1
|
Fouhy LE, Lai CQ, Parnell LD, Tucker KL, Ordovás JM, Noel SE. Genome-wide association study of osteoporosis identifies genetic risk and interactions with Dietary Approaches to Stop Hypertension diet and sugar-sweetened beverages in a Hispanic cohort of older adults. J Bone Miner Res 2024; 39:697-706. [PMID: 38484114 PMCID: PMC11472150 DOI: 10.1093/jbmr/zjae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis (OP) and low bone mass can be debilitating and costly conditions if not acted on quickly. This disease is also difficult to diagnose as the symptoms develop unnoticed until fracture occurs. Therefore, gaining understanding of the genetic risk associated with these conditions could be beneficial for health-care professionals in early detection and prevention. The Boston Puerto Rican Osteoporosis (BPROS) study, an ancillary study to the Boston Puerto Rican Health Study (BPRHS), collected information regarding bone and bone health. All bone measurements were taken during regular BPROS visits using dual-energy X-ray absorptiometry. The OP was defined as T-score ≤ -2.5 (≥2.5 SDs below peak bone mass). Dietary variables were collected at the second wave of the BPRHS via a food frequency questionnaire. We conducted genome-wide associations with bone outcomes, including BMD and OP for 978 participants. We also examined the interactions with dietary quality on the relationships between genotype and bone outcomes. We further tested if candidate genetic variants described in previous GWAS on OP and BMD contribute to OP risk in this population. Four variants were associated with OP: rs114829316 (IQ motif containing J gene), rs76603051, rs12214684 (melanin-concentrating hormone receptor 2 gene), and rs77303493 (Ras and Rab interactor 2 gene), and 2 variants were associated with BMD of lumbar spine (rs11855618, cingulin-like 1 gene) and hip (rs73480593, NTRK2), reaching the genome-wide significance threshold of P ≤ 5E-08. In a gene-diet interaction analysis, we found that 1 SNP showed a significant interaction with the overall Dietary Approaches to Stop Hypertension (DASH) score, and 7 SNPs with sugar-sweetened beverages (SSBs), a major contributor to the DASH score. This study identifies new genetic markers related to OP and BMD in older Hispanic adults. Additionally, we uncovered unique genetic markers that interact with dietary quality, specifically SSBs, in relation to bone health. These findings may be useful to guide early detection and preventative care.
Collapse
Affiliation(s)
- Liam E Fouhy
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Chao-Qiang Lai
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Laurence D Parnell
- JM-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, USDA ARS, Nutrition and Genomics Laboratory, Boston, MA 02111, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
- IMDEA-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
2
|
Yao XI, Tong X, Shen C, Song Y, Sun S, Chen K, Shen H. Green space, genetic susceptibility, and risk of osteoporosis:a cohort study from the UK Biobank. CHEMOSPHERE 2024; 353:141632. [PMID: 38442776 DOI: 10.1016/j.chemosphere.2024.141632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE This study aimed to investigate the effect of residential exposure to green space on the incident osteoporosis and further explore the modification effect of genetic susceptibility. METHODS Participants from the UK Biobank were followed from 2006 to 2010 (baseline) to December 31st, 2022. Using land use coverage, we evaluated exposure to residential surrounding green space, natural environment, and domestic gardens. We used the Cox regression to examine the association between the residential environment and incident osteoporosis. The interactive effects between polygenic risk score (PRS) of osteoporosis and residential environments on incident osteoporosis were investigated. RESULTS This study included 292,662 participants. Over a median follow-up period of 13.65 years, we documented 9177 incidents of osteoporosis. Per interquartile (IQR) increase in greenness and natural environment at a 300 m buffer was associated with a 4% lower risk of incident osteoporosis [HR = 0.96 (95% CI: 0.93, 0.99)] and [HR = 0.96 (95% CI: 0.93, 0.98)], respectively. We did not identify any interactive effects between genetic risk and residential environment on incident osteoporosis. CONCLUSIONS This study found that public greenness and natural environments could reduce the risk of incident osteoporosis regardless of genetic predisposition. Developing sustainable and publicly accessible natural environments might benefit populations' bone health.
