1
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Lu Y, Cai X, Shi B, Gong H. Gut microbiota, plasma metabolites, and osteoporosis: unraveling links via Mendelian randomization. Front Microbiol 2024; 15:1433892. [PMID: 39077745 PMCID: PMC11284117 DOI: 10.3389/fmicb.2024.1433892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Objective Osteoporosis, characterized by reduced bone density and heightened fracture risk, is influenced by genetic and environmental factors. This study investigates the interplay between gut microbiota, plasma metabolomics, and osteoporosis, identifying potential causal relationships mediated by plasma metabolites. Methods Utilizing aggregated genome-wide association studies (GWAS) data, a comprehensive two-sample Mendelian Randomization (MR) analysis was performed involving 196 gut microbiota taxa, 1,400 plasma metabolites, and osteoporosis indicators. Causal relationships between gut microbiota, plasma metabolites, and osteoporosis were explored. Results The MR analyses revealed ten gut microbiota taxa associated with osteoporosis, with five taxa positively linked to increased risk and five negatively associated. Additionally, 96 plasma metabolites exhibited potential causal relationships with osteoporosis, with 49 showing positive associations and 47 displaying negative associations. Mediation analyses identified six causal pathways connecting gut microbiota to osteoporosis through ten mediating relationships involving seven distinct plasma metabolites, two of which demonstrated suppression effects. Conclusion This study provides suggestive evidence of genetic correlations and causal links between gut microbiota, plasma metabolites, and osteoporosis. The findings underscore the complex, multifactorial nature of osteoporosis and suggest the potential of gut microbiota and plasma metabolite profiles as biomarkers or therapeutic targets in the management of osteoporosis.
Collapse
|
3
|
Cheng X, Tian W, Yang J, Wang J, Zhang Y. Engineering approaches to manipulate osteoclast behavior for bone regeneration. Mater Today Bio 2024; 26:101043. [PMID: 38600918 PMCID: PMC11004223 DOI: 10.1016/j.mtbio.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Extensive research has delved into the multifaceted roles of osteoclasts beyond their traditional function in bone resorption in recent years, uncovering their significant influence on bone formation. This shift in understanding has spurred investigations into engineering strategies aimed at leveraging osteoclasts to not only inhibit bone resorption but also facilitate bone regeneration. This review seeks to comprehensively examine the mechanisms by which osteoclasts impact bone metabolism. Additionally, it explores various engineering methodologies, including the modification of bioactive material properties, localized drug delivery, and the introduction of exogenous cells, assessing their potential and mechanisms in aiding bone repair by targeting osteoclasts. Finally, the review proposes current limitations and future routes for manipulating osteoclasts through biological and material cues to facilitate bone repair.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, 1098 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| | - Wenzhi Tian
- Jilin University, Jilin Province Key Lab Tooth Dev & Bone Remodeling, School and Hospital of Stomatology, Department of Oral Pathology, Changchun 130041, Jilin Province, China
| | - Jianhua Yang
- Longgang District People's Hospital of Shenzhen & the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong province, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen 518000, Guangdong Province, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
- School of Biomedical Engineering, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
4
|
Xi X, Gao Y, Wang J, Zheng N. Strontium chloride improves bone mass by affecting the gut microbiota in young male rats. Front Endocrinol (Lausanne) 2023; 14:1198475. [PMID: 37795367 PMCID: PMC10545847 DOI: 10.3389/fendo.2023.1198475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Bone mass accumulated in early adulthood is an important determinant of bone mass throughout the lifespan, and inadequate bone deposition may lead to associated skeletal diseases. Recent studies suggest that gut bacteria may be potential factors in boosting bone mass. Strontium (Sr) as a key bioactive element has been shown to improve bone quality, but the precise way that maintains the equilibrium of the gut microbiome and bone health is still not well understood. Methods We explored the capacity of SrCl2 solutions of varying concentrations (0, 100, 200 and 400 mg/kg BW) on bone quality in 7-week-old male Wistar rats and attempted to elucidate the mechanism through gut microbes. Results The results showed that in a Wistar rat model under normal growth conditions, serum Ca levels increased after Sr-treatment and showed a dose-dependent increase with Sr concentration. Three-point mechanics and Micro-CT results showed that Sr exposure enhanced bone biomechanical properties and improved bone microarchitecture. In addition, the osteoblast gene markers BMP, BGP, RUNX2, OPG and ALP mRNA levels were significantly increased to varying degrees after Sr treatment, and the osteoclast markers RANKL and TRAP were accompanied by varying degrees of reduction. These experimental results show that Sr improves bones from multiple angles. Further investigation of the microbial population revealed that the composition of the gut microbiome was changed due to Sr, with the abundance of 6 of the bacteria showing a different dose dependence with Sr concentration than the control group. To investigate whether alterations in bacterial flora were responsible for the effects of Sr on bone remodeling, a further pearson correlation analysis was done, 4 types of bacteria (Ruminococcaceae_UCG-014, Lachnospiraceae_NK4A136_group, Alistipes and Weissella) were deduced to be the primary contributors to Sr-relieved bone loss. Of these, we focused our analysis on the most firmly associated Ruminococcaceae_UCG-014. Discussion To summarize, our current research explores changes in bone mass following Sr intervention in young individuals, and the connection between Sr-altered intestinal flora and potentially beneficial bacteria in the attenuation of bone loss. These discoveries underscore the importance of the "gut-bone" axis, contributing to an understanding of how Sr affects bone quality, and providing a fresh idea for bone mass accumulation in young individuals and thereby preventing disease due to acquired bone mass deficiency.
