1
|
Luo R, Li W, Huang J, Liu Z, Zhang C, Ding H, Chen J. TRPC3 contributes to cyclophosphamide-induced cystitis progression by enhancing bladder fibrosis through activation of the TGF-β/smad pathway. Front Pharmacol 2025; 16:1565156. [PMID: 40271070 PMCID: PMC12014565 DOI: 10.3389/fphar.2025.1565156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Background Bladder pain syndrome/Interstitial cystitis (BPS/IC) is a chronic urological disorder affecting 2.7%-6.5% of the population. The condition is characterized by significant bladder-related pain, with approximately 50% of IC/BPS patients exhibiting bladder fibrosis. Transient receptor potential cation channel subfamily C member 3 (TRPC3), a protein linked to fibrosis in heart and kidneys, emerged as a potential therapeutic target for this condition. Methods Using a cyclophosphamide-induced cystitis rat model, we employed RNA sequencing for transcriptional profiling, Western blot for protein quantification, and Masson staining for fibrotic assessment. Cellular-specific TRPC3 expression patterns were elucidated through single-cell transcriptomic analysis. TRPC3 inhibition was implemented via intraperitoneal administration of Pyrazole 3. The study assessed mechanical pain sensitivity and bladder function through von Frey testing and cystometry. Results Significant findings revealed TRPC3 RNA and protein expression was markedly upregulated in cystitis rats. TRPC3 inhibition substantially improved mechanical pain sensitivity and reduced micturition frequency. TRPC3 is predominantly expressed in fibroblasts and fibrosis-related pathways are upregulated in cystitis rats. The increased fibrosis markers and collagen fiber deposition are both reversed by TRPC3 inhibition. And the TGF-β/Smad signaling pathway was notably activated and subsequently downregulated with TRPC3 inhibition. Conclusion TRPC3 activation contributes significantly to bladder fibrosis in IC/BPS. Inhibiting TRPC3 ameliorates symptoms by modulating TGF-β/Smad pathway, suggesting it as a promising therapeutic target for managing this challenging condition with limited current treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Ashraf S, Clarkson T, Malykhina AP. Therapeutic Approaches for Urologic Chronic Pelvic Pain Syndrome; Management: Research Advances, Experimental Targets, and Future Directions. J Pharmacol Exp Ther 2024; 390:222-232. [PMID: 38565309 PMCID: PMC11264256 DOI: 10.1124/jpet.123.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Urologic chronic pelvic pain syndrome (UCPPS) is a painful chronic condition with persistent pain originating from the pelvis that often leads to detrimental lifestyle changes in the affected patients. The syndrome develops in both sexes, with an estimated prevalence of 5.7% to 26.6% worldwide. This narrative review summarizes currently recommended therapies for UCPPS, followed by the latest animal model findings and clinical research advances in the field. The diagnosis of UCPPS by clinicians has room for improvement despite the changes in the past decade aiming to decrease the time to treatment. Therapeutic approaches targeting growth factors (i.e., nerve growth factor, vascular endothelial growth factor), amniotic bladder therapy, and stem cell treatments gain more attention as experimental treatment options for UCPPS. The development of novel diagnostic tests based on the latest advances in urinary biomarkers would be beneficial to assist with the clinical diagnosis of UCPPS. Future research directions should address the role of chronic psychologic stress and the mechanisms of pain refractory to conventional management strategies in UCPPS etiology. Testing the applicability of cognitive behavioral therapy in this cohort of UCPPS patients might be promising to increase their quality of life. The search for novel lead compounds and innovative drug delivery systems requires clinically relevant translational animal models. The role of autoimmune responses triggered by environmental factors is another promising research direction to clarify the impact of the immune system in UCPPS pathophysiology. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the therapeutic approaches for UCPPS with a focus on recent advancements in the clinical diagnosis and treatments of the disease, pathophysiological mechanisms of UCPPS, signaling pathways, and molecular targets involved in pelvic nociception.
