1
|
Cheung CL, Tan KCB, Kung AWC. Cohort Profile: The Hong Kong Osteoporosis Study and the follow-up study. Int J Epidemiol 2017; 47:397-398f. [DOI: 10.1093/ije/dyx172] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ching-Lung Cheung
- Department of Pharmacology and Pharmacy
- Department of Medicine
- State Key Laboratory of Pharmaceutical Biotechnology
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
2
|
Kallel I, Rebai M, Rebai A. Mutations and polymorphisms of estrogens receptors genes and diseases susceptibility. J Recept Signal Transduct Res 2012. [DOI: 10.3109/10799893.2012.739624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
3
|
Pavlov KA, Chistiakov DA, Chekhonin VP. Genetic determinants of aggression and impulsivity in humans. J Appl Genet 2011; 53:61-82. [PMID: 21994088 DOI: 10.1007/s13353-011-0069-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 09/24/2011] [Accepted: 09/26/2011] [Indexed: 12/13/2022]
Abstract
Human aggression/impulsivity-related traits have a complex background that is greatly influenced by genetic and non-genetic factors. The relationship between aggression and anxiety is regulated by highly conserved brain regions including amygdala, which controls neural circuits triggering defensive, aggressive, or avoidant behavioral models. The dysfunction of neural circuits responsible for emotional control was shown to represent an etiological factor of violent behavior. In addition to the amygdala, these circuits also involve the anterior cingulated cortex and regions of the prefrontal cortex. Excessive reactivity in the amygdala coupled with inadequate prefrontal regulation serves to increase the likelihood of aggressive behavior. Developmental alterations in prefrontal-subcortical circuitry as well as neuromodulatory and hormonal abnormality appear to play a role. Imbalance in testosterone/serotonin and testosterone/cortisol ratios (e.g., increased testosterone levels and reduced cortisol levels) increases the propensity toward aggression because of reduced activation of the neural circuitry of impulse control and self-regulation. Serotonin facilitates prefrontal inhibition, and thus insufficient serotonergic activity can enhance aggression. Genetic predisposition to aggression appears to be deeply affected by the polymorphic genetic variants of the serotoninergic system that influences serotonin levels in the central and peripheral nervous system, biological effects of this hormone, and rate of serotonin production, synaptic release and degradation. Among these variants, functional polymorphisms in the monoamine oxidase A (MAOA) and serotonin transporter (5-HTT) may be of particular importance due to the relationship between these polymorphic variants and anatomical changes in the limbic system of aggressive people. Furthermore, functional variants of MAOA and 5-HTT are capable of mediating the influence of environmental factors on aggression-related traits. In this review, we consider genetic determinants of human aggression, with special emphasis on genes involved in serotonin and dopamine metabolism and function.
Collapse
Affiliation(s)
- Konstantin A Pavlov
- Department of Fundamental and Applied Neurobiology, Serbsky State Research Center of Forensic and Social Psychiatry, Kropotkinsky Pereulok 23, Moscow, Russia
| | | | | |
Collapse
|
4
|
Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert Rev Mol Med 2011; 13:e28. [PMID: 21867596 DOI: 10.1017/s1462399411001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis, which is characterised by reduced bone mineral density (BMD) and an increased risk of fragility fractures, is the result of a complex interaction between environmental factors and genetic variants that confer susceptibility. Heritability studies have shown that BMD and other osteoporosis-related traits such as ultrasound properties of bone, skeletal geometry and bone turnover have significant inheritable components. Although previous linkage and candidate gene studies have provided few replicated loci for osteoporosis, genome-wide association approaches have produced clear and reproducible findings. To date, 20 genome-wide association studies (GWASs) for osteoporosis and related traits have been conducted, identifying dozens of genes. Further meta-analyses of GWAS data and deep resequencing of rare variants will uncover more novel susceptibility loci and ultimately provide possible therapeutic targets for fracture prevention.
Collapse
|
5
|
Kumar M, Rawat P, Dixit P, Mishra D, Gautam AK, Pandey R, Singh D, Chattopadhyay N, Maurya R. Anti-osteoporotic constituents from Indian medicinal plants. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:993-999. [PMID: 20554183 DOI: 10.1016/j.phymed.2010.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/11/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
The objective of this study was to determine the in vitro osteogenic activities of selected medicinal plants used traditionally in India. The compounds isolated from three plants viz. Allophylus serratus, Cissus quadrangularis and Vitex negundo were evaluated for their in vitro osteogenic activities. Primary cultures of osteoblasts were used to determine the effects of these components on osteoblast functions. Five of the fourteen compounds isolated led to increase in osteoblast differentiation and mineralization. These findings lend support to the use of Allophylus serratus, Cissus quadrangularis and Vitex negundo in traditional medicine.
Collapse
Affiliation(s)
- Manmeet Kumar
- Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR, M. G. Road, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Okudaira S, Shimizu M, Otsuki B, Nakanishi R, Ohta A, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T. Quantitative trait locus on chromosome X affects bone loss after maturation in mice. J Bone Miner Metab 2010; 28:520-31. [PMID: 20354743 DOI: 10.1007/s00774-010-0168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022]
Abstract
Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.