Collapse
Affiliation(s)
- Xueyao Xi
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Xiao X, Zou S, Chen J. Cyclic tensile force modifies calvarial osteoblast function via the interplay between ERK1/2 and STAT3. BMC Mol Cell Biol 2023; 24:9. [PMID: 36890454 PMCID: PMC9996996 DOI: 10.1186/s12860-023-00471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Mechanical therapies, such as distraction osteogenesis, are widely used in dental clinics. During this process, the mechanisms by which tensile force triggers bone formation remain of interest. Herein, we investigated the influence of cyclic tensile stress on osteoblasts and identified the involvement of ERK1/2 and STAT3. MATERIALS AND METHODS Rat clavarial osteoblasts were subjected to tensile loading (10% elongation, 0.5 Hz) for different time periods. RNA and protein levels of osteogenic markers were determined using qPCR and western blot after inhibition of ERK1/2 and STAT3. ALP activity and ARS staining revealed osteoblast mineralization capacity. The interaction between ERK1/2 and STAT3 was investigated by immunofluorescence, western blot, and Co-IP. RESULTS The results showed that tensile loading significantly promoted osteogenesis-related genes, proteins and mineralized nodules. In loading-induced osteoblasts, inhibition of ERK1/2 or STAT3 decreased osteogenesis-related biomarkers significantly. Moreover, ERK1/2 inhibition suppressed STAT3 phosphorylation, and STAT3 inhibition disrupted the nuclear translocation of pERK1/2 induced by tensile loading. In the non-loading environment, inhibition of ERK1/2 hindered osteoblast differentiation and mineralization, while STAT3 phosphorylation was elevated after ERK1/2 inhibition. STAT3 inhibition also increased ERK1/2 phosphorylation, but did not significantly affect osteogenesis-related factors. CONCLUSION Taken together, these data suggested that ERK1/2 and STAT3 interacted in osteoblasts. ERK1/2-STAT3 were sequentially activated by tensile force loading, and both affected osteogenesis during the process.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14020056. [PMID: 36826855 PMCID: PMC9959312 DOI: 10.3390/jfb14020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.
Collapse
|
7
|
Borciani G, Ciapetti G, Vitale-Brovarone C, Baldini N. Strontium Functionalization of Biomaterials for Bone Tissue Engineering Purposes: A Biological Point of View. MATERIALS 2022; 15:ma15051724. [PMID: 35268956 PMCID: PMC8911212 DOI: 10.3390/ma15051724] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023]
Abstract
Strontium (Sr) is a trace element taken with nutrition and found in bone in close connection to native hydroxyapatite. Sr is involved in a dual mechanism of coupling the stimulation of bone formation with the inhibition of bone resorption, as reported in the literature. Interest in studying Sr has increased in the last decades due to the development of strontium ranelate (SrRan), an orally active agent acting as an anti-osteoporosis drug. However, the use of SrRan was subjected to some limitations starting from 2014 due to its negative side effects on the cardiac safety of patients. In this scenario, an interesting perspective for the administration of Sr is the introduction of Sr ions in biomaterials for bone tissue engineering (BTE) applications. This strategy has attracted attention thanks to its positive effects on bone formation, alongside the reduction of osteoclast activity, proven by in vitro and in vivo studies. The purpose of this review is to go through the classes of biomaterials most commonly used in BTE and functionalized with Sr, i.e., calcium phosphate ceramics, bioactive glasses, metal-based materials, and polymers. The works discussed in this review were selected as representative for each type of the above-mentioned categories, and the biological evaluation in vitro and/or in vivo was the main criterion for selection. The encouraging results collected from the in vitro and in vivo biological evaluations are outlined to highlight the potential applications of materials’ functionalization with Sr as an osteopromoting dopant in BTE.
Collapse
Affiliation(s)
- Giorgia Borciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-6366748
| | - Gabriela Ciapetti
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratory for Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Biomedical Science and Technologies Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| |
Collapse
|
8
|
Moseke C, Wimmer K, Meininger M, Zerweck J, Wolf-Brandstetter C, Gbureck U, Ewald A. Osteoclast and osteoblast response to strontium-doped struvite coatings on titanium for improved bone integration. ACTA ACUST UNITED AC 2020; 65:631-641. [PMID: 32452822 DOI: 10.1515/bmt-2019-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022]
Abstract
To develop implants with improved bone ingrowth, titanium substrates were coated with homogeneous and dense struvite (MgNH4PO4·6H2O) layers by means of electrochemically assisted deposition. Strontium nitrate was added to the coating electrolyte in various concentrations, in order to fabricate Sr-doped struvite coatings with Sr loading ranging from 10.6 to 115 μg/cm2. It was expected and observed that osteoclast activity surrounding the implant was inhibited. The cytocompatibility of the coatings and the effect of Sr-ions in different concentrations on osteoclast formation were analyzed in vitro. Osteoclast differentiation was elucidated on morphological, biochemical as well as on gene expression level. It could be shown that moderate concentrations of Sr2+ had an inhibitory effect on osteoclast formation, while the growth of osteoblastic cells was not negatively influenced compared to pure struvite surfaces. In summary, the electrochemically deposited Sr-doped struvite coatings are a promising approach to improve bone implant ingrowth.
