used as animal model to evaluated the composited scaffolds performance in vivo at 3 and 6 months. Results showed that rabbits with scaffold implanting could regenerate neo-menisci in both time points. The neo-menisci had similar histology structure and biochemical content with native menisci. Although neo-menisci had inferior tensile modulus than native ones, its modulus was improved with implanting time prolonging. MRI imaging showed the signal of neo-meniscus in the body is clear, and X-ray imaging of knee joints demonstrated the implantation of scaffolds could relief joint space narrowing. Moreover, rabbits with neo-menisci had better cartilage condition in femoral condyle and tibial plateau compared than meniscectomy group. STATEMENT OF SIGNIFICANCE We fabricated the meniscus scaffold by combining porous decellularized meniscus extracellular matrix (DMECM) and DMECM/PCL electrospinning fibers together, which used the porous structure of DMECM, and the good tensile property of electrospinning fibers. We believe single material cannot satisfy increasing needs of scaffold. Therefore, we combined not only materials but also fabrication methods together to develop scaffold to make good use of each part. DMECM in electrospinning fibers also made these two components possible to be integrated through crosslinking. Compared to existing meniscus scaffold, the composite scaffold had (1) soft structure and extrusion would not happen after implantation, (2) ability to be trimmed to suitable shape during surgery, and (3) good resistance to suture.
Collapse
Affiliation(s)
- Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingxue Chen
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Pei Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xueliang Zhang
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Li
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Tingfei Xi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Shenzhen Institute, Peking University, Shenzhen 518057, China.
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
25
|
Abstract
BACKGROUND Tissue excision in the setting of a meniscal tear has been shown to dramatically increase peak contact stresses in the affected tibiofemoral joint compartment, leading to the development of degenerative changes and osteoarthritis. PURPOSE/HYPOTHESIS The current in vitro study utilized a porcine model to evaluate the effectiveness of segmental medial meniscal grafting following partial meniscectomy. The study hypothesis was that the procedure would normalize medial tibofemoral joint compartment pressure magnitudes, areas, and locations relative to an intact meniscus. STUDY DESIGN Controlled laboratory study. METHODS Using pressure film, medial tibiofemoral joint compartment peak, and mean pressure magnitudes, peak pressure location and peak pressure area were determined using 12 potted, fresh frozen, porcine knee specimens. Data were collected at three different knee flexion angles (90°, 45°, and 0°) for three conditions: intact medial meniscus, following resection of the central third of the medial meniscus, and following segmental medial meniscal grafting. For each condition, the potted femur was positioned horizontally in a bench vise clamp, while a 20 pound (88.96 N) axial compression force was manually applied for a 60 s duration by the primary investigator through the base of the potted tibia using a digital force gauge. RESULTS Loss of the central 1/3 of the medial meniscus resulted in significant increases in the mean and peak pressures of the medial tibiofemoral joint compartment and decreased peak pressure area. Segmental meniscal grafting of the central third defect closely recreated the contact pressures and loading areas of the native, intact medial meniscus. CONCLUSION From a static, time zero biomechanical perspective, segmental medial meniscus grafting of a partially meniscectomized knee restored mean pressure, peak pressure, and mean peak contact pressure areas of the medial tibiofemoral joint compartment back to levels observed in the intact medial meniscus at different knee flexion angles. In-vivo analysis under dynamic conditions is necessary to verify the healing efficacy and ability of the healed segmental medial meniscal allograft to provide long-term knee joint homeostasis when confronted with dynamic shear, rotatory, and combined, higher magnitude physiologic loading forces.
