1
|
Weidner FM, Schwab JD, Wölk S, Rupprecht F, Ikonomi N, Werle SD, Hoffmann S, Kühl M, Kestler HA. Leveraging quantum computing for dynamic analyses of logical networks in systems biology. PATTERNS (NEW YORK, N.Y.) 2023; 4:100705. [PMID: 36960443 PMCID: PMC10028428 DOI: 10.1016/j.patter.2023.100705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023]
Abstract
The dynamics of cellular mechanisms can be investigated through the analysis of networks. One of the simplest but most popular modeling strategies involves logic-based models. However, these models still face exponential growth in simulation complexity compared with a linear increase in nodes. We transfer this modeling approach to quantum computing and use the upcoming technique in the field to simulate the resulting networks. Leveraging logic modeling in quantum computing has many benefits, including complexity reduction and quantum algorithms for systems biology tasks. To showcase the applicability of our approach to systems biology tasks, we implemented a model of mammalian cortical development. Here, we applied a quantum algorithm to estimate the tendency of the model to reach particular stable conditions and further revert dynamics. Results from two actual quantum processing units and a noisy simulator are presented, and current technical challenges are discussed.
Collapse
Affiliation(s)
- Felix M. Weidner
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School of Molecular Medicine, Ulm University, 89081 Ulm, Germany
| | - Julian D. Schwab
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Sabine Wölk
- Institute of Quantum Technologies, DLR Ulm, 89081 Ulm, Germany
| | - Felix Rupprecht
- Institute of Quantum Technologies, DLR Ulm, 89081 Ulm, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
- International Graduate School of Molecular Medicine, Ulm University, 89081 Ulm, Germany
| | - Silke D. Werle
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Steve Hoffmann
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
- Corresponding author
| |
Collapse
|
2
|
Pušnik Ž, Mraz M, Zimic N, Moškon M. Review and assessment of Boolean approaches for inference of gene regulatory networks. Heliyon 2022; 8:e10222. [PMID: 36033302 PMCID: PMC9403406 DOI: 10.1016/j.heliyon.2022.e10222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 10/25/2022] Open
Abstract
Boolean descriptions of gene regulatory networks can provide an insight into interactions between genes. Boolean networks hold predictive power, are easy to understand, and can be used to simulate the observed networks in different scenarios. We review fundamental and state-of-the-art methods for inference of Boolean networks. We introduce a methodology for a straightforward evaluation of Boolean inference approaches based on the generation of evaluation datasets, application of selected inference methods, and evaluation of performance measures to guide the selection of the best method for a given inference problem. We demonstrate this procedure on inference methods REVEAL (REVerse Engineering ALgorithm), Best-Fit Extension, MIBNI (Mutual Information-based Boolean Network Inference), GABNI (Genetic Algorithm-based Boolean Network Inference) and ATEN (AND/OR Tree ENsemble algorithm), which infers Boolean descriptions of gene regulatory networks from discretised time series data. Boolean inference approaches tend to perform better in terms of dynamic accuracy, and slightly worse in terms of structural correctness. We believe that the proposed methodology and provided guidelines will help researchers to develop Boolean inference approaches with a good predictive capability while maintaining structural correctness and biological relevance.
Collapse
Affiliation(s)
- Žiga Pušnik
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Miha Mraz
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Nikolaj Zimic
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| | - Miha Moškon
- University of Ljubljana, Faculty of Computer and Information Science, Večna pot 113, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
3
|
Discrete Logic Modeling of Cell Signaling Pathways. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2488:159-181. [PMID: 35347689 DOI: 10.1007/978-1-0716-2277-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell signaling pathways often crosstalk generating complex biological behaviors observed in different cellular contexts. Frequently, laboratory experiments focus on a few putative regulators, alone unable to predict the molecular mechanisms behind the observed phenotypes. Here, systems biology complements these approaches by giving a holistic picture to complex signaling crosstalk. In particular, Boolean network models are a meaningful tool to study large network behaviors and can cope with incomplete kinetic information. By introducing a model describing pathways involved in hematopoietic stem cell maintenance, we present a general approach on how to model cell signaling pathways with Boolean network models.