Collapse
Affiliation(s)
- Claus Moseke
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Katharina Wimmer
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Markus Meininger
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Julia Zerweck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | | | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| |
Collapse
|
9
|
Wan B, Wang R, Sun Y, Cao J, Wang H, Guo J, Chen D. Building Osteogenic Microenvironments With Strontium-Substituted Calcium Phosphate Ceramics. Front Bioeng Biotechnol 2020; 8:591467. [PMID: 33117789 PMCID: PMC7576675 DOI: 10.3389/fbioe.2020.591467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Bioceramics have experienced great development over the past 50 years. Modern bioceramics are designed to integrate bioactive ions within ceramic granules to trigger living tissue regeneration. Preclinical and clinical studies have shown that strontium is a safe and effective divalent metal ion for preventing osteoporosis, which has led to its incorporation in calcium phosphate-based ceramics. The local release of strontium ions during degradation results in moderate concentrations that trigger osteogenesis with few systemic side effects. Moreover, strontium has been proven to generate a favorable immune environment and promote early angiogenesis at the implantation site. Herein, the important aspects of strontium-enriched calcium phosphate bioceramics (Sr-CaPs), and how Sr-CaPs affect the osteogenic microenvironment, are described.
Collapse
Affiliation(s)
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| | | | | | | | | | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
10
|
Makrygiannakis MA, Kaklamanos EG, Athanasiou AE. Effects of systemic medication on root resorption associated with orthodontic tooth movement: a systematic review of animal studies. Eur J Orthod 2020; 41:346-359. [PMID: 29992228 DOI: 10.1093/ejo/cjy048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Theoretically, root resorption could be modulated by any medication taken that exhibits possible effects on the implicated molecular pathways. OBJECTIVES To systematically investigate and appraise the quality of the available evidence from animal studies, regarding the effect of commonly prescribed systemic medication on root resorption associated with orthodontic tooth movement. SEARCH METHODS Search without restrictions in eight databases (PubMed, Central, Cochrane Database of Systematic Reviews, SCOPUS, Web of Science, Arab World Research Source, ClinicalTrials.gov, ProQuest Dissertations and Theses Global) and hand searching until April 2018 took place. One author developed detailed search strategies for each database that were based on the PubMed strategy and adapted accordingly. SELECTION CRITERIA Controlled studies investigating the effect of systemic medications on root resorption associated with orthodontic tooth movement. DATA COLLECTION AND ANALYSIS Following study retrieval and selection, relevant data were extracted and the risk of bias was assessed using the SYRCLE's Risk of Bias Tool. RESULTS Twenty-one studies were finally identified, most of which at unclear risk of bias. Root resorption was shown to increase in Vitamin C treated animals in comparison with the control group, whereas a comparative decrease was noted after the administration of the alendronate, ibuprofen, growth hormone, low doses of meloxicam, simvastatin, lithium chloride and strontium ranelate. No difference was noted for acetaminophen, aspirin, fluoxetine, atorvastatin, misoprostol, zoledronic acid and zinc. Finally, inconsistent effects were observed after the administration of celecoxib, prednisolone and L-thyroxine. The quality of the available evidence was considered at best as low. CONCLUSIONS The pharmaceutical substances investigated were shown to exhibit variable effects on root resorption. Although the overall quality of evidence provides the clinician with a cautious perspective on the strength of the relevant recommendations, good practice would suggest that it is important to identify patients consuming medications and consider the possible implications. REGISTRATION PROSPERO (CRD42017078208).
Collapse
Affiliation(s)
- Miltiadis A Makrygiannakis
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Athanasios E Athanasiou
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Luo P, Yu L, Lin Q, Wang C, Yang D, Tang S. Strontium Modified Calcium Sulfate Hemihydrate Scaffold Incorporating Ginsenoside Rg1/Gelatin Microspheres for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:888. [PMID: 33014995 PMCID: PMC7461947 DOI: 10.3389/fbioe.2020.00888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to prepare a promising biomaterial for bone tissue repair and regeneration. The Strontium - calcium sulfate hemihydrate (Sr-α-CaS) scaffold incorporating gelatin microspheres (GMs) encapsulated with Ginsenoside Rg1 (Rg1) was designed. The scaffolds of Rg1/GMs/Sr-α-CaS showed sustained release of Rg1, good biocompatibility and ability of promoting osteogenic differentiation and angiogenesis in vitro. The scaffolds were implanted into animal model of cranial bone defect to characterize bone tissue repair and regeneration in vivo. From the images of Micro-CT, it was obvious that the most bone tissue was formed in Rg1/GMs/Sr-α-CaS group in 12 weeks. New bone structure, collagen and mineralization were analyzed with staining of HE, Masson and Safranin O-Fast green and showed good distribution. The expression of osteocalcin of Rg1/GMs/Sr-α-CaS indicated new bone formation in defect site. The results revealed that synergy of Rg1 and Sr showed the best effect of bone repair and regeneration, which provided a new candidate for bone defect repair in clinic.
Collapse
Affiliation(s)
- Peng Luo
- Department of Orthopaedics, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
- Department of Orthopaedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lan Yu
- Department of Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Qiang Lin
- Department of Orthopaedics, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Changde Wang
- Department of Geriatric Orthopeadics, Shenzhen Pingle Orthopaedic Hospital, Shenzhen, China
| | - Dazhi Yang
- Department of Orthopaedics, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
- Department of Orthopaedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
12
|
Alcala-Orozco CR, Mutreja I, Cui X, Kumar D, Hooper GJ, Lim KS, Woodfield TB. Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2019.e00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. A review of the latest insights into the mechanism of action of strontium in bone. Bone Rep 2020; 12:100273. [PMID: 32395571 PMCID: PMC7210412 DOI: 10.1016/j.bonr.2020.100273] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Interest in strontium (Sr) has persisted over the last three decades due to its unique mechanism of action: it simultaneously promotes osteoblast function and inhibits osteoclast function. While this mechanism of action is strongly supported by in vitro studies and small animal trials, recent large-scale clinical trials have demonstrated that orally administered strontium ranelate (SrRan) may have no anabolic effect on bone formation in humans. Yet, there is a strong correlation between Sr accumulation in bone and reduced fracture risk in post-menopausal women, suggesting Sr acts via a purely physiochemical mechanism to enhance bone strength. Conversely, the local administration of Sr with the use of modified biomaterials has been shown to enhance bone growth, osseointegration and bone healing at the bone-implant interface, to a greater degree than Sr-free materials. This review summarizes current knowledge of the main cellular and physiochemical mechanisms that underly Sr's effect in bone, which center around Sr's similarity to calcium (Ca). We will also summarize the main controversies in Sr research which cast doubt on the 'dual-acting mechanism'. Lastly, we will explore the effects of Sr-modified bone-implant materials both in vitro and in vivo, examining whether Sr may act via an alternate mechanism when administered locally.