Collapse
Affiliation(s)
- Salman Ashraf
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Taylor Clarkson
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna P Malykhina
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Alanazi RF, Alhwity BS, Almahlawi RM, Alatawi BD, Albalawi SA, Albalawi RA, Albalawi AA, Abdel-Maksoud MS, Elsherbiny N. Multilineage Differentiating Stress Enduring (Muse) Cells: A New Era of Stem Cell-Based Therapy. Cells 2023; 12:1676. [PMID: 37443710 PMCID: PMC10340735 DOI: 10.3390/cells12131676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/03/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Stem cell transplantation has recently demonstrated a significant therapeutic efficacy in various diseases. Multilineage-differentiating stress-enduring (Muse) cells are stress-tolerant endogenous pluripotent stem cells that were first reported in 2010. Muse cells can be found in the peripheral blood, bone marrow and connective tissue of nearly all body organs. Under basal conditions, they constantly move from the bone marrow to peripheral blood to supply various body organs. However, this rate greatly changes even within the same individual based on physical status and the presence of injury or illness. Muse cells can differentiate into all three-germ-layers, producing tissue-compatible cells with few errors, minimal immune rejection and without forming teratomas. They can also endure hostile environments, supporting their survival in damaged/injured tissues. Additionally, Muse cells express receptors for sphingosine-1-phosphate (S1P), which is a protein produced by damaged/injured tissues. Through the S1P-S1PR2 axis, circulating Muse cells can preferentially migrate to damaged sites following transplantation. In addition, Muse cells possess a unique immune privilege system, facilitating their use without the need for long-term immunosuppressant treatment or human leucocyte antigen matching. Moreover, they exhibit anti-inflammatory, anti-apoptotic and tissue-protective effects. These characteristics circumvent all challenges experienced with mesenchymal stem cells and induced pluripotent stem cells and encourage the wide application of Muse cells in clinical practice. Indeed, Muse cells have the potential to break through the limitations of current cell-based therapies, and many clinical trials have been conducted, applying intravenously administered Muse cells in stroke, myocardial infarction, neurological disorders and acute respiratory distress syndrome (ARDS) related to novel coronavirus (SARS-CoV-2) infection. Herein, we aim to highlight the unique biological properties of Muse cells and to elucidate the advantageous difference between Muse cells and other types of stem cells. Finally, we shed light on their current therapeutic applications and the major obstacles to their clinical implementation from laboratory to clinic.
Collapse
Affiliation(s)
- Raghad F. Alanazi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raghad M. Almahlawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Bashayer D. Alatawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Shatha A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Raneem A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Amaal A. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.F.A.); (B.S.A.); (R.M.A.); (B.D.A.); (S.A.A.); (R.A.A.); (A.A.A.)
| | - Mohamed S. Abdel-Maksoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Li J, Yi X, Ai J. Broaden Horizons: The Advancement of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2022; 23:14594. [PMID: 36498919 PMCID: PMC9736130 DOI: 10.3390/ijms232314594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating disease that induces mental stress, lower urinary symptoms, and pelvic pain, therefore resulting in a decline in quality of life. The present diagnoses and treatments still lead to unsatisfactory outcomes, and novel diagnostic and therapeutic modalities are needed. Although our understanding of the etiology and pathophysiology of IC/BPS is growing, the altered permeability of the impaired urothelium, the sensitized nerves on the bladder wall, and the chronic or intermittent sensory pain with inaccurate location, as well as pathologic angiogenesis, fibrosis, and Hunner lesions, all act as barriers to better diagnoses and treatments. This study aimed to summarize the comprehensive information on IC/BPS research, thereby promoting the progress of IC/BPS in the aspects of diagnosis, treatment, and prognosis. According to diverse international guidelines, the etiology of IC/BPS is associated with multiple factors, while the presence of Hunner lesions could largely distinguish the pathology, diagnosis, and treatment of non-Hunner lesions in IC/BPS patients. On the basis of the diagnosis of exclusion, the diverse present diagnostic and therapeutic procedures are undergoing a transition from a single approach to multimodal strategies targeting different potential phenotypes recommended by different guidelines. Investigations into the mechanisms involved in urinary symptoms, pain sensation, and bladder fibrosis indicate the pathophysiology of IC/BPS for further potential strategies, both in diagnosis and treatment. An overview of IC/BPS in terms of epidemiology, etiology, pathology, diagnosis, treatment, and fundamental research is provided with the latest evidence. On the basis of shared decision-making, a multimodal strategy of diagnosis and treatment targeting potential phenotypes for individual patients with IC/BPS would be of great benefit for the entire process of management. The complexity and emerging evidence on IC/BPS elicit more relevant studies and research and could optimize the management of IC/BPS patients.
