1
|
del Real Á, Valero C, Olmos JM, Hernández JL, Riancho JA. Pharmacogenetics of Osteoporosis: A Pathway Analysis of the Genetic Influence on the Effects of Antiresorptive Drugs. Pharmaceutics 2022; 14:pharmaceutics14040776. [PMID: 35456610 PMCID: PMC9032991 DOI: 10.3390/pharmaceutics14040776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Osteoporosis is a skeletal disorder defined by a decreased bone mineral density (BMD) and an increased susceptibility to fractures. Bisphosphonates and selective oestrogen receptor modulators (SERM) are among the most widely used drugs. They inhibit bone resorption by targeting the mevalonate and oestrogen pathways, respectively. The aim of this study was to determine if common variants of genes in those pathways influence drug responses. We studied 192 women treated with oral aminobisphosphonates and 51 with SERMs. Genotypes at 154 SNPs of the mevalonate pathway and 806 in the oestrogen pathway were analyzed. Several SNPs located in genes FDPS and FNTA were associated with the bisphosphonate-induced changes in hip bone mineral density (BMD), whereas polymorphisms of the PDSS1, CYP19A1, CYP1A1, and CYP1A2 genes were associated with SERM-induced changes in spine BMD. After multivariate analyses, genotypes combining genes FDPS and FNTA showed a stronger association with bisphosphonate response (r = 0.34; p = 0.00009), whereas the combination of CYP19A1 and PDSS1 genotypes was associated with the response to SERMs (r = 0.62, p = 0.0003). These results suggest that genotyping genes in these pathways may help predict the response to antiresorptive drugs and hence make personalized therapeutic choices.
Collapse
Affiliation(s)
- Álvaro del Real
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
| | - Carmen Valero
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José M. Olmos
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Jose L. Hernández
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
| | - José A. Riancho
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, 39008 Santander, Spain; (Á.d.R.); (C.V.); (J.M.O.); (J.L.H.)
- Servicio de Medicina Interna, Hospital U.M. Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39008 Santander, Spain
- Correspondence:
| |
Collapse
|
2
|
López-Delgado L, Riancho-Zarrabeitia L, Riancho JA. Genetic and acquired factors influencing the effectiveness and toxicity of drug therapy in osteoporosis. Expert Opin Drug Metab Toxicol 2016; 12:389-98. [PMID: 26891809 DOI: 10.1517/17425255.2016.1154533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Riancho JA. Epigenetics of Osteoporosis: Critical Analysis of Epigenetic Epidemiology Studies. Curr Genomics 2015; 16:405-10. [PMID: 27019615 PMCID: PMC4765527 DOI: 10.2174/1389202916666150817213250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is an age-related disease with poorly understood pathogenesis. Recent studies have demonstrated that miRNA might play a key role in OA initiation and development. We reviewed recent publications and elucidated the connection between miRNA and OA cartilage anabolic and catabolic signals, including four signaling pathways: TGF-β/Smads and BMPs signaling, associated with cartilage anabolism; and MAPK and NF-KB signaling, associated with cartilage catabolism. We also explored the relationships with MMP, ADAMTS and NOS (NitricOxide Synthases) families, as well as with the catabolic cytokines IL-1 and TNF-α. The potential role of miRNAs in biological processes such as cartilage degeneration, chondrocyte proliferation, and differentiation is discussed. Collective evidence indicates that miRNAs play a critical role in cartilage degeneration. These findings will aid in understanding the molecular network that governs articular cartilage homeostasis and in to elucidate the role of miRNA in the pathogenesis of OA.
Collapse
Affiliation(s)
- José A. Riancho
- Service of Internal Medicine, Hospital U.M. Valdecilla, and Department of Medicine, University of Cantabria. IDIVAL, RETICEF. Santander, Spain
| |
Collapse
|
4
|
Tang L, Cheng GL, Xu ZH. Association between estrogen receptor α gene (ESR1) PvuII (C/T) and XbaI (A/G) polymorphisms and hip fracture risk: evidence from a meta-analysis. PLoS One 2013; 8:e82806. [PMID: 24482673 PMCID: PMC3903335 DOI: 10.1371/journal.pone.0082806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/28/2013] [Indexed: 12/16/2022] Open
Abstract
Background and Objective Genetic factors are important in the pathogenesis of fractures. Notably, estrogen receptor α (ESR1) has been suggested as a possible candidate gene for hip fractures; however, published studies of ESR1 gene polymorphisms have been hampered by small sample sizes and inconclusive or ambiguous results. The aim of this meta-analysis is to investigate the associations between two novel common ESR1 polymorphisms (intron 1 polymorphisms PvuII-rs2234693: C>T and XbaI-rs9340799: A>G) and hip fracture. Methods Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the strength of the association. Results Five case-control and three cohort studies were assessed, including a total of 1,838 hip fracture cases and 14,972 healthy controls. This meta-analysis revealed that the PvuII T allele is a highly significant risk factor for hip fracture susceptibility, with an effect magnitude similar in male and pre-menopausal and post-menopausal female patients. In stratified analysis based on ethnicity, the PvuII T allele remained significantly correlated with increased risk of hip fracture in Caucasian populations; this correlation, however, was not found in Asian populations. Unlike the PvuII polymorphism, we did not find significant differences in the XbaI (A>G) polymorphism allele or genotype distributions of hip fracture patients and controls. We also found no obvious association between the XbaI polymorphism and hip fracture in any of the racial or gender subgroups. Conclusion Our findings show that the ESR1 PvuII T allele may increase the risk of hip fracture and that the XbaI polymorphism is not associated with hip fracture.