Collapse
Affiliation(s)
- Daniella Marx
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada
| | - Alireza Rahimnejad Yazdi
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Marcello Papini
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| | - Mark Towler
- Department of Biomedical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada.,Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto M5B 1W8, Ontario, Canada.,Department of Mechanical Engineering, Ryerson University, Toronto M5B 2K3, Ontario, Canada
| |
Collapse
|
14
|
Marins LM, Napimoga MH, Malta FDS, Miranda TS, Nani EP, Franco BDST, da Silva HDP, Duarte PM. Effects of strontium ranelate on ligature-induced periodontitis in estrogen-deficient and estrogen-sufficient rats. J Periodontal Res 2019; 55:141-151. [PMID: 31539178 DOI: 10.1111/jre.12697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Strontium ranelate is a medication indicated for the treatment of osteoporosis that presents concomitant anti-resorptive and osteoanabolic dual biological activity. However, the effects of strontium ranelate on alveolar bone have been poorly explored. Furthermore, to date, there are no data on the effects of this medication on alveolar bone loss (BL) during conditions of estrogen deficiency. Therefore, the aim of this study was to evaluate the effects of strontium ranelate on ligature-induced periodontitis in estrogen-deficient and estrogen-sufficient rats. METHODS Ninety-six rats were assigned to one of the following groups: sham-surgery + water (estrogen-sufficient; n = 24); ovariectomy + water (estrogen-deficient; n = 24), sham-surgery + strontium ranelate (ranelate/estrogen-sufficient; n = 24) and; ovariectomy + strontium ranelate (ranelate/estrogen-deficient; n = 24). The rats received strontium ranelate or water from the 14th day after ovariectomy until the end of the experiment. On the 21st day after ovariectomy, one first mandibular molar received a ligature, while the contralateral tooth was left unligated. Eight rats per group were killed at 10, 20, and 30 days after ligature placement. Bone loss (BL) and trabecular bone area (TBA) were analyzed in the furcation area of ligated and unligated teeth at all experimental times by histometry. Tartrate-resistant acid phosphatase (TRAP) positive cells and immunohistochemical staining for osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and receptor activator of NF-КB ligand (RANKL) were assessed in the ligated teeth at 30 days after ligature placement. RESULTS At 10 and 30 days, ligated teeth of the estrogen-deficient group exhibited higher BL, when compared to all other groups (P < .05). At 10 days, TBAs were higher in the unligated teeth of strontium ranelate-treated groups, when compared to those of untreated groups (P < .05). At 30 days, the ligated teeth of the estrogen-deficient group exhibited lower TBA than the other groups (P < .05). There were no differences among groups regarding the number of TRAP-stained cells (P < .05). The strontium ranelate-treated groups exhibited lower expressions of OCN and RANKL than the untreated groups (P < .05). The estrogen-sufficient group presented higher staining for OPG than both treated and untreated estrogen-deficient groups (P < .05). CONCLUSIONS Strontium ranelate prevented ligature-induced BL in an estrogen-deficiency condition and, to a certain extent, increased TBA in the presence and absence of periodontal collapse in states of estrogen deficiency and estrogen sufficiency. Furthermore, strontium ranelate also affected the expression of bone markers, appearing to have acted predominantly as an anti-resorptive agent.
Collapse
Affiliation(s)
- Letícia Macedo Marins
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, SP, Brazil
| | - Marcelo Henrique Napimoga
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Área de Imunologia, Campinas, SP, Brazil
| | - Fernando de Souza Malta
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, SP, Brazil
| | | | - Edson Parra Nani
- Faculdade São Leopoldo Mandic, Instituto São Leopoldo Mandic, Área de Imunologia, Campinas, SP, Brazil
| | | | | | - Poliana Mendes Duarte
- Dental Research Division, Department of Periodontology, Guarulhos University, Guarulhos, SP, Brazil.,Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Steffi C, Shi Z, Kong CH, Chong SW, Wang D, Wang W. Use of Polyphenol Tannic Acid to Functionalize Titanium with Strontium for Enhancement of Osteoblast Differentiation and Reduction of Osteoclast Activity. Polymers (Basel) 2019; 11:E1256. [PMID: 31362449 PMCID: PMC6723407 DOI: 10.3390/polym11081256] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Implant anchorage remains a challenge, especially in porous osteoporotic bone with high osteoclast activity. The implant surface is modified with osteogenic molecules to stimulate osseointegration. Strontium (Sr) is known for its osteogenic and anti-osteoclastogenic effects. In this study, Sr was immobilized on a titanium (Ti) surface using bioinspired polyphenol tannic acid (pTAN) coating as an ad-layer (Ti-pTAN). Two separate coating techniques were employed for comparative analysis. In the first technique, Ti was coated with a tannic acid solution containing Sr (Ti-pTAN-1Stp). In the second method, Ti was first coated with pTAN, before being immersed in a SrCl2 solution to immobilize Sr on Ti-pTAN (Ti-pTAN-2Stp). Ti-pTAN-1Stp and Ti-pTAN-2Stp augmented the alkaline phosphatase activity, collagen secretion, osteocalcin production and calcium deposition of MC3T3-E1 cells as compared to those of Ti and Ti-pTAN. However, osteoclast differentiation of RAW 264.7, as studied by TRAP activity, total DNA, and multinucleated cell formation, were decreased on Ti-pTAN, Ti-pTAN-1Stp and Ti-pTAN-2Stp as compared to Ti. Of all the substrates, osteoclast activity on Ti-pTAN-2Stp was the lowest. Hence, an economical and simple coating technique using pTAN as an adlayer preserved the dual biological effects of Sr. These results indicate a promising new approach to tailoring the cellular responses of implant surfaces.