Collapse
Affiliation(s)
- Jin Li
- West China School of Medicine, Sichuan University, Chengdu 610041, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Xianyanling Yi
- West China School of Medicine, Sichuan University, Chengdu 610041, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Hendawy H, Metwally E, Elfadadny A, Yoshida T, Ma D, Shimada K, Hamabe L, Sasaki K, Tanaka R. Cultured versus freshly isolated adipose-derived stem cells in improvement of the histopathological outcomes in HCL-induced cystitis in a rat model. Biomed Pharmacother 2022; 153:113422. [DOI: 10.1016/j.biopha.2022.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
6
|
Bone marrow mesenchymal stem cells therapy on bilateral pelvic nerve crush-induced voiding dysfunction in rats. Int Urogynecol J 2022; 33:2485-2492. [PMID: 35451617 DOI: 10.1007/s00192-022-05099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/12/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Neurogenic voiding dysfunction can be induced after radical pelvic surgery and severely affects patients' quality of life. This study aims to investigate the effects of bone marrow mesenchymal stem cells (BMSCs) on neurogenic voiding dysfunction in male rats and explore the underlying mechanisms. METHODS Thirty 4-week-old male Sprague-Dawley rats were randomly divided into three groups: (1) sham-operated (sham, n = 10), (2) intrabladder wall injection of phosphate buffer solution (PBS) after bilateral pelvic nerve crush (BPNC+PBS, n = 10), and (3) intrabladder wall injection of BMSCs after bilateral pelvic nerve crush (BPNC+BMSCs, n = 10). Four weeks postoperatively, functional and morphological examinations were performed. RESULTS Compared to the sham group, BPNC rats manifested significant augmentation in the frequency of non-voiding contractions and postvoid residual and bladder capacity, and they had decreases in intravesical pressure and voiding efficiency. However, they were markedly improved after BMSC injection. Masson's trichrome staining showed that the ratio of collagen area in bladder wall tissue significantly increased in the BPNC+PBS group but was reduced following BMSC injection. BPNC increased the protein expression of TGF-β1, Smad2/3, and collagen I/III but decreased the expression of α-SMA. BMSC injection stimulated higher expression levels of α-SMA and lower expression levels of the other target proteins. The expression levels of vesicular acetylcholine transporters were reduced at 4 weeks post-BPNC, whereas injection of BMSCs boosted the expression quantity. CONCLUSIONS BMSC therapy suppressed detrusor fibrosis, improved intravesical pressure and voiding efficiency, and partially restored voiding function in male rats after BPNC.
Collapse
|
7
|
Furuta A, Kuroda Y, Yamamoto T, Egawa S, Dezawa M, Yoshimura N. Effects of human Muse cells on bladder inflammation, overactivity, and nociception in a chemically induced Hunner-type interstitial cystitis-like rat model. Int Urogynecol J 2022; 33:1293-1301. [PMID: 35333929 DOI: 10.1007/s00192-022-05166-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION AND HYPOTHESIS We investigated the effects of locally administered human multilineage-differentiating stress enduring (Muse) cells, nontumorigenic pluripotent-like endogenous stem cells, on bladder tissues, function, and nociceptive behavior in a chemically induced Hunner-type interstitial cystitis (HIC)-like rat model without immunosuppressant. METHODS Chemical cystitis was induced by intravesical instillation of 0.2 N hydrochloride (HCl) for 15 min in female F344 rats. SSEA-3+ Muse cells, SSEA-3- non-Muse cells or Hanks' balanced salt solution (HBSS; vehicle) were injected into the anterior and posterior bladder wall at each 1×104 cells/10 μl 6 h after HCl application. The sham group received HBSS without HCl instillation. Urinary frequency was assessed using metabolic cages, cystometrograms, nociceptive behavior, and histological analysis of the bladder and L6 spinal cord. RESULTS Increases in urinary frequency and decreases in bladder capacity compared with the sham group were observed in the vehicle and non-Muse groups, but not in the Muse group, at 1 week. Significant increases in nociceptive behavior compared with the sham group and the expression of TNFα in the bladder and c-Fos in the bilateral dorsal horns of L6 spinal cord were also observed in the vehicle and non-Muse groups, whereas these changes were not seen in the Muse group at 1 week. Histological analysis exhibited a higher proportion of injected Muse cells remaining in the urothelial basal layer and lamina propria of the bladder than non-Muse cells until 4 weeks. CONCLUSIONS Muse cell therapy could be a promising modality for treating HIC.