Collapse
Affiliation(s)
- Li Tang
- Department of Orthopedics, Jintan Hospital, Jiangsu University, Changzhou, China
- * E-mail:
| | - Guo-Lin Cheng
- Department of Orthopedics, Jintan Hospital, Jiangsu University, Changzhou, China
| | - Zhong-Hua Xu
- Department of Orthopedics, Jintan Hospital, Jiangsu University, Changzhou, China
| |
Collapse
|
5
|
Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14:641-53. [DOI: 10.2217/pgs.13.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Riancho JA, Hernández JL. Pharmacogenomics of osteoporosis: a pathway approach. Pharmacogenomics 2012; 13:815-29. [PMID: 22594513 DOI: 10.2217/pgs.12.50] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoporosis is frequent in postmenopausal women and old men. As with other prevalent disorders, it is the consequence of complex interactions between genetic and acquired factors. Candidate gene and genome-wide association studies have pointed to several genes as determinants of the risk of osteoporosis. Some of them were previously unsuspected and may help to find new therapeutic targets. Several drugs already available are very effective in increasing bone mass and decreasing fracture risk. However, not all patients respond properly and some of them suffer fragility fractures despite therapy. Investigators have tried to identify the genetic features influencing the response to antiosteoporotic therapy. In this article we will review recent data providing insight into new genes involved in osteoporosis and the pharmacogenetic data currently available.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital UM Valdecilla-IFIMAV, University of Cantabria, Av Valdecilla s/n, Santander 39008, Spain.
| | | |
Collapse
|
7
|
Riancho J, García-Ibarbia C, Pérez-Núñez MI, Alonso MA, Díaz T, Pérez-Castrillón JL, Riancho JA. Genetic polymorphisms of the Wnt receptor LRP5 are differentially associated with trochanteric and cervical hip fractures. Calcif Tissue Int 2012; 90:137-43. [PMID: 22167346 DOI: 10.1007/s00223-011-9557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 11/20/2011] [Indexed: 11/30/2022]
Abstract
Epidemiological studies suggest that cervical and trochanteric hip fractures have different pathogenesis. We tested the hypothesis that genetic factors have different influences on both types of fractures. Ten polymorphisms of genes known to play an important role in skeletal homeostasis [estrogen receptor alpha (ESR1), aromatase (CYP19A1), type I collagen (COL1A1), and lipoprotein receptor-related protein 5 (LRP5)] were analyzed in 471 Spanish patients with fragility hip fractures. Two polymorphisms of the LRP5 gene (rs7116604 and rs3781600) were associated with the type of fracture (P = 0.0085 and 0.0047, respectively). The presence of rare alleles at each locus was associated with trochanteric fractures over cervical fractures (OR = 1.7 in individuals with at least one rare allele at rs7116604 or rs3781600 loci in comparison with the common homozygotes). Considering individuals bearing the four common alleles as reference, the OR for trochanteric fractures was 1.6 in those with one or two rare alleles and 7.5 in those with three or four rare alleles (P for trend = 0.0074), which is consistent with an allele-dosage effect. There were no significant differences in the frequency distributions of the ESR1, CYP19A1, and COL1A1 genotypes between trochanteric and cervical fractures in either the original group or an extended group of 818 patients. These results suggest that LRP5 alleles influence the type of hip fractures. They support the view that different genetic factors are involved in cervical and trochanteric fractures, which should be taken into consideration in future genetic association studies.