Collapse
Affiliation(s)
- Chris Steffi
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Zhilong Shi
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Chee Hoe Kong
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Sue Wee Chong
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Dong Wang
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Wilson Wang
- Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
| |
Collapse
|
16
|
Cruz M, Zanatta M, da Veiga M, Ciancaglini P, Ramos A. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:762-769. [DOI: 10.1016/j.msec.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
|
17
|
Lourenço AH, Torres AL, Vasconcelos DP, Ribeiro-Machado C, Barbosa JN, Barbosa MA, Barrias CC, Ribeiro CC. Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1289-1303. [PMID: 30889663 DOI: 10.1016/j.msec.2019.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 01/08/2023]
Abstract
Strontium (Sr) is known to stimulate osteogenesis, while inhibiting osteoclastogenesis, thus encouraging research on its application as a therapeutic agent for bone repair/regeneration. It has been suggested that it may possess immunomodulatory properties, which might act synergistically in bone repair/regeneration processes. To further explore this hypothesis we have designed a Sr-hybrid system composed of an in situ forming Sr-crosslinked RGD-alginate hydrogel reinforced with Sr-doped hydroxyapatite (HAp) microspheres and studied its in vitro osteoinductive behaviour and in vivo inflammatory response. The Sr-hybrid scaffold acts as a dual Sr2+ delivery system, showing a cumulative Sr2+ release of ca. 0.3 mM after 15 days. In vitro studies using Sr2+concentrations within this range (0 to 3 mM Sr2+) confirmed its ability to induce osteogenic differentiation of mesenchymal stem/stromal cells (MSC), as well as to reduce osteoclastogenesis and osteoclasts (OC) functionality. In comparison with a similar Sr-free system, the Sr-hybrid system stimulated osteogenic differentiation of MSC, while inhibiting the formation of OC. Implantation in an in vivo model of inflammation, revealed an increase in F4/80+/CD206+ cells, highlighting its ability to modulate the inflammatory response as a pro-resolution mediator, through M2 macrophage polarization. Therefore, the Sr-hybrid system is potentially an appealing biomaterial for future clinical applications.
Collapse
Affiliation(s)
- Ana Henriques Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ana Luísa Torres
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Daniela P Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal
| | - Judite N Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Cristina C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135 Porto, Portugal; ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
18
|
Liu F, Li Y, Liang J, Sui W, Bellare A, Kong L. Effects of micro/nano strontium‐loaded surface implants on osseointegration in ovariectomized sheep. Clin Implant Dent Relat Res 2019; 21:377-385. [DOI: 10.1111/cid.12719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Fuwei Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgerySchool of Stomatology, The Fourth Military Medical University Xi'an People's Republic of China
| | - Yongfeng Li
- Department of StomatologyPLA 301 Hospital Beijing People's Republic of China
| | - Jianfei Liang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgerySchool of Stomatology, The Fourth Military Medical University Xi'an People's Republic of China
| | - Wen Sui
- Department of StomatologyShenzhen Hospital of Southern Medical University Shenzhen People's Republic of China
| | - Anuj Bellare
- Department of Orthopedic SurgeryBrigham and Women's Hospital Boston Massachusetts
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgerySchool of Stomatology, The Fourth Military Medical University Xi'an People's Republic of China
| |
Collapse
|
19
|
Yang F, Tang J, Dai K, Huang Y. Metallic wear debris collected from patients induces apoptosis in rat primary osteoblasts via reactive oxygen species‑mediated mitochondrial dysfunction and endoplasmic reticulum stress. Mol Med Rep 2019; 19:1629-1637. [PMID: 30628694 PMCID: PMC6390047 DOI: 10.3892/mmr.2019.9825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023] Open
Abstract
Although total hip arthroplasty is considered to be an effective surgical procedure for treating hip joint diseases, it is hindered by implant wear debris, which induces aseptic loosening. Various cell types are involved in this pathogenesis; however, the interactions between wear debris and osteoblasts, which serve a crucial role in bone formation, have not been clearly illustrated. In the present study, minor metallic wear particles were collected from the interfacial membrane around loosened implants of patients, and the biological effects of these particles on rat primary osteoblasts were then explored. The results demonstrated that metallic wear debris was able to induce the apoptosis of treated cells in a concentration- and time-dependent manner. Furthermore, it was identified that reactive oxygen species (ROS) generation increased, the mitochondrial membrane potential collapsed, and the mitochondria-caspase-dependent and endoplasmic reticulum (ER) stress apoptotic pathways were activated following metallic wear debris application. In addition, apoptosis and associated pathways were inhibited by the use of N-acetyl-L-cysteine, an antioxidant that suppresses ROS production, indicating that the ROS generation triggered ER stress, mitochondrial dysfunction and downstream cascades that contributed to cell apoptosis. These findings suggest that metallic wear debris-induced ROS serve an important role in the apoptosis of osteoblasts. This provides a valuable insight, not only into understanding the mechanisms underlying the involvement of osteoblasts in osteolysis, but also into a potential novel therapeutic approach to treat implant aseptic loosening.
