1
|
Rouleau M, Schwab M, Klein K, Tremmel R, Haag M, Schaeffeler E, Guillemette C. The liver proteome of individuals with a natural UGT2B17 complete deficiency. Sci Rep 2025; 15:5458. [PMID: 39953065 PMCID: PMC11828848 DOI: 10.1038/s41598-025-89160-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Glucuronidation is a crucial pathway for the metabolism and detoxification of drugs and endobiotics, and primarily occurs in the liver. UGT2B17 is one of the 22 glycosyltransferases (UGT) that catalyze this reaction. In a large proportion of the population, UGT2B17 is absent due to complete gene deletion. We hypothesized that a UGT2B17 human deficiency affects the composition and function of the liver proteome, potentially provoking compensatory responses, and altering interconnected pathways and regulatory networks. The objective was to elucidate the liver proteome of UGT2B17-deficient individuals. Liver specimens from UGT2B17-deficient and proficient individuals were compared by mass spectrometry-based proteomics using data-independent acquisition. In UGT2B17-deficient livers, 80% of altered proteins showed increased abundance with a notable enrichment in various metabolic and chemical defense pathways, cellular stress and immune-related responses. Enzymes involved in the homeostasis of steroids, nicotinamide, carbohydrate and energy metabolism, and sugar pathways were also more abundant. Some of these changes support compensatory mechanisms, but do not involve other UGTs. An increased abundance of non-metabolic proteins suggests an adaptation to endoplasmic reticulum stress, and activation of immune responses. Data implies a disrupted hepatocellular homeostasis in UGT2B17-deficient individuals and offers new perspectives on functions and phenotypes associated with a complete UGT2B17 deficiency.
Collapse
Affiliation(s)
- Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
- Departements of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tuebingen, 72076, Tuebingen, Germany
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval (CRCHUQc-UL), Faculty of Pharmacy and Université Laval Cancer Research Center, Université Laval, R4701.5, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Canada Research Chair in Pharmacogenomics, Université Laval, Quebec, Canada.
| |
Collapse
|
2
|
Liu W, Li J, Zhao R, Lu Y, Huang P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism. Front Oncol 2023; 12:1088458. [PMID: 36741721 PMCID: PMC9892627 DOI: 10.3389/fonc.2022.1088458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
UDP-glycosyltransferases (UGTs), important enzymes in biotransformation, control the levels and distribution of numerous endogenous signaling molecules and the metabolism of a wide range of endogenous and exogenous chemicals. The UGT superfamily in mammals consists of the UGT1, UGT2, UGT3, and UGT8 families. UGTs are rate-limiting enzymes in the glucuronate pathway, and in tumors, they are either overexpressed or underexpressed. Alterations in their metabolism can affect gluconeogenesis and lipid metabolism pathways, leading to alterations in tumor cell metabolism, which affect cancer development and prognosis. Glucuronidation is the most common mammalian conjugation pathway. Most of its reactions are mainly catalyzed by UGT1A, UGT2A and UGT2B. The body excretes UGT-bound small lipophilic molecules through the bile, urine, or feces. UGTs conjugate a variety of tiny lipophilic molecules to sugars, such as galactose, xylose, acetylglucosamine, glucuronic acid, and glucose, thereby inactivating and making water-soluble substrates, such as carcinogens, medicines, steroids, lipids, fatty acids, and bile acids. This review summarizes the roles of members of the four UGT enzyme families in tumor function, metabolism, and multiple regulatory mechanisms, and its Inhibitors and inducers. The function of UGTs in lipid metabolism, drug metabolism, and hormone metabolism in tumor cells are among the most important topics covered.