Collapse
|
26
|
Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: Current strategies and future perspectives. J Clin Orthop Trauma 2018; 9:247-253. [PMID: 30202157 PMCID: PMC6128795 DOI: 10.1016/j.jcot.2018.07.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
The management of meniscal injuries remains difficult and challenging. Although several clinical options exist for the treatment of such injuries, complete regeneration of the damaged meniscus has proved difficult due to the limited healing capacity of the tissue. With the advancements in tissue engineering and cell-based technologies, new therapeutic options for patients with currently incurable meniscal lesions now potentially exist. This review will discuss basic anatomy, current repair techniques and treatment options for loss of meniscal integrity. Specifically, we focus on the possibility and feasibility of the latest tissue engineering approaches, including 3D printing technologies. Therefore, this discussion will facilitate a better understanding of the latest trends in meniscal repair and regeneration, and contribute to the future application of such clinical therapies for patients with meniscal injuries.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shuichi Hamamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - David A. Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, T2N 4N1, Canada
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan,Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan,Corresponding author. Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tenma, Kita-ku, Osaka City, Osaka, 530-0043, Japan.
| |
Collapse
|
27
|
Shimomura K, Rothrauff BB, Tuan RS. Region-Specific Effect of the Decellularized Meniscus Extracellular Matrix on Mesenchymal Stem Cell-Based Meniscus Tissue Engineering. Am J Sports Med 2017; 45:604-611. [PMID: 27895039 DOI: 10.1177/0363546516674184] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The meniscus is the most commonly injured knee structure, and surgical repair is often ineffective. Tissue engineering-based repair or regeneration may provide a needed solution. Decellularized, tissue-derived extracellular matrices (ECMs) have received attention for their potential use as tissue-engineered scaffolds. In considering meniscus-derived ECMs (mECMs) for meniscus tissue engineering, it is noteworthy that the inner and outer regions of the meniscus have different structural and biochemical features, potentially directing the differentiation of cells toward region-specific phenotypes. PURPOSE To investigate the applicability of mECMs for meniscus tissue engineering by specifically comparing region-dependent effects of mECMs on 3-dimensional constructs seeded with human bone marrow mesenchymal stem cells (hBMSCs). STUDY DESIGN Controlled laboratory study. METHODS Bovine menisci were divided into inner and outer halves and were minced, treated with Triton X-100 and DNase, and extracted with urea. Then, hBMSCs (1 × 106 cells/mL) were encapsulated in a photo-cross-linked 10% polyethylene glycol diacrylate scaffold containing mECMs (60 μg/mL) derived from either the inner or outer meniscus, with an ECM-free scaffold as a control. The cell-seeded constructs were cultured with chondrogenic medium containing recombinant human transforming growth factor β3 (TGF-β3) and were analyzed for expression of meniscus-associated genes as well as for the collagen (hydroxyproline) and glycosaminoglycan content as a function of time. RESULTS Decellularization was verified by the absence of 4',6-diamidino-2-phenylindole (DAPI)-stained cell nuclei and a reduction in the DNA content. Quantitative real-time polymerase chain reaction showed that collagen type I expression was significantly higher in the outer mECM group than in the other groups, while collagen type II and aggrecan expression was highest in the inner mECM group. The collagen (hydroxyproline) content was highest in the outer mECM group, while the glycosaminoglycan content was higher in both the inner and outer mECM groups compared with the control group. CONCLUSION These results showed that the inner mECM enhances the fibrocartilaginous differentiation of hBMSCs, while the outer mECM promotes a more fibroblastic phenotype. Our findings support the feasibility of fabricating bioactive scaffolds using region-specific mECM preparations for meniscus tissue engineering. CLINICAL RELEVANCE This is the first report to demonstrate the feasibility of applying region-specific mECMs for the engineering of meniscus implants capable of reproducing the biphasic, anatomic, and biochemical characteristics of the meniscus, features that should contribute to the feasibility of their clinical application.