1
|
Robertson AP, Jones BJ, Langton CM, Wearing SC. Calcaneal Ultrasound Attenuation: Does the Region of Interest and Loading Influence the Repeatability of Measurement? Calcif Tissue Int 2025; 116:48. [PMID: 40063094 PMCID: PMC11893676 DOI: 10.1007/s00223-025-01357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Current calcaneal quantitative ultrasound systems assess different regions of interest (ROI), under different levels of lower limb loading, yield different parameter values, and are likely prone to different levels of error. This study evaluated the repeatability of measures of frequency-dependent attenuation (FDA, 0.3-0.8 MHz) at three calcaneal ROI, Brooke-Wavell (BW), Jaworski (JA), and foot gauge (FG), under four loading conditions (non-weightbearing, semi-weightbearing, bipedal stance, and unipedal stance). FDA in the calcaneus was assessed in 20 healthy participants (mean (± SD) age, 41.7 ± 19.6 years; height, 1.70 ± 0.16 m; and weight, 70.1 ± 23.0 kg) using a custom-built transmission-mode ultrasound system. Reliability was evaluated using the standard error of measurement (SEM) and limits of agreement (LA) and tolerance (95%TL). Differences in mean FDA values between ROI, loading, and measurement occasions were assessed using a repeated measures ANOVA (α = .05). Mean FDA values ranged between 58.0 ± 32.0 and 77.2 ± 27.6 dB/MHz across all conditions. Repeatability of FDA was dependent on the ROI examined and tended to improve with weightbearing. The narrowest limits for 95%TL ranged between ± 15.1 dB/MHz (JA SWB) and ± 62.7 dB/MHz (BW NWB) across sites. The SEM was approximately 10 dB/MHz for both FG and JA during non-weightbearing and was reduced to around 5 dB/MHz with full weightbearing. This study demonstrates that, although measures of ultrasound FDA are dependent on the ROI, lower limb loading may be a useful method to improve the repeatability of FDA measurements.
Collapse
Affiliation(s)
- Aaron P Robertson
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, Australia.
| | | | - Christian M Langton
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Griffith Centre of Biomedical and Rehabilitation Engineering, Griffith University, Gold Coast, Australia
| | - Scott C Wearing
- School of Medicine and Health Sciences, Technical University of Munich, Bavaria, Germany
| |
Collapse
|
2
|
Pulse-Echo Measurements of Bone Tissues. Techniques and Clinical Results at the Spine and Femur. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:145-162. [DOI: 10.1007/978-3-030-91979-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Hans D, Métrailler A, Gonzalez Rodriguez E, Lamy O, Shevroja E. Quantitative Ultrasound (QUS) in the Management of Osteoporosis and Assessment of Fracture Risk: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:7-34. [PMID: 35508869 DOI: 10.1007/978-3-030-91979-5_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Quantitative ultrasound (QUS) presents a low cost and readily available alternative to DXA measurements of bone mineral density (BMD) for osteoporotic fracture risk assessment. It is performed in a variety of skeletal sites, among which the most widely investigated and clinically used are first the calcaneus and then the radius. Nevertheless, there is still uncertainty in the incorporation of QUS in the clinical management of osteoporosis as the level of clinical validation differs substantially upon the QUS models available. In fact, results from a given QUS device can unlikely be extrapolated to another one, given the technological differences between QUS devices. The use of QUS in clinical routine to identify individuals at low or high risk of fracture could be considered primarily when central DXA is not easily available. In this later case, it is recommended that QUS bone parameters are used in combination with established clinical risk factors for fracture. Currently, stand-alone QUS is not recommended for treatment initiation decision making or follow-up. As WHO classification of osteoporosis thresholds cannot apply to QUS, thresholds specific for given QUS devices and parameters need to be determined and cross-validated widely to have a well-defined and certain use of QUS in osteoporosis clinical workflow. Despite the acknowledged current clinical limitations for QUS to be used more widely in daily routine, substantial progresses have been made and new results are promising.