Collapse
Affiliation(s)
| | | | | | - Yao Lu
- *Correspondence: Yao Lu, ; Panpan Huang,
| | | |
Collapse
|
3
|
Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer. Br J Cancer 2023; 128:285-296. [PMID: 36347965 PMCID: PMC9902621 DOI: 10.1038/s41416-022-02040-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Naturally occurring germline gene deletions (KO) represent a unique setting to interrogate gene functions. Complete deletions and differential expression of the human glycosyltransferase UGT2B17 and UGT2B28 genes are linked to prostate cancer (PCa) risk and progression, leukaemia, autoimmune and other diseases. METHODS The systemic metabolic consequences of UGT deficiencies were examined using untargeted and targeted mass spectrometry-based metabolomics profiling of carefully matched, treatment-naive PCa cases. RESULTS Each UGT KO differentially affected over 5% of the 1545 measured metabolites, with divergent metabolic perturbations influencing the same pathways. Several of the perturbed metabolites are known to promote PCa growth, invasion and metastasis, including steroids, ceramides and kynurenine. In UGT2B17 KO, reduced levels of inactive steroid-glucuronides were compensated by sulfated derivatives that constitute circulating steroid reservoirs. UGT2B28 KO presented remarkably lower levels of oxylipins paralleled by reduced inflammatory mediators, but higher ceramides unveiled as substrates of the enzyme in PCa cells. CONCLUSION The distinctive and broad metabolic rewiring caused by UGT KO reinforces the need to examine their unique and divergent functions in PCa biology.
Collapse
|
4
|
Baseline estrogen levels in postmenopausal women participating in the MAP.3 breast cancer chemoprevention trial. ACTA ACUST UNITED AC 2021; 27:693-700. [PMID: 32433262 DOI: 10.1097/gme.0000000000001568] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to quantify baseline estradiol (E2) and estrone (E1) concentrations according to selected patient characteristics in a substudy nested within the MAP.3 chemoprevention trial. METHODS E2 and E1 levels were measured in 4,068 postmenopausal women using liquid chromatography-tandem mass spectrometry. Distributions were described by age, years since menopause, race, body mass index (BMI), smoking status, and use and duration of hormone therapy using the Kruskal-Wallis test. Multivariable linear regression was also used to identify characteristics associated with estrogen levels. RESULTS After truncation at the 97.5th percentile, the mean (SD)/median (IQR) values for E2 and E1 were 5.41 (4.67)/4.0 (2.4-6.7) pg/mL and 24.7 (14.1)/21 (15-31) pg/mL, respectively. E2 and E1 were strongly correlated (Pearson correlation [r] = 0.8, P < 0.01). The largest variation in E2 and E1 levels was by BMI; mean E2 and E1 levels were 3.5 and 19.1 pg/mL, respectively for women with BMI less than 25 and 7.5 and 30.6 pg/mL, respectively, for women with BMI greater than 30. E2 and E1 varied by age, BMI, smoking status, and prior hormone therapy in multivariable models (P < 0.01). CONCLUSIONS There was large interindividual variability observed for E2 and E1 that varied significantly by participant characteristics, but with small absolute differences except in the case of BMI. Although the majority of participant characteristics were independently associated with E1 and E2, together, these factors only explained about 20% of the variation in E1 and E2 levels.