Collapse
Affiliation(s)
- Fei Yang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jian Tang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kerong Dai
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yan Huang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
20
|
MacDonald K, Boyd D. Mechanical loading, an important factor in the evaluation of ion release from bone augmentation materials. Sci Rep 2018; 8:14225. [PMID: 30242183 PMCID: PMC6154963 DOI: 10.1038/s41598-018-32325-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 09/05/2018] [Indexed: 11/10/2022] Open
Abstract
The controlled release of therapeutic inorganic ions from biomaterials is an emerging area of international research. One of the foci for this research is the development of materials, which spatially and temporally modulate therapeutic release, via controlled degradation in the intended physiological environment. Crucially however, our understanding of the release kinetics for such systems remains limited, particularly with respect to the influence of physiological loading. Consequently, this study was designed to investigate the effect of dynamic mechanical loading on a composite material intended to stabilize, reinforce and strengthen vertebral bodies. The composite material contains a borate glass engineered to release strontium as a therapeutic inorganic ion at clinically relevant levels over extended time periods. It was observed that both cyclic (6 MPa 2 Hz) and static (4.3 MPa) compressive loading significantly increased the release of strontium ions in comparison to the static unloaded case. The observed alterations in ion release kinetics suggest that the mechanical loading of the implantation environment should be considered when evaluating the ion release kinetics.
Collapse
Affiliation(s)
- Kathleen MacDonald
- School of Biomedical Engineering, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Daniel Boyd
- School of Biomedical Engineering, Dalhousie University, Halifax, B3H 4R2, Canada.
- Applied Oral Sciences, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
21
|
Wei L, Jiang Y, Zhou W, Liu S, Liu Y, Rausch-Fan X, Liu Z. Strontium ion attenuates lipopolysaccharide-stimulated proinflammatory cytokine expression and lipopolysaccharide-inhibited early osteogenic differentiation of human periodontal ligament cells. J Periodontal Res 2018; 53:999-1008. [PMID: 30221352 DOI: 10.1111/jre.12599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/16/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a chronic inflammatory disease characterized by the destruction of the periodontium. The strontium ion (Sr2+ ) can prevent the bone loss associated with periodontitis and promote the regeneration of the bone. The mechanisms by which the Sr2+ works remain poorly understood. We aim to investigate the effects of the Sr2+ ion on cell proliferation, inflammatory regulation and osteogenic differentiation of human periodontal ligament cells (hPDLCs) in pathological conditions. MATERIAL AND METHODS hPDLCs were obtained from premolars that came from the orthodontic extraction. The hPDLCs were treated with Sr2+ and/or lipopolysaccharide (LPS), which was applied as the pathological condition of periodontitis. The effect of the dose of Sr2+ on cell proliferation was analyzed using a Cell Counting Kit-8 assay. The gene and protein expression of proinflammatory cytokines were detected by the real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The osteogenic differentiation and mineralization were assessed by the real-time polymerase chain reaction, alkaline phosphatase activity assay and alizarin red staining. RESULTS Results demonstrated that Sr2+ in a range of concentrations from 0.02 to 2.5 mmol/L significantly improved the proliferation of hPDLCs. Sr2+ reversed LPS-stimulated proinflammatory cytokine expressions such as tumor necrosis factor alpha, interleukin (IL)-1β, IL-6 and IL-8. Moreover, Sr2+ rescued the LPS-inhibited gene expression of osteogenic differentiation. Although it appeared to suppress the late mineralization, Sr2+ can reverse the LPS-inhibited early osteogenic differentiation of hPDLCs. CONCLUSION These results indicated that Sr2+ could attenuate the LPS-stimulated proinflammatory molecule expression and inhibit early osteogenic differentiation of hPDLCs.
Collapse
Affiliation(s)
- Lingfei Wei
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China.,Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Yuxi Jiang
- Department of Periodontology, Yantai Stomatological Hospital, Yantai, China
| | - Wenjuan Zhou
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| | - Shutai Liu
- Department of Periodontology, Yantai Stomatological Hospital, Yantai, China
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
| | - Xiaohui Rausch-Fan
- Division of conservative Dentistry and Periodontology and Competence Center of Periodontal Research, Vienna Dental School, Medical University of Vienna, Vienna, Austria
| | - Zhonghao Liu
- Department of Oral Implantology, Yantai Stomatological Hospital, Yantai, China
| |
Collapse
|
22
|
Strontium inhibits osteoclastogenesis by enhancing LRP6 and β-catenin-mediated OPG targeted by miR-181d-5p. J Cell Commun Signal 2018; 13:85-97. [PMID: 30009331 DOI: 10.1007/s12079-018-0478-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Strontium is a drug with the bone formation and anti-resorption effects on bone. The underlying mechanisms for the dual effect of strontium on bone metabolism, especially for the anti-resorption effects remain unknown. Thus, we aim to investigate the mechanisms of effects of strontium on osteoclastogenesis. Firstly, we found that strontium decreased the levels of important biomarkers of receptor activator of nuclear factor kappa-B ligand (RANKL) which induced osteoclast differentiation, indicating that strontium might directly inhibit osteoclast differentiation. Next, we revealed that strontium enhanced Low Density Lipoprotein Receptor-Related Protein 6 (LRP6)/β-catenin/osteoprotegerin (OPG) signaling pathway in MC3T3-E1 cells. The signaling pathway may negatively regulate osteoclastogenesis. Thus, strontium indirectly inhibited RANKL induced osteoclast differentiation. Finally, we revealed that OPG was targeted by miR-181d-5p as determined by luciferase reporter assay and downregulated by miR-181d-5p at both mRNA and protein levels as determined by western blot.