Collapse
Affiliation(s)
- Didier Hans
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland.
| | - Antoine Métrailler
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Elena Gonzalez Rodriguez
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Olivier Lamy
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Enisa Shevroja
- Interdisciplinary Center of Bone Diseases, Bone and Joint Department, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
4
|
Di Paola M, Gatti D, Viapiana O, Cianferotti L, Cavalli L, Caffarelli C, Conversano F, Quarta E, Pisani P, Girasole G, Giusti A, Manfredini M, Arioli G, Matucci-Cerinic M, Bianchi G, Nuti R, Gonnelli S, Brandi ML, Muratore M, Rossini M. Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int 2019; 30:391-402. [PMID: 30178159 DOI: 10.1007/s00198-018-4686-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/21/2018] [Indexed: 01/22/2023]
Abstract
UNLABELLED An innovative, non-ionizing technique to diagnose osteoporosis on lumbar spine and femoral neck was evaluated through a multicenter study involving 1914 women. The proposed method showed significant agreement with reference gold standard method and, therefore, a potential for early osteoporosis diagnoses and possibly improved patient management. INTRODUCTION To assess precision (i.e., short term intra-operator precision) and diagnostic accuracy of an innovative non-ionizing technique, REMS (Radiofrequency Echographic Multi Spectrometry), in comparison with the clinical gold standard reference DXA (dual X-ray absorptiometry), through an observational multicenter clinical study. METHODS In a multicenter cross-sectional observational study, a total of 1914 postmenopausal women (51-70 years) underwent spinal (n = 1553) and/or femoral (n = 1637) DXA, according to their medical prescription, and echographic scan of the same anatomical sites performed with the REMS approach. All the medical reports (DXA and REMS) were carefully checked to identify possible errors that could have caused inaccurate measurements: erroneous REMS reports were excluded, whereas erroneous DXA reports were re-analyzed where possible and otherwise excluded before assessing REMS accuracy. REMS precision was independently assessed. RESULTS In the spinal group, quality assessment on medical reports produced the exclusion of 280 patients because of REMS errors and 78 patients because of DXA errors, whereas 296 DXA reports were re-analyzed and corrected. Analogously, in the femoral group there were 205 exclusions for REMS errors, 59 exclusions for DXA errors, and 217 re-analyzed DXA reports. In the resulting dataset (n = 1195 for spine, n = 1373 for femur) REMS outcome showed a good agreement with DXA: the average difference in bone mineral density (BMD, bias ± 2SD) was -0.004 ± 0.088 g/cm2 for spine and - 0.006 ± 0.076 g/cm2 for femur. Linear regression showed also that the two methods were well correlated: standard error of the estimate (SEE) was 5.3% for spine and 5.8% for femur. REMS precision, expressed as RMS-CV, was 0.38% for spine and 0.32% for femur. CONCLUSIONS The REMS approach can be used for non-ionizing osteoporosis diagnosis directly on lumbar spine and femoral neck with a good level of accuracy and precision. However, a more rigorous operator training is needed to limit the erroneous acquisitions and to ensure the full clinical practicability.
Collapse
Affiliation(s)
- M Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica (CNR-IFC), Campus Ecotekne (Ed. A7), via per Monteroni, 73100, Lecce, Italy.
| | - D Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - O Viapiana
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | - L Cianferotti
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - L Cavalli
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - C Caffarelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - F Conversano
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - E Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce ASL-LE, Lecce, Italy
| | - P Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - G Girasole
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - A Giusti
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - M Manfredini
- Department of Neurosciences and Rehabilitation, "Carlo Poma" Hospital, ASST-Mantova, Mantova, Italy
| | - G Arioli
- Department of Neurosciences and Rehabilitation, "Carlo Poma" Hospital, ASST-Mantova, Mantova, Italy
| | - M Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence & SOD Rheumatology AOUC, Florence, Italy
| | - G Bianchi
- SC Rheumatology, ASL 3 Genovese, Genoa, Italy
| | - R Nuti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - S Gonnelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - M L Brandi
- Department of Surgery and Translational Medicine, University of Florence, Metabolic Bone Diseases Unit, University Hospital of Florence, Florence, Italy
| | - M Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce ASL-LE, Lecce, Italy