Collapse
|
5
|
Ho V, Pasquet R, Luo S, Chen G, Goss P, Tu D, Lazarus P, Richardson H. Variation in the UGT2B17 genotype, exemestane metabolism and menopause-related toxicities in the CCTG MAP.3 trial. Breast Cancer Res Treat 2020; 183:705-716. [PMID: 32715442 DOI: 10.1007/s10549-020-05812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To examine associations between the UGT2B17 gene deletion and exemestane metabolites, and commonly reported side effects (fatigue, hot flashes, and joint pain) among postmenopausal women participating in the MAP.3 chemoprevention trial. METHODS The analytical samples for the UGT2B17 analysis comprised 1752 women on exemestane and 1721 women on placebo; the exemestane metabolite analysis included 1360 women on exemestane with one-year serum samples. Both the UGT2B17 gene deletion and metabolites were measured in blood. The metabolites were conceptualized as a ratio (17-DHE-Gluc:17-DHE). Symptoms were assessed using the CTCAE v4.0 at approximately 1-year intervals. Log-binomial regression was used to examine the associations between UGT2B17 deletion, exemestane metabolites and each side effect at 1 and up to 5-year follow-up, adjusting for potential confounders. RESULTS Among individuals on exemestane with the UGT2B17 gene deletion (i.e., lower detoxification), a higher risk of severe fatigue (RR = 2.59 95% CI: 1.14-5.89) was observed at up to 5-year follow-up. Among individuals on placebo, those with the UGT2B17 gene deletion had a higher risk of any fatigue (RR = 1.39, 95% CI: 1.02-1.89) at year 1. A lower metabolite ratio (poor detoxification) was associated with a higher risk of any fatigue, hot flashes and joint pain at year 1 (fatigue: RR = 1.89, 95% CI: 1.16-3.09; hot flashes: RR = 1.77, 95% CI: 1.40-2.24; joint pain: RR = 2.05, 95% CI: 1.35-3.12); similar associations were observed at 5-year follow-up. CONCLUSION Variation in the metabolism of exemestane through the UGT2B17-mediated pathway is associated with subsequent risk of commonly reported symptoms in MAP.3.
Collapse
Affiliation(s)
- Vikki Ho
- Department of Social and Preventive Medicine, University of Montreal, 850 rue Saint-Denis, Tour Saint-Antoine, 3rd Floor, S03.412, Montréal, QC, H2X0A9, Canada.,Health Innovation and Evaluation Hub, University of Montreal Hospital Research Centre (CRCHUM), 850 rue Saint-Denis, Tour Saint-Antoine, 3rd Floor, S03.424, Montréal, QC, H2X0A9, Canada
| | - Romain Pasquet
- Department of Social and Preventive Medicine, University of Montreal, 850 rue Saint-Denis, Tour Saint-Antoine, 3rd Floor, S03.412, Montréal, QC, H2X0A9, Canada
| | - Shaman Luo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., PBS 431, Spokane, WA, 99202-2131, USA
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., PBS 431, Spokane, WA, 99202-2131, USA
| | - Paul Goss
- Harvard Medical School, MGH Cancer Center, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
| | - Dongsheng Tu
- Division Canadian Cancer Trials Group, Queen's University, 10 Stuart Street, Kingston, ON, K7L 3N6, Canada.,Department of Public Health Sciences, Cancer Research Institute, Queen's University, 10 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., PBS 431, Spokane, WA, 99202-2131, USA
| | - Harriet Richardson
- Divisions of Canadian Cancer Trials Group and Cancer Care and Epidemiology, Cancer Research Institute, Queen's University, 10 Stuart Street, Room 220, Kingston, ON, K7L 3N6, Canada.
| | | |
Collapse
|
6
|
Lin YJ, Cheng CF, Wang CH, Liang WM, Tang CH, Tsai LP, Chen CH, Wu JY, Hsieh AR, Lee MTM, Lin TH, Liao CC, Huang SM, Zhang Y, Tsai CH, Tsai FJ. Genetic Architecture Associated With Familial Short Stature. J Clin Endocrinol Metab 2020; 105:5805154. [PMID: 32170311 DOI: 10.1210/clinem/dgaa131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Human height is an inheritable, polygenic trait under complex and multilocus genetic regulation. Familial short stature (FSS; also called genetic short stature) is the most common type of short stature and is insufficiently known. OBJECTIVE To investigate the FSS genetic profile and develop a polygenic risk predisposition score for FSS risk prediction. DESIGN AND SETTING The FSS participant group of Han Chinese ancestry was diagnosed by pediatric endocrinologists in Taiwan. PATIENTS AND INTERVENTIONS The genetic profiles of 1163 participants with FSS were identified by using a bootstrapping subsampling and genome-wide association studies (GWAS) method. MAIN OUTCOME MEASURES Genetic profile, polygenic risk predisposition score for risk prediction. RESULTS Ten novel genetic single nucleotide polymorphisms (SNPs) and 9 reported GWAS human height-related SNPs were identified for FSS risk. These 10 novel SNPs served as a polygenic risk predisposition score for FSS risk prediction (area under the curve: 0.940 in the testing group). This FSS polygenic risk predisposition score was also associated with the height reduction regression tendency in the general population. CONCLUSION A polygenic risk predisposition score composed of 10 genetic SNPs is useful for FSS risk prediction and the height reduction tendency. Thus, it might contribute to FSS risk in the Han Chinese population from Taiwan.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chung-Hsing Wang