Collapse
Affiliation(s)
- Akira Furuta
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tokunori Yamamoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Improved Urothelial Cell Proliferation, Cytoskeleton and Barrier Function Protein Expression in the Patients With Interstitial Cystitis/Bladder Pain Syndrome After Intravesical Platelet-Rich Plasma Injection. Int Neurourol J 2022; 26:S57-67. [PMID: 35073671 PMCID: PMC8896774 DOI: 10.5213/inj.2142100.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/18/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose To investigate urothelial cell proliferation, cytoskeleton, inflammation, and barrier function protein expressions in patients with interstitial cystitis/bladder pain syndrome (IC/BPS) after intravesical platelet-rich plasma (PRP) injections Methods A total of 19 patients with IC/BPS underwent 4 monthly intravesical PRP injections. Bladder biopsies were taken at the first and fourth PRP treatment. The bladder specimens were analyzed using the Western blot and immunochemical staining for progenitor cell markers for sonic hedgehog (Shh), CD34, and cytoskeleton proteins cytokeratin 5 (CK5), CK14, CK20; barrier function markers for zonula occludens-1 (ZO-1), E-cadherin, and intercellular adhesive molecule-1, tryptase and transforming growth factor-β (TGF-β). Global response assessment (GRA) was used to evaluate treatment outcomes. Results The mean age of patients was 55.6 years. After PRP injections, the functional bladder capacity and maximum flow rate increased, and the visual analogue scale (VAS) of pain, interstitial cystitis (IC) symptom index, IC problem index, O’Leary-Sant symptom score, and GRA improved in all patients. Urothelium Shh, CK5, ZO-1, E-cadherin, and TGF-β expressions increased significantly after repeated PRP injections. By subgrouping, according to PRP treatment outcomes, significant increases in Shh, E-cadherin, and ZO-1 expressions were noted only in patients with GRA ≥1 or improved VAS, but not in patients with GRA=0 and no improvement in VAS. Conclusions The level of urothelial barrier function protein and cell proliferation protein expression in the patients with IC/BPS was increased after repeat intravesical PRP injections. Intravesical repeat PRP injections may have potential to improve urothelial health and result in symptoms improvement in the patients with IC/BPS.
Collapse
|
9
|
Wen C, Xie L, Hu C. Roles of mesenchymal stem cells and exosomes in interstitial cystitis/bladder pain syndrome. J Cell Mol Med 2021; 26:624-635. [PMID: 34953040 PMCID: PMC8817120 DOI: 10.1111/jcmm.17132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by several symptoms of higher sensitivity of the lower urinary tract, such as bladder pain/discomfort, urgency, urinary frequency, pelvic pain and nocturia. Although the pathophysiology of IC/BPS is not fully understood, the hypothesis suggests that mast cell activation, glycosaminoglycan (GAG) layer defects, urothelium permeability disruption, inflammation, autoimmune disorder and infection are potential mechanisms. Mesenchymal stem cells (MSCs) have been proven to protect against tissue injury in IC/BPS by migrating into bladders, differentiating into key bladder cells, inhibiting mast cell accumulation and cellular apoptosis, inhibiting inflammation and oxidative stress, alleviating collagen fibre accumulation and enhancing tissue regeneration in bladder tissues. In addition, MSCs can protect against tissue injury in IC/BPS by secreting various soluble factors, including exosomes and other soluble factors, with antiapoptotic, anti-inflammatory, angiogenic and immunomodulatory properties in a cell-to-cell independent manner. In this review, we comprehensively summarized the current potential pathophysiological mechanisms and standard treatments of IC/BPS, and we discussed the potential mechanisms and therapeutic effects of MSCs and MSC-derived exosomes in alleviating tissue injury in IC/BPS models.