Collapse
|
4
|
Weidner FM, Schwab JD, Werle SD, Ikonomi N, Lausser L, Kestler HA. Capturing dynamic relevance in Boolean networks using graph theoretical measures. Bioinformatics 2021; 37:3530-3537. [PMID: 33983406 PMCID: PMC8545349 DOI: 10.1093/bioinformatics/btab277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Motivation Interaction graphs are able to describe regulatory dependencies between compounds without capturing dynamics. In contrast, mathematical models that are based on interaction graphs allow to investigate the dynamics of biological systems. However, since dynamic complexity of these models grows exponentially with their size, exhaustive analyses of the dynamics and consequently screening all possible interventions eventually becomes infeasible. Thus, we designed an approach to identify dynamically relevant compounds based on the static network topology. Results Here, we present a method only based on static properties to identify dynamically influencing nodes. Coupling vertex betweenness and determinative power, we could capture relevant nodes for changing dynamics with an accuracy of 75% in a set of 35 published logical models. Further analyses of the selected compounds’ connectivity unravelled a new class of not highly connected nodes with high impact on the networks’ dynamics, which we call gatekeepers. We validated our method’s working concept on logical models, which can be readily scaled up to complex interaction networks, where dynamic analyses are not even feasible. Availability and implementation Code is freely available at https://github.com/sysbio-bioinf/BNStatic. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Germany.,International Graduate School of Molecular Medicine, Ulm University, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Germany
| |
Collapse
|
5
|
Schwab JD, Kühlwein SD, Ikonomi N, Kühl M, Kestler HA. Concepts in Boolean network modeling: What do they all mean? Comput Struct Biotechnol J 2020; 18:571-582. [PMID: 32257043 PMCID: PMC7096748 DOI: 10.1016/j.csbj.2020.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/27/2020] [Accepted: 03/01/2020] [Indexed: 12/02/2022] Open
Abstract
Boolean network models are one of the simplest models to study complex dynamic behavior in biological systems. They can be applied to unravel the mechanisms regulating the properties of the system or to identify promising intervention targets. Since its introduction by Stuart Kauffman in 1969 for describing gene regulatory networks, various biologically based networks and tools for their analysis were developed. Here, we summarize and explain the concepts for Boolean network modeling. We also present application examples and guidelines to work with and analyze Boolean network models.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
6
|
Schwab JD, Kestler HA. Automatic Screening for Perturbations in Boolean Networks. Front Physiol 2018; 9:431. [PMID: 29740342 PMCID: PMC5928136 DOI: 10.3389/fphys.2018.00431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior—so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.
Collapse
Affiliation(s)
- Julian D Schwab
- Medical Faculty, Institute of Medical Systems Biology Ulm University, Ulm, Germany.,International Graduate School of Molecular Medicine Ulm University, Ulm, Germany
| | - Hans A Kestler
- Medical Faculty, Institute of Medical Systems Biology Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Schwab JD, Siegle L, Kühlwein SD, Kühl M, Kestler HA. Stability of Signaling Pathways during Aging-A Boolean Network Approach. BIOLOGY 2017; 6:E46. [PMID: 29258225 PMCID: PMC5745451 DOI: 10.3390/biology6040046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Biological pathways are thought to be robust against a variety of internal and external perturbations. Fail-safe mechanisms allow for compensation of perturbations to maintain the characteristic function of a pathway. Pathways can undergo changes during aging, which may lead to changes in their stability. Less stable or less robust pathways may be consequential to or increase the susceptibility of the development of diseases. Among others, NF- κ B signaling is a crucial pathway in the process of aging. The NF- κ B system is involved in the immune response and dealing with various internal and external stresses. Boolean networks as models of biological pathways allow for simulation of signaling behavior. They can help to identify which proposed mechanisms are biologically representative and which ones function but do not mirror physical processes-for instance, changes of signaling pathways during the aging process. Boolean networks can be inferred from time-series of gene expression data. This allows us to get insights into the changes of behavior of pathways such as NF- κ B signaling in aged organisms in comparison to young ones.
Collapse
Affiliation(s)
- Julian Daniel Schwab
- Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany.
- International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany.
| | - Lea Siegle
- Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany.
- International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany.
| | - Silke Daniela Kühlwein
- Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany.
- International Graduate School of Molecular Medicine, Ulm University, 89069 Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89069 Ulm, Germany.
| | - Hans Armin Kestler
- Institute of Medical Systems Biology, Ulm University, 89069 Ulm, Germany.
| |
Collapse
|
8
|
Mayer G, Marcus K, Eisenacher M, Kohl M. Boolean modeling techniques for protein co-expression networks in systems medicine. Expert Rev Proteomics 2016; 13:555-69. [PMID: 27105325 DOI: 10.1080/14789450.2016.1181546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Application of systems biology/systems medicine approaches is promising for proteomics/biomedical research, but requires selection of an adequate modeling type. AREAS COVERED This article reviews the existing Boolean network modeling approaches, which provide in comparison with alternative modeling techniques several advantages for the processing of proteomics data. Application of methods for inference, reduction and validation of protein co-expression networks that are derived from quantitative high-throughput proteomics measurements is presented. It's also shown how Boolean models can be used to derive system-theoretic characteristics that describe both the dynamical behavior of such networks as a whole and the properties of different cell states (e.g. healthy or diseased cell states). Furthermore, application of methods derived from control theory is proposed in order to simulate the effects of therapeutic interventions on such networks, which is a promising approach for the computer-assisted discovery of biomarkers and drug targets. Finally, the clinical application of Boolean modeling analyses is discussed. Expert commentary: Boolean modeling of proteomics data is still in its infancy. Progress in this field strongly depends on provision of a repository with public access to relevant reference models. Also required are community supported standards that facilitate input of both proteomics and patient related data (e.g. age, gender, laboratory results, etc.).
Collapse
Affiliation(s)
- Gerhard Mayer
- a Medizinisches Proteom Center (MPC) , Ruhr-Universität Bochum , Bochum , Germany
| | - Katrin Marcus
- a Medizinisches Proteom Center (MPC) , Ruhr-Universität Bochum , Bochum , Germany
| | - Martin Eisenacher
- a Medizinisches Proteom Center (MPC) , Ruhr-Universität Bochum , Bochum , Germany
| | - Michael Kohl
- a Medizinisches Proteom Center (MPC) , Ruhr-Universität Bochum , Bochum , Germany
| |
Collapse
|
9
|
Proceedings of Reisensburg 2011. Comput Stat 2014. [DOI: 10.1007/s00180-013-0475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
|