- Children's Hospital of China Medical University, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Ping Tsai
- Department of Pediatrics, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Chien-Hsiun Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ai-Ru Hsieh
- Department of Statistics, Tamkang University, New Taipei City, Taiwan
| | | | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Chang-Hai Tsai
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Children's Hospital of China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang H, Basit A, Wolford C, Chen KF, Gaedigk A, Lin YS, Leeder JS, Prasad B. Normalized Testosterone Glucuronide as a Potential Urinary Biomarker for Highly Variable UGT2B17 in Children 7-18 Years. Clin Pharmacol Ther 2020; 107:1149-1158. [PMID: 31900930 DOI: 10.1002/cpt.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
UDP-glucuronosyltransferase 2B17 (UGT2B17) is a highly variable androgen-metabolizing and drug-metabolizing enzyme. UGT2B17 exhibits a unique ontogeny profile characterized by a dramatic increase in hepatic protein expression from prepubertal age to adulthood. Age, sex, copy number variation (CNV), and single nucleotide polymorphisms only explain 26% of variability in protein expression, highlighting the need for a phenotypic biomarker for predicting interindividual variability in glucuronidation of UGT2B17 substrates. Here, we propose testosterone glucuronide (TG) normalized by androsterone glucuronide (TG/AG) as a urinary UGT2B17 biomarker, and examine the associations among urinary TG/AG and age, sex, and CNV. We performed targeted metabolomics of 12 androgen conjugates with liquid-chromatography tandem mass spectrometry in 63 pediatric subjects ages 7-18 years followed over 7 visits in 3 years. Consistent with the reported developmental trajectory of UGT2B17 protein expression, urinary TG/AG is significantly associated with age, sex, and CNV. In conclusion, TG/AG shows promise as a phenotypic urinary UGT2B17 biomarker.
Collapse
Affiliation(s)
- Haeyoung Zhang
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Abdul Basit
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Chris Wolford
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Prognostic impact of genetic variants of CYP19A1 and UGT2B17 in a randomized trial for endocrine-responsive postmenopausal breast cancer. THE PHARMACOGENOMICS JOURNAL 2019; 20:19-26. [PMID: 30967597 DOI: 10.1038/s41397-019-0087-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 11/08/2022]
Abstract
Polymorphisms of genes involved in estrogen synthesis have been linked to breast cancer risk, prognosis, and treatment response. We investigated the prognostic impact of a deletion spanning the entire UGT2B17 gene (UGT2B17*2) and genetic variants of the aromatase CYP19A1 and estrogen receptor α (ESR1) in 125 postmenopausal women with ER-positive breast cancer enrolled in a randomized pre-surgical trial. The UGT2B17*2 was estimated by copy number variation assays and the CYP19A1 rs10046/rs4646 and ESR1 rs2077647/rs2234693/rs9340799 by TaqMan allelic discrimination assays. Serum exemestane/17-hydroxy exemestane were determined by MS and estrone (E1)/estradiol (E2)/ by GC-MS/MS. The association of genetic polymorphisms with "any event" was assessed by the Cox proportional hazards models adjusted for confounders. The UGT2B17*2 was associated with higher levels of 17-hydroxy exemestane (P = 0.04) and better prognosis (HR = 0.45; 95% CI: 0.20-1.01; P = 0.05) compared with homozygote UGT2B17 wt. The CYP19A1 rs10046 A and rs4646 C alleles were associated with higher estrogen levels: rs10046 AA vs. AG/GG genotypes had median E1 of 35.9 vs. 27.4 pg/mL (P = 0.05) and E2 of 7.57 vs. 3.9 pg/mL (P < 0.004). After a median follow-up of 7 years, women carrying the "low estrogen" alleles rs10046 G and rs4646 A had a better prognosis compared with homozygote wt for both polymorphisms (HR = 0.40; 95% CI: 0.17-0.93; P = 0.03). Our analysis points to an impact of UGT2B17 and CYP19A1 in postmenopausal endocrine responsive breast cancer. Carriers of UGT2B17*2 and CYP19A1 low estrogen variants may have better prognosis, supporting studies addressing the role of these polymorphisms in optimizing endocrine therapy. Trial registration: http://www.isrctn.com/ISRCTN86894592.