Collapse
Affiliation(s)
- Chao Wen
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liping Xie
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Tabata H, Sasaki M, Kataoka-Sasaki Y, Shinkai N, Ichihara K, Masumori N, Kocsis JD, Honmou O. Possible role of intravenous administration of mesenchymal stem cells to alleviate interstitial cystitis/bladder pain syndrome in a Toll-like receptor-7 agonist-induced experimental animal model in rat. BMC Urol 2021; 21:156. [PMID: 34774029 PMCID: PMC8590770 DOI: 10.1186/s12894-021-00923-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Interstitial cystitis/bladder pain syndrome (IC/BPS) categorized with and without Hunner lesions is a condition that displays chronic pelvic pain related to the bladder with no efficacious treatment options. There are strong associations suggested between Hunner-type IC and autoimmune diseases. Recently, we established an animal model of Hunner-type IC using a Toll-like receptor-7 (TLR7) agonist. Intravenous infusion of mesenchymal stem cells (MSCs) can be used to treat injury via multimodal and orchestrated therapeutic mechanisms including anti-inflammatory effects. Here, we investigated whether infused MSCs elicit therapeutic efficacy associated with the TLR7-related anti-inflammatory pathway in our Hunner-type IC model. METHODS Voiding behaviors were monitored 24 h prior to the Loxoribine (LX), which is a TLR7 agonist instillation in order to establish a Hunner-type IC model (from - 24 to 0 h) in female Sprague-Dawley rats. LX was instilled transurethrally into the bladder. At 0 h, the initial freezing behavior test confirmed that no freezing behavior was observed in any of the animals. The LX-instilled animals were randomized. Randomized LX-instilled rats were intravenously infused with MSCs or with vehicle through the right external jugular vein. Sampling tissue for green fluorescent protein (GFP)-positive MSCs were carried out at 48 h. Second voiding behavior tests were monitored from 72 to 96 h. After the final evaluation of the freezing behavior test at 96 h after LX instillation (72 h after MSC or vehicle infusion), histological evaluation with H&E staining and quantitative real-time polymerase chain reaction (RT-PCR) to analyze the mRNA expression levels of inflammatory cytokines were performed. RESULTS Freezing behavior was reduced in the MSC group, and voiding behavior in the MSC group did not deteriorate. Hematoxylin-eosin staining showed that mucosal edema, leukocyte infiltration, and hemorrhage were suppressed in the MSC group. The relative expression of interferon-β mRNA in the bladder of the MSC group was inhibited. Numerous GFP-positive MSCs were distributed mainly in the submucosal and mucosal layers of the inflammatory bladder wall. CONCLUSION Intravenous infusion of MSCs may have therapeutic efficacy in a LX-instilled Hunner-type IC rat model via a TLR7-related anti-inflammatory pathway.
Collapse
Affiliation(s)
- Hidetoshi Tabata
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Nobuo Shinkai
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Koji Ichihara
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Naoya Masumori
- Department of Urology, Sapporo Medical University School of Medicine, Sapporo, 060-8556, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| |
Collapse
|
11
|
Taidi Z, Zhou T, Moore KH, Mansfield KJ, Liu L. P2X7 Receptor Blockade Protects Against Acrolein-Induced Bladder Damage: A Potential New Therapeutic Approach for the Treatment of Bladder Inflammatory Diseases. Front Pharmacol 2021; 12:682520. [PMID: 34456718 PMCID: PMC8397461 DOI: 10.3389/fphar.2021.682520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 01/28/2023] Open
Abstract
Inflammatory conditions of the urinary bladder have been shown to be associated with urothelial damage and loss of function. The purinergic P2X7 receptor has been implicated in several inflammatory conditions. The aim of this study was to investigate the role of the P2X7 receptor in acrolein-induced inflammatory damage using the porcine urinary bladder. For this purpose, an ex-vivo model of porcine urothelial damage induced by direct instillation of acrolein into the whole bladder lumen was used. To determine the role of the P2X7 receptor, the bladders were pre-incubated with a selective P2X7 receptor antagonist, A804598 (10 μM), for 1 h. The effects of the acrolein-induced urothelial damage on the bladder’s function were assessed by examining the bladder wall contractile response, structure changes, apoptosis, and oxidative stress in the bladder tissues. The acrolein treatment led to significant damage to the urothelium histology, tight junction expression, and contractile responses. Acrolein also induced apoptosis in the mucosa layer. All these acrolein-induced responses were attenuated by pre-treatment with the P2X7 receptor antagonist A804598. Acrolein also significantly induced DNA oxidation in the submucosal layer; however, the P2X7 receptor antagonism did not show any protective effect towards the acrolein-induced oxidative stress. These findings suggested that the P2X7 receptor is involved in the acrolein-induced damage to the urothelium; therefore, the P2X7 receptor antagonists may be a new therapeutic option for the treatment of bladder inflammation.