Collapse
Affiliation(s)
- Xiaoxin I Yao
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, PR China
| | - Xinning Tong
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK; National Institute for Health Research Health Protection Research Unit in Chemical and Radiation Threats and Hazards, Imperial College London, UK
| | - Yichang Song
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| | - Keng Chen
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China.
| | - Huiyong Shen
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, PR China; Department of Clinical Research, The Eighth Affiliated Hospital, Sun Yat-sen University, PR China.
| |
Collapse
|
3
|
Herbert AJ, Williams AG, Hennis PJ, Erskine RM, Sale C, Day SH, Stebbings GK. The interactions of physical activity, exercise and genetics and their associations with bone mineral density: implications for injury risk in elite athletes. Eur J Appl Physiol 2019; 119:29-47. [PMID: 30377780 PMCID: PMC6342881 DOI: 10.1007/s00421-018-4007-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/04/2018] [Indexed: 01/30/2023]
Abstract
Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50-85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case-control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene-environment interactions-in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically "extreme" population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully.
Collapse
Affiliation(s)
- Adam J. Herbert
- Department of Sport and Exercise, School of Health Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Philip J. Hennis
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Robert M. Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF UK
- Institute of Sport, Exercise and Health, University College London, Tottenham Court Road, London, W17 7HA UK
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Clifton Lane, Clifton, Nottingham, NG11 8NS UK
| | - Stephen H. Day
- Department of Biomedical Science & Physiology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Manchester Metropolitan University, Cheshire Campus, Crewe Green Road, Crewe, CW1 5DU UK
| |
Collapse
|
4
|
Eftekhari H, Hosseini SR, Pourreza Baboli H, Mafi Golchin M, Heidari L, Abedian Z, Pourbagher R, Amjadi-Moheb F, Mousavi Kani SN, Nooreddini H, Akhavan-Niaki H. Association of interleukin-6 (rs1800796) but not transforming growth factor beta 1 (rs1800469) with serum calcium levels in osteoporotic patients. Gene 2018; 671:21-27. [PMID: 29860063 DOI: 10.1016/j.gene.2018.05.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Osteoporosis is a multifactorial disease with a strong genetic influence. Recent studies have demonstrated that cytokines, such as TGF-β1 and interleukin 6 (IL-6) play complex roles in the normal bone metabolism and pathophysiology of osteoporosis. Here, we investigated the roles of 2 polymorphisms mapping to the promoters of TGF-β1and IL-6 genes on the genetic susceptibility to osteoporosis as well as calcium and vitamin D levels. METHODS A cohort of 297 elderly participants in northern Iran comprising 181 osteoporotic patients (mean age ± SD, 68.36 ± 7.21 years) and 116 unrelated healthy controls (mean age ± SD, 64 ± 5.44 years) was studied for TGF-β1(C-509T) and IL-6 (G-634C) polymorphisms using PCR-RFLP method. RESULTS A significant relationship was observed between calcium level and IL-6 genotypes in osteoporotic males (P = 0.011) and females (P = 0.020). No significant differences were observed between osteoporotic and control groups with respect to allele frequency or genotype distribution based on the 2 selected polymorphisms under different genetic models. The results remained the same after comparing the BMD values of either the femur neck or lumbar spine with the genotypes of the elderly men and women when analyzed separately. CONCLUSION IL-6 genotype influences serum calcium levels in osteoporotic patients. The lack of association between the common genetic variations of TGF-β1 and IL-6 genes, and BMD highlights the complex genetic background of osteoporosis in the north of Iran.