Collapse
Affiliation(s)
- Shuzo Okudaira
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Osteoporosis is an important and complex disorder that is highly prevalent worldwide. This disease poses a major challenge to modern medicine and its treatment is associated with high costs. Numerous studies have endeavored to decipher the pathogenesis of this disease. The clinical assessment of patients often incorporates information about a family history of osteoporotic fractures. Indeed, the observation of an increased risk of fracture in an individual with a positive parental history of hip fracture provides strong evidence for the heritability of osteoporosis. The onset and progression of osteoporosis are generally controlled by multiple genetic and environmental factors, as well as interactions between them, with rare cases determined by a single gene. In an attempt to identify the genetic markers of complex diseases such as osteoporosis, there has been a move away from traditional linkage mapping studies and candidate gene association studies to higher-density genome-wide association studies. The advent of high-throughput technology enables genotyping of millions of DNA markers in the human genome, and consequently the identification and characterization of causal variants and loci that underlie osteoporosis. This Review presents an overview of the major findings since 2007 and clinical applications of these genome-wide linkage and association studies.
Collapse
|
8
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
9
|
Rebaï M, Kallel I, Charfeddine S, Hamza F, Guermazi F, Rebaï A. Association of polymorphisms in estrogen and thyroid hormone receptors with thyroid cancer risk. J Recept Signal Transduct Res 2009; 29:113-8. [PMID: 19519176 DOI: 10.1080/10799890902845682] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The receptors for thyroid hormone (THR) and oestrogen (ESR) are prototypes of nuclear transcription factors that regulate the expression of target genes. Genetic alterations in the genes of these receptors were found to be involved in cancer development. In this study we investigated the association of one SNP (rs2228480, T594T) and one microsatellite marker (D6S440) within the ESR1 gene and a dinucleotide repeat (D17S2189) within the THRA gene, with thyroid cancer risk. A case-control association study was conducted with 299 healthy individuals and 106 patients with thyroid cancer. Genotypic and allelic frequencies for the dinucleotide repeat in the ESR1 gene were similar between thyroid cancer patients and controls. For the AC repeat in the THRA gene, a slightly significant difference was found for the genotype 18/20 between the two groups (P = 0.034), which suggests that alleles with less than 20 repeats might have a protective effect in thyroid cancer risk. For the SNP T594T, the A allele was much more prevalent in patients than in controls and was highly associated with the risk of thyroid cancer (OR: 4,56; IC: 3.23-6.44; P < 10(-18)) and seems to have an additive mode of action. In conclusion, our data suggest that the SNP T594T but not the D6S440 and D17S189 is associated with thyroid cancer risk.
Collapse
Affiliation(s)
- Maha Rebaï
- Unit of Bioinformatics, Biostatistics and Signalling, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
10
|
Xiong Q, Jiao Y, Hasty KA, Canale ST, Stuart JM, Beamer WG, Deng HW, Baylink D, Gu W. Quantitative trait loci, genes, and polymorphisms that regulate bone mineral density in mouse. Genomics 2009; 93:401-14. [PMID: 19150398 DOI: 10.1016/j.ygeno.2008.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
This is an in silico analysis of data available from genome-wide scans. Through analysis of QTL, genes and polymorphisms that regulate BMD, we identified 82 BMD QTL, 191 BMD-associated (BMDA) genes, and 83 genes containing known BMD-associated polymorphisms (BMDAP). The catalogue of all BMDA/BMDAP genes and relevant literatures are provided. In total, there are substantially more BMDA/BMDAP genes in regions of the genome where QTL have been identified than in non-QTL regions. Among 191 BMDA genes and 83 BMDAP genes, 133 and 58 are localized in QTL regions, respectively. The difference was still noticeable for the chromosome distribution of these genes between QTL and non-QTL regions. These results have allowed us to generate an integrative profile of QTL, genes, polymorphisms that determine BMD. These data could facilitate more rapid and comprehensive identification of causal genes underlying the determination of BMD in mouse and provide new insights into how BMD is regulated in humans.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Orthopaedic Surgery - Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chan BY, Lau KS, Jiang B, Kennelly EJ, Kronenberg F, Kung AWC. Ethanolic extract of Actaea racemosa (black cohosh) potentiates bone nodule formation in MC3T3-E1 preosteoblast cells. Bone 2008; 43:567-73. [PMID: 18555764 DOI: 10.1016/j.bone.2008.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 04/03/2008] [Accepted: 04/23/2008] [Indexed: 11/25/2022]
Abstract
Aceaea racemosa (formerly Cimicifuga racemosa, black cohosh, AR) extracts have been widely used as an alternative to hormonal replacement therapy for menopausal symptoms. Recent evidences suggest AR extracts are also effective in protecting against postmenopausal bone loss. To determine whether AR has any direct anabolic effect on osteoblasts, we investigated the ethanolic extract of AR on bone nodule formation in mouse MC3T3-E1 preosteoblast cells. AR did not stimulate osteoblast proliferation. Rather, at high doses of 1000 ng/mL for 48 h, AR suppressed (7.2+/-0.9% vs. control) osteoblast proliferation. At 500 ng/mL, a significant increase in bone nodule formation was seen with Von Kossa staining. Using quantitative PCR analysis, AR was shown to enhance the gene expression of runx2 and osteocalcin. Co-treatment with ICI 182,780, the selective estrogen receptor antagonist, abolished the stimulatory effect of AR on runx2 and osteocalcin gene induction, as well as on bone nodule formation in MC3T3-E1 cells. This is a first report of the direct effect of AR on enhancement of bone nodule formation in osteoblasts, and this action was mediated via an estrogen receptor-dependent mechanism. The results provide a scientific rationale at the molecular level for the claim that AR can offer effective prevention of postmenopausal bone loss.
Collapse
Affiliation(s)
- B Y Chan
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|