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Medicine for Sports and Performing Arts, Department of Health and Sport Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Filardo G, Kon E, Perdisa F, Sessa A, Di Martino A, Busacca M, Zaffagnini S, Marcacci M. Polyurethane-based cell-free scaffold for the treatment of painful partial meniscus loss. Knee Surg Sports Traumatol Arthrosc 2017; 25:459-467. [PMID: 27395355 DOI: 10.1007/s00167-016-4219-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to document, at mid-term follow-up, the clinical and MRI outcome of a polyurethane-based cell-free scaffold implanted to treat painful partial meniscus loss. METHODS Eighteen consecutive patients were enrolled and treated with arthroscopic polyurethane meniscal scaffold implantation and, in case of other comorbidities, with concurrent surgical procedures: 16 patients (9 men and 7 women, mean age 45 ± 13 years, mean BMI 25 ± 3, 12 medial and 4 lateral implants) were prospectively evaluated with the subjective and objective IKDC and the Tegner scores at 24, 36, 48, 60, and 72 months of follow-up. Eleven patients were also evaluated by 1.5-T MRI at the final follow-up. RESULTS The IKDC subjective score showed a significant improvement from baseline to 24 months (45.6 ± 17.5 and 75.3 ± 14.8, respectively; p = 0.02) and subsequent stable results over time for up to 72 months (final score 75.0 ± 16.8). The Tegner score improvement between pre-operative status and final follow-up was also significant (p = 0.039). Nevertheless, the final score remained significantly lower than the pre-injury sports activity level (p = 0.027). High-resolution MRIs documented the presence of abnormal findings in terms of morphology, signal intensity, and interface between the implant and the native meniscus. Implant extrusion and bone oedema at the treated compartment were also observed in most of the cases, even though no correlation was found between imaging findings and clinical outcome. CONCLUSIONS The present study reports satisfactory clinical outcomes at mid-term follow-up after polyurethane-based meniscal cell-free scaffold implantation. The treatment was effective both in cases of isolated partial meniscal lesions and in complex cases requiring the combination with other surgical procedures. On the other hand, a high rate of altered MRI aspects was documented. However, no correlation was found between the altered imaging parameters and the overall positive clinical findings, thus supporting the use of this procedure to treat painful partial meniscus loss. LEVEL OF EVIDENCE Case series, Level IV.
Collapse
Affiliation(s)
- G Filardo
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy.,Bologna University, Bologna, Italy
| | - E Kon
- Bologna University, Bologna, Italy.,Laboratory of NanoBiotechnology (NABI), Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - F Perdisa
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - A Sessa
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy.
| | - A Di Martino
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - M Busacca
- Diagnostic and Interventional Radiology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy
| | - S Zaffagnini
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy.,Bologna University, Bologna, Italy
| | - M Marcacci
- Laboratory of Biomechanics and Technology Innovation/2nd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, Italy.,Bologna University, Bologna, Italy
| |
Collapse
|
29
|
Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg Sports Traumatol Arthrosc 2016; 24:1478-84. [PMID: 26298712 DOI: 10.1007/s00167-015-3759-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE The preservation of meniscal structure and function after segmental meniscal loss is of crucial importance to prevent early development of osteoarthritis. Implantation of artificial meniscal implants has been reported as a feasible treatment option. The purpose of this study was to assess the clinical and magnetic resonance imaging (MRI) results 4 years after implantation of a polyurethane scaffold for chronic segmental medial meniscus deficiency following partial medial meniscectomy. METHODS Eighteen patients received arthroscopic implantation of an Actifit(®) polyurethane meniscal implant (Orteq Sports Medicine, London, UK) for deficiency of the medial meniscus. Patients were followed at 6, 12, 24, and 48 months. Clinical outcome was assessed using established patient-reported outcome scores (KOOS, KSS, UCLA Activity Scale, VAS for pain). Radiological outcome was quantified by MRI scans after 6, 12, 24, and 48 months evaluating scaffold morphology, tissue integration, and status of the articular cartilage as well as signs of inflammation. RESULTS Median patient age was 32.5 years (range 17-49 years) with a median meniscal defect size of 44.5 mm (range 35-62 mm). Continuing improvement of the VAS and KSS Knee and Function Scores could be observed after 48 months compared to baseline, whereas improvement of the activity level according to UCLA continued only up to 24 months and decreased from there on. The KOOS Score showed significant improvement in all dimensions. MRI scans showed reappearance of bone bruises in two patients with scaffold extrusion. No significant changes in the articular cartilage could be perceived. CONCLUSION Arthroscopic treatment for patients with chronic segmental meniscal loss using a polyurethane meniscal implant can achieve sustainable midterm results regarding pain reduction and knee function. LEVEL OF EVIDENCE IV.
Collapse
|
30
|
Zaffagnini S, Fink C, Grassi A, Marcheggiani Muccioli G, Marcacci M. Meniskusimplantate. ARTHROSKOPIE 2015. [DOI: 10.1007/s00142-014-0837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|