Collapse
Affiliation(s)
- Javier Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla-IFIMAV, Universidad de Cantabria, RETICEF, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study. Osteoarthritis Cartilage 2010; 18:927-33. [PMID: 20417295 DOI: 10.1016/j.joca.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/15/2010] [Accepted: 04/14/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Several lines of evidence suggest that estrogens influence the development of osteoarthritis (OA). The aim of this study was to explore the association of two common polymorphisms within the aromatase (CYP19A1) and estrogen receptor (ER) alpha (ESR1) genes with severe OA of the lower limbs. METHODS The rs1062033 (CYP19A1) and rs2234693 (ESR1) single nucleotide polymorphisms were genotyped in 5528 individuals (3147 patients with severe hip or knee OA, and 2381 controls) from four centres in Spain and the United Kingdom. Gene expression was measured in femoral bone samples from a group of patients. RESULTS In the global analysis, both polymorphisms were associated with OA, but there was a significant sex interaction. The GG genotype at rs1062033 was associated with an increased risk of knee OA in women [odds ratio (OR) 1.23; P=0.04]. The CC genotype at rs2234693 tended to be associated with reduced OA risk in women (OR 0.76, P=0.028, for knee OA; OR=0.84, P=0.076 for hip OA), but with increased risk of hip OA in men (OR 1.28; P=0.029). Women with unfavourable genotypes at both loci had an OR of 1.61 for knee OA (P=0.006). The rs1062033 genotype associated with higher OA risk was also associated with reduced expression of the aromatase gene in bone. CONCLUSIONS Common genetic variations of the aromatase and ER genes are associated with the risk of severe OA of the large joints of the lower limb in a sex-specific manner. These results are consistent with the hypothesis that estrogen activity may influence the development of large-joint OA.
Collapse
|
9
|
Velasco J, Hernández JL, Pérez-Castrillón JL, Zarrabeitia MT, Alonso MA, González-Macías J, Riancho JA. Haplotypes of intron 4 of the estrogen receptor alpha gene and hip fractures: a replication study in Caucasians. BMC MEDICAL GENETICS 2010; 11:16. [PMID: 20109228 PMCID: PMC2837017 DOI: 10.1186/1471-2350-11-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/28/2010] [Indexed: 02/02/2023]
Abstract
Background Despite their great impact, few genetic association studies have used hip fractures as an endpoint. However, the association of two polymorphisms on intron 4 of estrogen receptor alpha (ESR1) with hip fractures was recently reported in a Chinese population. The aim of this study was to investigate whether such association is also present in Caucasians. Methods We analyzed those two SNPs and another neighbour SNP located on the exon 4 of ESR1 in 787 patients with hip fractures and 953 controls from Spain. Results The allelic frequencies differed markedly from those reported in Asian populations. Nevertheless, haplotypes including the rs3020314 and rs1884051 loci in intron 4 showed a significant association with hip fractures (omnibus test p = 0.006 in the whole group and 0.00005 in women). In the sex-stratified analysis, the association was significant in females, but not in males. In women, the CA haplotype appeared to have a protective influence, being present in 6.5% of the controls, but only in 3% of patients with fractures (odds ratio 0.39; 95% confidence interval 0.26-0.59; estimated population preventive fraction 3.5%). The inclusion of the rs1801132 SNP of exon 4 further increased the statistical significance of the association (odds ratio 0.17; 95% CI 0.08-0.37; p = 0.00001). Each SNP appeared to contribute independently to the association. No genotype-related differences in gene expression were found in 42 femoral bone samples. Conclusions This study confirms the association of some polymorphisms in the region of exon 4/intron 4 of ESR1 and hip fractures in women. However, there are marked differences in allele frequencies between Asian and Caucasian populations.
Collapse
Affiliation(s)
- Javier Velasco
- Department of Internal Medicine, Hospital U,M, Valdecilla, University of Cantabria, RETICEF, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Osteoporosis is a frequent skeletal disorder, particularly among postmenopausal women. It affects approximately 30% of women and 12% of men above 50 years of age. It is characterized by reduced bone mass and alterations in bone microarchitecture that result in impaired bone strength and a propensity to fracture. Decreased bone mass is the consequence of an imbalance in the bone remodeling process, resulting from complex interactions between acquired and genetic factors. The former include physical activity, nutrition and other lifestyle habits, as well as the skeletal effects of some diseases and drug therapies. Genetic factors have been extensively studied during the past 15 years. We will review some important studies that exemplify the advances and the difficulties in this research field.
Collapse
Affiliation(s)
- José A Riancho
- University of Cantabria, Department of Internal Medicine, Hospital UM Valdecilla, Av. Valdecilla, s/n 39008, Santander, Spain
| | - María T Zarrabeitia
- Unit of Legal Medicine, University of Cantabria, Av Herrera Oria, s/n 39011, Santander, Spain
| | - Jesús González Macías
- University of Cantabria, Department of Internal Medicine, Hospital UM Valdecilla, Av. Valdecilla, s/n 39008, Santander, Spain
| |
Collapse
|