Collapse
Affiliation(s)
- Hajar Eftekhari
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Reza Hosseini
- Social Determinants of Health (SDH) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadis Pourreza Baboli
- Genetic Laboratory, Amirkola Children's Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Abedian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Roghayeh Pourbagher
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Hajighorban Nooreddini
- Department of Radiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Genetic Laboratory, Amirkola Children's Hospital, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Grant SF, Zemel BS. Physical Activity Benefits the Skeleton of Children Genetically Predisposed to Lower Bone Density in Adulthood. J Bone Miner Res 2016; 31:1504-12. [PMID: 27172274 PMCID: PMC4970901 DOI: 10.1002/jbmr.2872] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023]
Abstract
Both genetics and physical activity (PA) contribute to bone mineral density (BMD), but it is unknown if the benefits of physical activity on childhood bone accretion depend on genetic risk. We, therefore, aimed to determine if PA influenced the effect of bone fragility genetic variants on BMD in childhood. Our sample comprised US children of European ancestry enrolled in the Bone Mineral Density in Childhood Study (N = 918, aged 5 to 19 years, and 52.4% female). We used a questionnaire to estimate hours per day spent in total, high-, and low-impact PA. We calculated a BMD genetic score (% BMD lowering alleles) using adult genome-wide association study (GWAS)-implicated BMD variants. We used dual-energy X-ray absorptiometry to estimate femoral neck, total hip, and spine areal-BMD and total body less head (TBLH) bone mineral content (BMC) Z-scores. The BMD genetic score was negatively associated with each bone Z-score (eg, TBLH-BMC: estimate = -0.03, p = 1.3 × 10(-6) ). Total PA was positively associated with bone Z-scores; these associations were driven by time spent in high-impact PA (eg, TBLH-BMC: estimate = 0.05, p = 4.0 × 10(-10) ) and were observed even for children with lower than average bone Z-scores. We found no evidence of PA-adult genetic score interactions (p interaction > 0.05) at any skeletal site, and there was no evidence of PA-genetic score-Tanner stage interactions at any skeletal site (p interaction > 0.05). However, exploratory analyses at the individual variant level revealed that PA statistically interacted with rs2887571 (ERC1/WNT5B) to influence TBLH-BMC in males (p interaction = 7.1 × 10(-5) ), where PA was associated with higher TBLH-BMC Z-score among the BMD-lowering allele carriers (rs2887571 AA homozygotes: estimate = 0.08 [95% CI 0.06, 0.11], p = 2.7 × 10(-9) ). In conclusion, the beneficial effect of PA on bone, especially high-impact PA, applies to the average child and those genetically predisposed to lower adult BMD (based on GWAS-implicated BMD variants). Independent replication of our exploratory individual variant findings is warranted. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sani M Roy
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J Kalkwarf
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan Fa Grant
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Wang Z, Yang Y, He M, Wang R, Ma J, Zhang Y, Zhao L, Yu K. Association between interleukin-6 gene polymorphisms and bone mineral density: a meta-analysis. Genet Test Mol Biomarkers 2013; 17:898-909. [PMID: 24053561 DOI: 10.1089/gtmb.2013.0223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Many studies have examined the association between interleukin-6 (IL-6) gene polymorphisms and bone mineral density (BMD). However, the results remain conflicting. To assess the relationship more precisely, a meta-analysis was performed. METHODS The PubMed, Embase, Chinese BioMedical Literature (CBM), Wanfang, and China National Knowledge Infrastructure (CNKI) database were searched for relevant articles published up to March 2013. Weighted mean difference (WMD) and 95% confidence interval (95% CI) were calculated using a fixed-effects or random-effects model. RESULTS A total of 16 articles with 11,957 subjects were investigated in this meta-analysis. Overall, -634C/G polymorphism was significantly associated with BMD at the femoral neck (WMD, -0.016 g/cm(2); 95% CI, -0.028 to -0.003 g/cm(2)), lumbar spine (WMD, -0.049 g/cm(2); 95% CI, -0.069 to -0.030 g/cm(2)), and whole body (WMD, -0.023 g/cm(2); 95% CI, -0.037 to -0.009 g/cm(2)) for GG versus CC+CG. In subgroup analyses stratified by ethnicity, individuals carrying -634GG genotype had a significantly lower mean BMD at any skeletal site examined, compared with individuals with -634CC or -634CG genotype in Asian populations. For -174G/C polymorphism, the BMD differences between CC+CG and GG genotype were 0.004 g/cm(2) at the distal radius (95% CI, 0.004 to 0.005 g/cm(2)), 0.011 g/cm(2) at the trochanter (95% CI, 0.002 to 0.020 g/cm(2)), and 0.017 g/cm(2) at the Ward's triangle (95% CI, 0.003 to 0.032 g/cm(2)). No significant publication bias was observed in either the -634C/G or -174G/C polymorphism. CONCLUSIONS This suggests that there are modest effects of the -634C/G and -174G/C polymorphisms on BMD. Large-scale and well-designed studies are required to further investigate gene-gene and gene-environment interactions on IL-6 polymorphisms and BMD in various populations.