| | - M Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Metcalf LM, Dall'Ara E, Paggiosi MA, Rochester JR, Vilayphiou N, Kemp GJ, McCloskey EV. Validation of calcaneus trabecular microstructure measurements by HR-pQCT. Bone 2018; 106:69-77. [PMID: 28986143 DOI: 10.1016/j.bone.2017.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Assessment of calcaneus microstructure using high-resolution peripheral quantitative computed tomography (HR-pQCT) might be used to improve fracture risk predictions or to assess responses to pharmacological and physical interventions. To develop a standard clinical protocol for the calcaneus, we validated calcaneus trabecular microstructure measured by HR-pQCT against 'gold-standard' micro-CT measurements. METHODS Ten human cadaveric feet were scanned in situ using HR-pQCT (isotropic 82μm voxel size) at 100, 150 and 200ms integration times, and at 100ms integration time following removal of the calcaneus from the foot (ex vivo). Dissected portions of these bones were scanned using micro-computed tomography (micro-CT) at an isotropic 17.4μm voxel size. HR-pQCT images were rigidly registered to those obtained with micro-CT and divided into multiple 5mm sided cubes to evaluate and compare morphometric parameters between the modalities. Standard HR-pQCT measurements (derived bone volume fraction (BV/TVd); trabecular number, Tb.N; derived trabecular thickness, Tb.Thd; derived trabecular spacing, Tb.Spd) and corresponding micro-CT voxel-based measurements (BV/TV, Tb.N, Tb.Th, Tb.Sp) were compared. RESULTS A total of 108 regions of interest were analysed across the 10 specimens. At all integration times HR-pQCT BV/TVd was strongly correlated with micro-CT BV/TV (r2=0.95-0.98, RMSE=1%), but BV/TVd was systematically lower than that measured by micro-CT (mean bias=5%). In contrast, HR-pQCT systematically overestimated Tb.N at all integration times; of the in situ scans, 200ms yielded the lowest mean bias and the strongest correlation with micro-CT (r2=0.61, RMSE=0.15mm-1). Regional analysis revealed greater accuracy for Tb.N in the superior regions of the calcaneus at all integration times in situ (mean bias=0.44-0.85mm-1; r2=0.70-0.88, p<0.001 versus mean bias=0.63-1.46mm-1; r2≤0.08, p≥0.21 for inferior regions). Tb.Spd was underestimated by HR-pQCT compared to micro-CT, but showed similar trends with integration time and the region evaluated as Tb.N. HR-pQCT Tb.Thd was also underestimated and moderately correlated (r2=0.53-0.59) with micro-CT Tb.Th, independently from the integration time. Stronger correlations, smaller biases and error were found in the scans of the calcaneus ex vivo compared to in situ. CONCLUSION Calcaneus trabecular BV/TVd and trabecular microstructure, particularly in the superior region of the calcaneus, can be assessed by HR-pQCT. The highest integration time examined, 200ms, compared best with micro-CT. Weaker correlations for microstructure at inferior regions, and also with lower integration times, might limit the use of the proposed protocol, which warrants further investigation in vivo.
Collapse
Affiliation(s)
- Louis M Metcalf
- MRC-Arthritis UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Margaret A Paggiosi
- The Mellanby Centre for Bone Research, Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - John R Rochester
- Academic Unit of Medical Education, Medical School, University of Sheffield, Medical Education, The Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | - Graham J Kemp
- MRC-Arthritis UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, Department of Musculoskeletal Biology, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK
| | - Eugene V McCloskey
- MRC-Arthritis UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK; Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
6
|
Abstract
The use of quantitative ultrasound (QUS) for a variety of skeletal sites, associated with the absence of technology-specific guidelines, has created uncertainty with respect to the application of QUS results to the management of individual patients in clinical practice. However, when prospectively validated (this is not the case for all QUS devices and skeletal sites), QUS is a proven, low-cost, and readily accessible alternative to dual-energy X-ray absorptiometry (DXA) measurements of bone mineral density (BMD) for the assessment of fracture risk. Indeed, the clinical use of QUS to identify subjects at low or high risk of osteoporotic fracture should be considered when central DXA is unavailable. Furthermore, the use of QUS in conjunction with clinical risk factors (CRF),allows for the identification of subjects who have a low and high probability of osteoporotic fracture. Device- and parameter-specific thresholds should be developed and cross-validated to confirm the concurrent use of QUS and CRF for the institution of pharmacological therapy and monitoring therapy.