Collapse
Affiliation(s)
- Zhinoos Taidi
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Tommy Zhou
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kate H Moore
- St George Hospital, UNSW Sydney, Kogarah, NSW, Australia
| | - Kylie J Mansfield
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
A Systematic Review of Therapeutic Approaches Used in Experimental Models of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2021; 9:biomedicines9080865. [PMID: 34440069 PMCID: PMC8389661 DOI: 10.3390/biomedicines9080865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic bladder disorder with limited therapeutic options currently available. The present review provides an extensive overview of therapeutic approaches used in in vitro, ex vivo, and in vivo experimental models of IC/BPS. Publications were identified by electronic search of three online databases. Data were extracted for study design, type of treatment, main findings, and outcome, as well as for methodological quality and the reporting of measures to avoid bias. A total of 100 full-text articles were included. The majority of identified articles evaluated therapeutic agents currently recommended to treat IC/BPS by the American Urological Association guidelines (21%) and therapeutic agents currently approved to treat other diseases (11%). More recently published articles assessed therapeutic approaches using stem cells (11%) and plant-derived agents (10%), while novel potential drug targets identified were proteinase-activated (6%) and purinergic (4%) receptors, transient receptor potential channels (3%), microRNAs (2%), and activation of the cannabinoid system (7%). Our results show that the reported methodological quality of animal studies could be substantially improved, and measures to avoid bias should be more consistently reported in order to increase the value of preclinical research in IC/BPS for potential translation to a clinical setting.
Collapse
|
13
|
New Frontiers or the Treatment of Interstitial Cystitis/Bladder Pain Syndrome - Focused on Stem Cells, Platelet-Rich Plasma, and Low-Energy Shock Wave. Int Neurourol J 2020; 24:211-221. [PMID: 33017892 PMCID: PMC7538293 DOI: 10.5213/inj.2040104.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS), which is characterized by bladder pain and irritative voiding symptoms, is a frustrating disease without effective treatment. The cause is still largely not understood, although urothelium ischemia/hypoxia, apoptosis, denudation, and infiltration of inflammatory cells are common histopathological findings. The current uncertainty regarding the etiology and pathology of IC/BPS has a negative impact on its timely and successful treatment; therefore, the development of new treatment modalities is urgently needed. Herein, we present advances in our knowledge on this topic and review the potential application of regenerative medicine for the treatment of IC/BPS. This article provides information on the basic characteristics and clinical evidence of stem cells, platelet-rich plasma (PRP), and low-energy shock waves (LESWs) based on a literature review with a search strategy for articles related to IC/BPS, stem cells, PRP, and LESW published in MEDLINE and PubMed. Stem cells, PRP, and LESW, which modulate inflammatory processes and promote tissue repair, have been proven to improve bladder regeneration, relieve bladder pain, inhibit bladder inflammation, and increase bladder capacity in some preclinical studies. However, clinical studies are still in their infancy. Based on the mechanisms of action of stem cells, PRP, and LESW documented in many preclinical studies, the potential applications of regenerative medicine for the treatment of IC/BPS is an emerging frontier of interest. However, solid evidence from clinical studies remains to be obtained.