Collapse
|
23
|
Geng T, Chen X, Zheng M, Yu H, Zhang S, Sun S, Guo H, Jin Q. Effects of strontium ranelate on wear particle‑induced aseptic loosening in female ovariectomized mice. Mol Med Rep 2018; 18:1849-1857. [PMID: 29901109 DOI: 10.3892/mmr.2018.9133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/02/2018] [Indexed: 11/06/2022] Open
Abstract
Aseptic loosening and menopause‑induced osteoporosis are caused by an imbalance between bone formation and osteolysis. With an aging population, the probability of simultaneous occurrence of such conditions in an elderly individual is increasing. Strontium ranelate (SR) is an anti‑osteoporosis drug that promotes bone formation and inhibits osteolysis. The present study compared the effects of SR with those of the traditional anti‑osteoporosis drug alendronate (ALN) using an ovariectomized mouse model of osteolysis. The degree of firmness of the prosthesis and the surrounding tissue was examined, a micro‑CT scan of the prosthesis and the surrounding tissue was performed, and the levels of inflammatory and osteogenic and osteoclast factors were examined. It was observed that treatment with SR and ALN improved the bond between the prosthesis and the surrounding bone tissue by reducing the degree of osteolysis, thus improving the quality of bone around the prosthesis. SR increased the secretion of osteocalcin, runt‑related transcription factor 2 and osteoprotegerin (OPG). It additionally decreased the expression of the receptor activator of nuclear factor‑κB ligand (RANKL) and consequently increased the protein ratio OPG/RANKL, whereas ALN exhibited the opposite effect. Furthermore, SR and ALN suppressed tumor necrosis factor‑α and interleukin‑1β production, with SR exerting a more marked effect. The present results demonstrate that SR and ALN may stimulate bone formation and inhibit bone resorption in the ovariectomized mouse model of wear particle‑mediated osteolysis, with SR demonstrating better effects compared with ALN.
Collapse
Affiliation(s)
- Tianxiang Geng
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xi Chen
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Mengxue Zheng
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haochen Yu
- Department of Orthopedic Surgery, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shuai Zhang
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Shouxuan Sun
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Haohui Guo
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
24
|
Xie H, Gu Z, He Y, Xu J, Xu C, Li L, Ye Q. Microenvironment construction of strontium-calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B 2018; 6:2332-2339. [PMID: 32254572 DOI: 10.1039/c8tb00306h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strontium-doped calcium phosphate-based biomaterials have gained increased recognition due to their beneficial effects on bone formation. However, the underlying mechanism is still not clear. In this study, we detected the calcification effects of strontium-based materials on osteoblasts in vitro and bone formation in vivo. The results showed that strontium may inhibit bone cell function in osteoblasts under a standard calcium concentration (1.8 mM) by both reducing alkaline phosphatase activity and inhibiting absorption of osteopontin and osteocalcin. In contrast, a high calcium concentration (9 mM) enhances the bone regeneration effect of strontium-based materials. Cultured osteoblasts underwent increased proliferation, calcification and alkaline phosphatase activity upon increasing calcium concentrations. An experimental animal model was utilized to simulate a high calcium concentration microenvironment in bone tissue and low calcium concentration in the subcutaneous part and the in vivo results are similar to the in vitro results. These findings suggest that strontium only promoted an anabolic effect on osteoblasts to enhance osteogenesis in a calcium rich microenvironment. Strontium would inhibit bone regeneration under a low dose of calcium in vivo. Therefore, strontium seems to be a potentially effective therapeutic option for bone regeneration in combination with a high concentration environment of calcium ions. These results would provide an in-depth knowledge of an ion-based bone tissue substitute for bone regeneration.
Collapse
Affiliation(s)
- Huixu Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang J, Wu Y, Li H, Liu Y, Bai X, Chau W, Zheng Y, Qin L. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials 2018; 157:86-97. [DOI: 10.1016/j.biomaterials.2017.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 01/03/2023]
|
26
|
MacDonald K, Price RB, Boyd D. The Feasibility and Functional Performance of Ternary Borate-Filled Hydrophilic Bone Cements: Targeting Therapeutic Release Thresholds for Strontium. J Funct Biomater 2017; 8:jfb8030028. [PMID: 28708123 PMCID: PMC5618279 DOI: 10.3390/jfb8030028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023] Open
Abstract
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days.
Collapse
Affiliation(s)
- Kathleen MacDonald
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| | - Richard B Price
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
- Department Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| | - Daniel Boyd
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 1X7, Canada.
- Department Applied Oral Sciences, Dalhousie University, Halifax, NS B3H 1X7, Canada.