Collapse
Affiliation(s)
- Didier Hans
- Center of Bone Diseases, Bone & Joint Department, Lausanne University Hospital, Lausanne, Switzerland.
| | - Sanford Baim
- Center of Bone Metabolic Diseases, Division of Endocrinology and Metabolism, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Casciaro S, Peccarisi M, Pisani P, Franchini R, Greco A, De Marco T, Grimaldi A, Quarta L, Quarta E, Muratore M, Conversano F. An Advanced Quantitative Echosound Methodology for Femoral Neck Densitometry. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1337-1356. [PMID: 27033331 DOI: 10.1016/j.ultrasmedbio.2016.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The aim of this paper was to investigate the clinical feasibility and the accuracy in femoral neck densitometry of the Osteoporosis Score (O.S.), an ultrasound (US) parameter for osteoporosis diagnosis that has been recently introduced for lumbar spine applications. A total of 377 female patients (aged 61-70 y) underwent both a femoral dual X-ray absorptiometry (DXA) and an echographic scan of the proximal femur. Recruited patients were sub-divided into a reference database used for ultrasound spectral model construction and a study population for repeatability assessments and accuracy evaluations. Echographic images and radiofrequency signals were analyzed through a fully automatic algorithm that performed a series of combined spectral and statistical analyses, providing as a final output the O.S. value of the femoral neck. Assuming DXA as a gold standard reference, the accuracy of O.S.-based diagnoses resulted 94.7%, with k = 0.898 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral density and corresponding DXA values, with r(2) up to 0.79 and root mean square error = 5.9-7.4%. The reported accuracy levels, combined with the proven ease of use and very good measurement repeatability, provide the adopted method with a potential for clinical routine application in osteoporosis diagnosis.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Antonella Grimaldi
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Laura Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Eugenio Quarta
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | - Maruizio Muratore
- Operative Unit of Rheumatology, Galateo Hospital, San Cesario di Lecce, Lecce, Italy
| | | |
Collapse
|
8
|
Chen SJ, Chen YJ, Cheng CH, Hwang HF, Chen CY, Lin MR. Comparisons of Different Screening Tools for Identifying Fracture/Osteoporosis Risk Among Community-Dwelling Older People. Medicine (Baltimore) 2016; 95:e3415. [PMID: 27196447 PMCID: PMC4902389 DOI: 10.1097/md.0000000000003415] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A prospective study was conducted to compare criterion, predictive, and construct validities of 9 fracture/osteoporosis assessment tools, including calcaneal quantitative ultrasonography (QUS), Age Bulk One or Never Estrogens (ABONE), body weight criterion (BWC), Fracture Risk Assessment Tool (FRAX), Garvan fracture risk calculator (GARVAN), Osteoporosis Risk Assessment Instrument (ORAI), Osteoporosis Index of Risk (OSIRIS), Osteoporosis Self-Assessment Tool for Asians (OSTA), and Simple Calculated Osteoporosis Risk Estimation (SCORE), among older men and women in Taiwan.Using the femoral neck dual-energy x-ray absorptiometry (DXA) T-score as an external criterion, the sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and the area under the receiver operating characteristic curve (AUC) for each tool were calculated. The ability of these tools to predict injurious falls was examined. A principal component analysis was applied to understand whether these tools were measuring the same underlying construct.The FRAX, BWC, ORAI, OSIRIS, OSTA, and SCORE had AUCs of ≥0.8 in men, while the GARVAN, OSIRIS, OSTA, and SCORE had AUCs of ≥0.8 in women. The sensitivity, negative predictive value, and likelihood ratio of the ABONE, BWC, ORAI, OSIRIS, OSTA, and SCORE tools in both men and women were 100%, ≥90%, and 0.0, respectively; the specificity and positive predictive value and likelihood ratio were far from satisfactory. The GARVAN displayed the best predictive ability of a fall in both men (AUCs, 0.653-0.686) and women (AUCs, 0.560-0.567), despite being smaller in women. The 9 screening tools and 2 central DXA measurements assessed 5 different factors, while the ABONE, BWC, ORAI, OSIRIS, OSTA, and SCORE measured the same one.Simple self-assessment tools can serve as initial screening instruments to rule out persons who have osteoporosis; however, these tools may measure a different construct other than fracture/osteoporosis risk.