Collapse
Affiliation(s)
- Zhao Wang
- 1 Department of Orthopedics, The 117th Hospital of PLA , Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The etiology of skeletal disease is driven by genetic and environmental factors. Genome-wide association studies (GWAS) of osteoporotic phenotypes have identified novel candidate genes, but have only uncovered a small proportion of the trait variance explained. This "missing heritability" is caused by several factors, including the failure to consider gene-by-environmental (G*E) interactions. Some G*E interactions have been investigated, but new approaches to integrate environmental data into genomic studies are needed. Advances in genotyping and meta-analysis techniques now allow combining genotype data from multiple studies, but the measurement of key environmental factors in large human cohorts still lags behind, as do the statistical tools needed to incorporate these measures in genome-wide association meta-studies. This review focuses on discussing ways to enhance G*E interaction studies in humans and how the use of rodent models can inform genetic studies. Understanding G*E interactions will provide opportunities to effectively target intervention strategies for individualized therapy.
Collapse
|
8
|
|
9
|
Is there any relation between IL-6 gene −174 G>C polymorphism and postmenopausal osteoporosis? Eur J Obstet Gynecol Reprod Biol 2012; 164:98-101. [DOI: 10.1016/j.ejogrb.2012.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 04/19/2012] [Accepted: 05/13/2012] [Indexed: 01/08/2023]
|
10
|
Stathopoulou MG, Kanoni S, Papanikolaou G, Antonopoulou S, Nomikos T, Dedoussis G. Mineral Intake. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:201-36. [DOI: 10.1016/b978-0-12-398397-8.00009-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Giampietro PF, McCarty C, Mukesh B, McKiernan F, Wilson D, Shuldiner A, Liu J, LeVasseur J, Ivacic L, Kitchner T, Ghebranious N. The role of cigarette smoking and statins in the development of postmenopausal osteoporosis: a pilot study utilizing the Marshfield Clinic Personalized Medicine Cohort. Osteoporos Int 2010; 21:467-77. [PMID: 19506792 DOI: 10.1007/s00198-009-0981-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/23/2009] [Indexed: 01/31/2023]
Abstract
SUMMARY A cohort of postmenopausal osteoporotic females and controls with normal bone mineral density, the interleukin 6 (IL6) -634G > C (rs1800796) C allele of the promoter region showed association with osteoporosis. The lipoprotein receptor-related protein 5 (LRP5) gene showed association between C135242T C/T alleles and osteoporosis only in smokers, suggesting a role for environmental interaction. INTRODUCTION A nested case-control study within a population-based cohort was undertaken to assess the relative impact of cigarette smoking, statin use, genetic polymorphisms, and one-way interaction of these factors on development of osteoporosis in postmenopausal women. METHODS Genotyping of 14 single-nucleotide polymorphisms (SNPs) corresponding to vitamin D receptor gene, estrogen receptor 1, collagen type 1 alpha 1, IL6, transcription growth factor beta, apolipoprotein E, and LRP5 genes was performed in cases (n = 309) with osteoporosis and controls (n = 293) with normal bone mineral density drawn from a homogeneous Caucasian population. SNPs were chosen based on known functional consequences or prior evidence for association and genotyped using matrix-assisted laser desorption ionization time-of-flight technology. RESULTS Cases differed from controls relative to body mass index, age, and smoking but not statin use. After adjusting for age, the IL6 -634G > C (rs1800796) allele showed association with osteoporosis (odds ratio (OR) for CC + CG = 2.51, p = 0.0047)), independent of statin use or smoking status. On stratification for smoking, association with LRP5 C135242T (rs545382) and osteoporosis emerged (OR 2.8 in smokers for CT alleles, p = 0.03)), suggestive of potential environmental interaction. CONCLUSION Evidence suggested a role for genetic variation in IL6 and LRP5 in conferring risk for osteoporosis in Caucasian women, with the latter manifest only in smokers.
Collapse
Affiliation(s)
- P F Giampietro
- Marshfield Clinic, Department of Medical Genetic Services, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|