Collapse
|
14
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
15
|
Furuta A, Suzuki Y, Igarashi T, Koike Y, Kimura T, Egawa S, Yoshimura N. Angiogenesis in bladder tissues is strongly correlated with urinary frequency and bladder pain in patients with interstitial cystitis/bladder pain syndrome. Int J Urol 2020; 26 Suppl 1:35-40. [PMID: 31144750 DOI: 10.1111/iju.13972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To examine the correlation among bladder inflammation, angiogenesis, fibrosis and urothelial denudation in biopsied bladder specimens, and O'Leary-Sant symptom indexes, O'Leary-Sant problem indexes and visual analog scale pain scores in interstitial cystitis/bladder pain syndrome patients with or without Hunner lesions (Hunner type interstitial cystitis or non-Hunner type interstitial cystitis). METHODS Bladder biopsied tissues were collected from 12 Hunner type interstitial cystitis female patients, 12 non-Hunner type interstitial cystitis female patients and 12 age-matched non-interstitial cystitis female patients (controls). Immunohistochemical stainings of tissue necrotic factor-α, mast cell tryptase, vascular endothelial growth factor, CD31, transforming growth factor-β, SLUG associated with epithelial mesenchymal transition and E-cadherin as well as Masson trichrome staining were evaluated. The significant correlation between the expression of tissue necrotic factor-α, mast cell tryptase, vascular endothelial growth factor, CD31, transforming growth factor-β, collagen, SLUG or E-cadherin, and O'Leary-Sant symptom indexes, O'Leary-Sant problem indexes or visual analog scale pain scores was then examined. RESULTS The expression of tissue necrotic factor-α, vascular endothelial growth factor, CD31, transforming growth factor-β and SLUG was significantly increased in non-Hunner type interstitial cystitis and Hunner type interstitial cystitis patients compared with controls whereas the significant increases in the expression of mast cell tryptase and collagen were observed in Hunner type interstitial cystitis patients compared with controls and non-Hunner type interstitial cystitis patients. On the other hand, the expression of E-cadherin was significantly decreased in Hunner type interstitial cystitis patients compared with controls and non-Hunner type interstitial cystitis patients. In addition, the increased expression of CD31 in bladder tissues was strongly correlated with O'Leary-Sant symptom indexes, O'Leary-Sant problem indexes and visual analog scale pain scores. CONCLUSIONS These results suggest that bladder angiogenesis evident as the increased expression of CD31 is strongly correlated with urinary frequency and bladder pain in patients with non-Hunner type interstitial cystitis and Hunner type interstitial cystitis.
Collapse
Affiliation(s)
- Akira Furuta
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Suzuki
- Department of Urology, Tokyo Metropolitan Rehabilitation Hospital, Tokyo, Japan
| | - Taro Igarashi
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Koike
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Digesu GA, Tailor V, Bhide AA, Khullar V. The role of bladder instillation in the treatment of bladder pain syndrome: Is intravesical treatment an effective option for patients with bladder pain as well as LUTS? Int Urogynecol J 2020; 31:1387-1392. [PMID: 32358624 PMCID: PMC7306012 DOI: 10.1007/s00192-020-04303-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
The aetiology of bladder pain syndrome/interstitial cystitis is still unknown. Numerous mechanisms have been proposed and treatments targeting various aspects of these are used. This review looks at the existing evidence on bladder instillations and whether they could be used in the treatment of lower urinary tract symptoms as well.
Collapse
Affiliation(s)
| | - Visha Tailor
- St Mary's Hospital, Imperial College NHS Trust, London, UK
| | - Alka A Bhide
- St Mary's Hospital, Imperial College NHS Trust, London, UK.
| | - Vik Khullar
- St Mary's Hospital, Imperial College NHS Trust, London, UK
| |
Collapse
|
17
|
Abdal Dayem A, Kim K, Lee SB, Kim A, Cho SG. Application of Adult and Pluripotent Stem Cells in Interstitial Cystitis/Bladder Pain Syndrome Therapy: Methods and Perspectives. J Clin Med 2020; 9:jcm9030766. [PMID: 32178321 PMCID: PMC7141265 DOI: 10.3390/jcm9030766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a multifactorial, chronic disease without definite etiology characterized by bladder-related pelvic pain. IC/BPS is associated with pain that negatively affects the quality of life. There are various therapeutic approaches against IC/BPS. However, no efficient therapeutic agent against IC/BPS has been discovered yet. Urothelium dysfunction is one of the key factors of IC/BPS-related pathogenicity. Stem cells, including adult stem cells (ASCs) and pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), possess the abilities of self-renewal, proliferation, and differentiation into various cell types, including urothelial and other bladder cells. Therefore, stem cells are considered robust candidates for bladder regeneration. This review provides a brief overview of the etiology, pathophysiology, diagnosis, and treatment of IC/BPS as well as a summary of ASCs and PSCs. The potential of ASCs and PSCs in bladder regeneration via differentiation into bladder cells or direct transplantation into the bladder and the possible applications in IC/BPS therapy are described in detail. A better understanding of current studies on stem cells and bladder regeneration will allow further improvement in the approaches of stem cell applications for highly efficient IC/BPS therapy.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (A.A.D.); (K.K.); (S.B.L.)
- Correspondence: (A.K.); (S.-G.C.); Tel.: +82-2-2030-7675 (A.K.); +82-2-450-4207 (S.-G.C.); Fax: +82-2-2030-7748 (A.K.); +82-2-450-4207 (S.-G.C.)
| |
Collapse
|