Collapse
|
9
|
Kamdem LK, Xi J, Clark BL, Gregory BJ, Kidwell KM, Storniolo AM, Stearns V, Hayes DF, Gersch CL, Rae JM, Henry NL, Hertz DL. Exemestane may be less detrimental than letrozole to bone health in women homozygous for the UGT2B17*2 gene deletion. Breast Cancer Res Treat 2019; 175:297-303. [PMID: 30747308 DOI: 10.1007/s10549-019-05158-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE UGT2B17 gene deletion (UGT2B17*2) has been reported to affect bone health as well as the pharmacokinetics of aromatase inhibitor (AI) drugs such as exemestane. The goal of this study was to assess associations between UGT2B17 gene deletion and bone health prior to and after 24 months of AI treatment in postmenopausal women with hormone receptor positive (HR+) breast cancer. METHODS Bone health in women with HR+ breast cancer enrolled on the prospective randomized Exemestane and Letrozole Pharmacogenetics (ELPh) trial was determined by measuring bone turnover markers (BTM) and bone mineral density (BMD) pre-treatment and after 3 BTM and 24 BMD months of treatment with either the steroidal AI exemestane or the nonsteroidal AI letrozole. DNA samples were genotyped for UGT2B17*2. RESULTS Of the 455 subjects included in the analyses, 244 (53.6%) carried at least one copy of UGT2B17*2. UGT2B17*2 was associated with lower pre-treatment BMD at the hip (P = 0.01) and spine (P = 0.0076). Letrozole treatment was associated with a greater decrease in BMD of the hip (P = 0.03) and spine (P = 0.03) than exemestane. UGT2B17 genotype was not associated with changes in BMD from 24 months of AI treatment, though in UGT2B17*2 homozygous patients, there was a trend toward greater decreases in BMD of the spine from treatment with letrozole compared with exemestane (P = 0.05). CONCLUSION UGT2B17*2 may be associated with lower baseline BMD in women with HR+ breast cancer. Exemestane is less detrimental to bone health than letrozole in postmenopausal women treated with AI, and this effect may be confined to patients carrying UGT2B17*2, though this finding requires independent validation.
Collapse
Affiliation(s)
- Landry K Kamdem
- Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, AR, 72149-2230, USA.