Collapse
Affiliation(s)
- Sy-Jou Chen
- From the Department of Emergency Medicine (S-JC), Tri-Service General Hospital, National Defense Medical Center; Graduate Institute of Injury Prevention and Control (S-JC, C-YC, M-RL), College of Public Health and Nutrition, Taipei Medical University; Department of Nursing (Y-JC), Cathay General Hospital, Taipei; Department of Emergency Medicine (C-HC), Taichung Branch, Tzu-Chi General Hospital, Taichung, and Department of Nursing (Hei-FH), National Taipei University of Nursing and Health Science, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Association of age-dependent height and bone mineral density decline with increased arterial stiffness and rate of fractures in hypertensive individuals. J Hypertens 2016; 33:727-35; discussion 735. [PMID: 25915877 DOI: 10.1097/hjh.0000000000000475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Hypertension and osteoporosis are age-related health risks differentially expressed in men and women. Here we have analysed their prevalence in a randomly selected cross-sectional cohort [CARTaGENE (CaG) of Quebec, Canada and explored their existing relationships along with height, arterial stiffness and bone fractures. METHODS The principal cohort CaG included 20 007 individuals of age 40-70 years. Participants were subjected to an extensive phenotyping and a questionnaire of medical history and habits. RESULTS We determined the differences in height of participants and their relation to hypertension status and sex in this cohort and validated it in two other cohorts (The Canadian Heart Health Study and a family cohort from the Saguenay Lac Saint-Jean, a region of Quebec). In all three cohorts, we found that at younger age individuals with hypertension are taller than normotensive individuals, but they have a shorter stature at an older age compared with normotensive individuals. In CaG, we observed that hypertension, low bone mineral density (BMD) and arterial stiffness are strongly associated with height when adjusted for antihypertensive medications (P < 0.0001). Fractures are the net outcome of low BMD, and a significant association is observed (odds ratio = 2.34, confidence interval = 2.12-2.57); this relation was stronger in hypertensive individuals compared with normotensive individuals particularly in younger hypertensive individuals. In addition, we observed that increased arterial stiffness was significantly correlated with a low BMD in both men and women at all ages. CONCLUSION Shorter stature in elderly, low BMD and fractures correlated with increased arterial stiffness and hypertension. We propose that hypertension and osteoporosis share components of accelerated aging.
Collapse
|
10
|
Casciaro S, Conversano F, Pisani P, Muratore M. New perspectives in echographic diagnosis of osteoporosis on hip and spine. ACTA ACUST UNITED AC 2015; 12:142-50. [PMID: 26604940 DOI: 10.11138/ccmbm/2015.12.2.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, the accepted "gold standard" method for bone mineral density (BMD) measurement and osteoporosis diagnosis is dual-energy X-ray absorptiometry (DXA). However, actual DXA effectiveness is limited by several factors, including intrinsic accuracy uncertainties and possible errors in patient positioning and/or post-acquisition data analysis. DXA employment is also restricted by the typical issues related to ionizing radiation employment (high costs, need of dedicated structures and certified operators, unsuitability for population screenings). The only commercially-available alternative to DXA is represented by "quantitative ultrasound" (QUS) approaches, which are radiation-free, cheaper and portable, but they cannot be applied on the reference anatomical sites (lumbar spine and proximal femur). Therefore, their documented clinical usefulness is restricted to calcaneal applications on elderly patients (aged over 65 y), in combination with clinical risk factors and only for the identification of healthy subjects at low fracture risk. Literature-reported studies performed some QUS measurements on proximal femur, but their clinical translation is mostly hindered by intrinsic factors (e.g., device bulkiness). An innovative ultrasound methodology has been recently introduced, which performs a combined analysis of B-mode images and corresponding "raw" radiofrequency signals acquired during an echographic scan of the target reference anatomical site, providing two novel parameters: Osteoporosis Score and Fragility Score, indicative of BMD level and bone strength, respectively. This article will provide a brief review of the available systems for osteoporosis diagnosis in clinical routine contexts, followed by a synthesis of the most promising research results on the latest ultrasound developments for early osteoporosis diagnosis and fracture prevention.