| |
Collapse
|
27
|
Jia X, Long Q, Miron RJ, Yin C, Wei Y, Zhang Y, Wu M. Setd2 is associated with strontium-induced bone regeneration. Acta Biomater 2017; 53:495-505. [PMID: 28219807 DOI: 10.1016/j.actbio.2017.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/11/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
Strontium Ranelate has been utilized as a preventative treatment option for osteoporosis with the release of Sr ions having a direct effect on preventing osteoclast activation and promoting osteoblast differentiation. Previously our group has prepared and characterized a porous Sr-mesoporous bioactive glass (Sr-MBG) scaffold demonstrating its ability to enhance new bone formation when compared to MBG alone. The goal of the present study was to elucidate the bone-inducing properties of Sr by utilizing RNA-seq on in vivo tissue samples to investigate potential target genes responsible for Sr-induced new bone formation. The results demonstrated an increased expression and affiliation of Setd2 in the Sr-MBG group when compared to MBG group alone. Immunofluorescent staining further demonstrated a localization of Setd2 and H3K36me3 in Runx2-positive cells in defects treated with Sr-MBG scaffolds. It was detected that specifically MAPK pathway was activated in MG63 stimulated by Sr. To verify the role of Setd2 in bone formation in the presence of SrCl2, Setd2 was knocked-down and overexpressed in MG63 with/without SrCl2 stimulation. The result showed that Setd2 plays a positive role in osteoblast differentiation which was enhanced by SrCl2. Furthermore, it was found that Setd2 regulated the activation of ERK, which set up a positive feedback in the osteoblast differentiation process. Based on these findings, it was shown that Setd2 has an active role in osteoblast differentiation. As a histone methylase, Setd2 may also turn to be an epigenetic target for new treatment options of osteoporosis. STATEMENT OF SIGNIFICANCE Our research group recently demonstrated that the combination of MBG scaffolds with Sr, efficiently promoted bone regeneration in rat femoral defects even in severely compromised osteoporotic animals, however, the epigenetic mechanism by which Sr ions function to promote bone generation remains unclear. This study showed an increased expression and affiliation of Setd2 and H3K36me3. In vitro, the increased expression of Setd2 promoted osteoblastic differentiation of MG63 stimulated by SrCl2 in MAPK-dependent way, which activated ERK in turn leading to a positive feedback. Based on these findings, it was shown that Setd2 has an active role in osteoblast differentiation and may also turn to be an epigenetic target for new treatment options of osteoporosis and the development of novel bone regeneration scaffold.
Collapse
|
28
|
Sugiyama T, Kim YT, Oda H. Letter to the Editor: Strontium Ranelate in the Treatment of Osteoporosis: A Possible Mechanism. J Clin Endocrinol Metab 2016; 101:L64-5. [PMID: 27163476 DOI: 10.1210/jc.2016-1479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Toshihiro Sugiyama
- Department of Orthopaedic Surgery, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
| | - Yoon Taek Kim
- Department of Orthopaedic Surgery, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
| | - Hiromi Oda
- Department of Orthopaedic Surgery, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
| |
Collapse
|
29
|
Elgali I, Turri A, Xia W, Norlindh B, Johansson A, Dahlin C, Thomsen P, Omar O. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater 2016; 29:409-423. [PMID: 26441123 DOI: 10.1016/j.actbio.2015.10.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022]
Abstract
Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12h, 3d and 6d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. STATEMENT OF SIGNIFICANCE The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
Collapse
|
30
|
Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol 2015; 32:86-106. [PMID: 26302917 DOI: 10.1016/j.jtemb.2015.06.005] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/07/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.
Collapse
Affiliation(s)
- Michael Dermience
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Georges Lognay
- University of Liège - Gembloux Agro Bio Tech, Unit Analyzes, Quality, Risks, Laboratory of Analytical Chemistry, Passage des Déportés, 2, B-5030 Gembloux, Belgium.
| | - Françoise Mathieu
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium.
| | - Philippe Goyens
- Kashin-Beck Disease Fund asbl-vzw, Rue de l'Aunee, 6, B-6953 Forrieres, Belgium; Department and Laboratory of Pediatric, Free Universities of Brussels, Brussels, Belgium.
| |
Collapse
|
31
|
Affiliation(s)
- H Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610061, People's Republic of China
| | | |
Collapse
|
32
|
Wornham DP, Hajjawi MO, Orriss IR, Arnett TR. Strontium and osteoblast function. Osteoporos Int 2015; 26:2215. [PMID: 25874351 DOI: 10.1007/s00198-015-3120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Affiliation(s)
- D P Wornham
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
33
|
Lu YC, Chang TK, Yeh ST, Fang HW, Lin CY, Hsu LI, Huang CH, Huang CH. The potential role of strontium ranelate in treating particle-induced osteolysis. Acta Biomater 2015; 20:147-154. [PMID: 25841346 DOI: 10.1016/j.actbio.2015.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Ultra high molecular weight polyethylene (UHMWPE) wear-particle-induced osteolysis is one of the major issues affecting the long-term survival of total joint prostheses. Currently, there are no effective therapeutic options to prevent osteolysis from occurring. The aim of this study was to evaluate the role of strontium ranelate (SR) in reducing the risk of particle-induced osteolysis. Forty-eight C57BL/6J ultra-high molecular weight polyethylene (UHMWPE) particle-induced murine calvarial osteolysis models were used. The mice were randomized into four groups as: sham (Group 1), UHMWPE particles (Group 2), and SR with UHMWPE particles (Group 3 and Group 4). Groups 1 to 3 were sacrificed at two weeks and group 4 was sacrificed at the fourth week. The skulls were then analyzed with a high-resolution micro-CT. Histological evaluation was then conducted and osteoclast numbers were analyzed for comparison. Based on the micro-CT, percentage bone volume and trabecular thickness were found to be significantly higher in Group 4 than in Group 2 (p<0.001). Osteoclast numbers in SR treated groups (Group 3 and Group 4) were reduced when compared to groups that did not receive SR treatment (Group 2). These results indicated that SR treatment helps to increase bone volume percentage and trabecular thickness and also suppresses osteoclast proliferation. It is suggested that oral SR treatment could serve as an alternative therapy for preventing particle-induced osteolysis.
Collapse
|
34
|
Schwangerschaft und Stillen. GYNAKOLOGISCHE ENDOKRINOLOGIE 2015. [DOI: 10.1007/s10304-014-0641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|