| | - Jingyue Xi
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brandi L Clark
- Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, AR, 72149-2230, USA
| | - Bryana J Gregory
- Department of Pharmaceutical Sciences, Harding University College of Pharmacy, Searcy, AR, 72149-2230, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ana-Maria Storniolo
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Daniel F Hayes
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christina L Gersch
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James M Rae
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - N Lynn Henry
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Lv X, Zhang JB, Wang XX, Hu WZ, Shi YS, Liu SW, Hao DC, Zhang WD, Ge GB, Hou J, Yang L. Amentoflavone is a potent broad-spectrum inhibitor of human UDP-glucuronosyltransferases. Chem Biol Interact 2018; 284:48-55. [DOI: 10.1016/j.cbi.2018.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/03/2018] [Accepted: 02/12/2018] [Indexed: 11/25/2022]
|
11
|
Kahma H, Filppula AM, Neuvonen M, Tarkiainen EK, Tornio A, Holmberg MT, Itkonen MK, Finel M, Neuvonen PJ, Niemi M, Backman JT. Clopidogrel Carboxylic Acid Glucuronidation is Mediated Mainly by UGT2B7, UGT2B4, and UGT2B17: Implications for Pharmacogenetics and Drug-Drug Interactions . Drug Metab Dispos 2018; 46:141-150. [PMID: 29138287 DOI: 10.1124/dmd.117.078162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/11/2017] [Indexed: 01/04/2023] Open
Abstract
The antiplatelet drug clopidogrel is metabolized to an acyl-β-d-glucuronide, which causes time-dependent inactivation of CYP2C8. Our aim was to characterize the UDP-glucuronosyltransferase (UGT) enzymes that are responsible for the formation of clopidogrel acyl-β-d-glucuronide. Kinetic analyses and targeted inhibition experiments were performed using pooled human liver and intestine microsomes (HLMs and HIMs, respectively) and selected human recombinant UGTs based on preliminary screening. The effects of relevant UGT polymorphisms on the pharmacokinetics of clopidogrel were evaluated in 106 healthy volunteers. UGT2B7 and UGT2B17 exhibited the greatest level of clopidogrel carboxylic acid glucuronidation activities, with a CLint,u of 2.42 and 2.82 µl⋅min-1⋅mg-1, respectively. Of other enzymes displaying activity (UGT1A3, UGT1A9, UGT1A10-H, and UGT2B4), UGT2B4 (CLint,u 0.51 µl⋅min-1⋅mg-1) was estimated to contribute significantly to the hepatic clearance. Nonselective UGT2B inhibitors strongly inhibited clopidogrel acyl-β-d-glucuronide formation in HLMs and HIMs. The UGT2B17 inhibitor imatinib and the UGT2B7 and UGT1A9 inhibitor mefenamic acid inhibited clopidogrel carboxylic acid glucuronidation in HIMs and HLMs, respectively. Incubation of clopidogrel carboxylic acid in HLMs with UDPGA and NADPH resulted in strong inhibition of CYP2C8 activity. In healthy volunteers, the UGT2B17*2 deletion allele was associated with a 10% decrease per copy in the plasma clopidogrel acyl-β-d-glucuronide to clopidogrel carboxylic acid area under the plasma concentration-time curve from 0 to 4 hours (AUC0-4) ratio (P < 0.05). To conclude, clopidogrel carboxylic acid is metabolized mainly by UGT2B7 and UGT2B4 in the liver and by UGT2B17 in the small intestinal wall. The formation of clopidogrel acyl-β-d-glucuronide is impaired in carriers of the UGT2B17 deletion. These findings may have implications regarding the intracellular mechanisms leading to CYP2C8 inactivation by clopidogrel.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Mikko T Holmberg
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Matti K Itkonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Moshe Finel
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, and Helsinki University Hospital (H.K., A.M.F., M.Ne., E.K.T., A.T., M.T.H., M.K.I., P.J.N., M.Ni., J.T.B.) and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki (M.F.), Helsinki, Finland
| |
Collapse
|
12
|
Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin Pharmacol Ther 2014; 96:324-39. [PMID: 24922307 DOI: 10.1038/clpt.2014.126] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022]
Abstract
Glucuronidation by uridine diphospho-glucuronosyltransferase enzymes (UGTs) is a major phase II biotransformation pathway and, complementary to phase I metabolism and membrane transport, one of the most important cellular defense mechanisms responsible for the inactivation of therapeutic drugs, other xenobiotics, and endogenous molecules. Interindividual variability in UGT pathways is significant and may have profound pharmacological and toxicological implications. Several genetic and genomic processes underlie this variability and are discussed in relation to drug metabolism and diseases such as cancer.
Collapse
|