Collapse
Affiliation(s)
- Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Maurizio Muratore
- OU of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| |
Collapse
|
11
|
Conversano F, Franchini R, Greco A, Soloperto G, Chiriacò F, Casciaro E, Aventaggiato M, Renna MD, Pisani P, Di Paola M, Grimaldi A, Quarta L, Quarta E, Muratore M, Laugier P, Casciaro S. A novel ultrasound methodology for estimating spine mineral density. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:281-300. [PMID: 25438845 DOI: 10.1016/j.ultrasmedbio.2014.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/14/2014] [Accepted: 08/20/2014] [Indexed: 05/10/2023]
Abstract
We investigated the possible clinical feasibility and accuracy of an innovative ultrasound (US) method for diagnosis of osteoporosis of the spine. A total of 342 female patients (aged 51-60 y) underwent spinal dual X-ray absorptiometry and abdominal echographic scanning of the lumbar spine. Recruited patients were subdivided into a reference database used for US spectral model construction and a study population for repeatability and accuracy evaluation. US images and radiofrequency signals were analyzed via a new fully automatic algorithm that performed a series of spectral and statistical analyses, providing a novel diagnostic parameter called the osteoporosis score (O.S.). If dual X-ray absorptiometry is assumed to be the gold standard reference, the accuracy of O.S.-based diagnoses was 91.1%, with k = 0.859 (p < 0.0001). Significant correlations were also found between O.S.-estimated bone mineral densities and corresponding dual X-ray absorptiometry values, with r(2) values up to 0.73 and a root mean square error of 6.3%-9.3%. The results obtained suggest that the proposed method has the potential for future routine application in US-based diagnosis of osteoporosis.
Collapse
Affiliation(s)
| | - Roberto Franchini
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | - Giulia Soloperto
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Fernanda Chiriacò
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Ernesto Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | | | | | - Paola Pisani
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Marco Di Paola
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Antonella Grimaldi
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Laura Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Eugenio Quarta
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Maurizio Muratore
- O.U. of Rheumatology, "Galateo" Hospital, San Cesario di Lecce, ASL-LE, Lecce, Italy
| | - Pascal Laugier
- Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC 06, INSERM, CNRS, Paris, France
| | - Sergio Casciaro
- National Research Council, Institute of Clinical Physiology, Lecce, Italy.
| |
Collapse
|
12
|
Bohnert KL, Gutekunst DJ, Hildebolt CF, Sinacore DR. Dual-energy X-ray absorptiometry of human metatarsals: precision, least significant change and association to ex vivo fracture force. Foot (Edinb) 2013; 23:63-9. [PMID: 23731767 PMCID: PMC3852168 DOI: 10.1016/j.foot.2013.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 05/01/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Fractures are common in foot bones, but clinicians lack adequate indices of bone strength. OBJECTIVES We used dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD) and content (BMC) of excised human metatarsals, determined intra- and inter-rater measurement precision, and assessed associations between BMD/BMC and ex vivo bone fracture strength. METHODS Two raters each made two measurements of whole-bone and sub-regional BMD and BMC in both second and third metatarsals from 10 cadavers. Variance components analysis was used to assess variability attributable to repeat measurements, raters, sub-regions, bones, sides, and cadavers. Root-mean-square standard deviation (RMS-SD) and least-significant change (LSC) were used to assess rater precision and ultimate forces during 3-point bending were tested for correlations with BMD and BMC. RESULTS Variation due to repeat measurements and rater was low (<1% combined) for BMD and BMC. RMS-SD for whole metatarsal BMD of both metatarsals ranged from 0.004 to 0.010 g/cm(2) and 0.062 to 0.086 g for BMC. Whole metatarsal and sub-region BMD and BMC were strongly correlated to ex vivo fracture force (r(2)=0.67-0.93). CONCLUSIONS DXA measurements of BMD and BMC have high intra- and inter-rater precision and are strongly correlated to ex vivo bone strength.
Collapse
Affiliation(s)
- Kathryn L. Bohnert
- Applied Kinesiology Laboratory, Program in Physical Therapy, Washington University School of Medicine, Campus Box 8502, 4444 Forest Park Blvd, St. Louis, MO 63108-2212, USA
,Corresponding author. Tel.: +1 314 362 2407; fax: +1 314 747 0674.
| | - David J. Gutekunst
- Post-Doctoral Fellow, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Charles F. Hildebolt
- Electronic Radiology Laboratory, Mallinckrodt Institute of Radiology Washington University School of Medicine, St. Louis, MO, USA
| | - David R. Sinacore
- Applied Kinesiology Laboratory, Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|