1
|
Hernández-García F, Fernández-Iglesias Á, Rodríguez Suárez J, Gil Peña H, López JM, Pérez RF. The Crosstalk Between Cartilage and Bone in Skeletal Growth. Biomedicines 2024; 12:2662. [PMID: 39767569 PMCID: PMC11727353 DOI: 10.3390/biomedicines12122662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
While the flat bones of the face, most of the cranial bones, and the clavicles are formed directly from sheets of undifferentiated mesenchymal cells, most bones in the human body are first formed as cartilage templates. Cartilage is subsequently replaced by bone via a very tightly regulated process termed endochondral ossification, which is led by chondrocytes of the growth plate (GP). This process requires continuous communication between chondrocytes and invading cell populations, including osteoblasts, osteoclasts, and vascular cells. A deeper understanding of these signaling pathways is crucial not only for normal skeletal growth and maturation but also for their potential relevance to pathophysiological processes in bones and joints. Due to limited information on the communication between chondrocytes and other cell types in developing bones, this review examines the current knowledge of how interactions between chondrocytes and bone-forming cells modulate bone growth.
Collapse
Affiliation(s)
- Frank Hernández-García
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Ángela Fernández-Iglesias
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
| | - Julián Rodríguez Suárez
- Departamento de Medicina, Oviedo University, 33003 Oviedo, Spain; (F.H.-G.); (J.R.S.)
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS-SAMID (RD21/0012), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Helena Gil Peña
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- AGC de Infancia y Adolescencia, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- RICORS2040 (RD21/0005/0011), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José M. López
- Grupo Investigación Pediatría, Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain; (Á.F.-I.); (H.G.P.); (J.M.L.)
- Departamento de Morfología y Biología Celular, Oviedo University, 33003 Oviedo, Spain
| | - Rocío Fuente Pérez
- Universidad Europea de Madrid, Department of Nursing, Faculty of Medicine, Health and Sports, 28670 Madrid, Spain
| |
Collapse
|
2
|
Liu YF, Zhang M, Shan YJ, Pang LC, Ji GG, Ju XJ, Tu YJ, Shi SY, Bai H, Zou JM, Shu JT. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification. Front Genet 2022; 13:1008649. [PMID: 36186474 PMCID: PMC9521549 DOI: 10.3389/fgene.2022.1008649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) might play critical roles in skeletal myofiber specification. In a previous study, we found that chicken miR-499-5p is specifically expressed in slow-twitch muscle and that its potential target gene is SOX6. In this study, we performed RNA sequencing to investigate the effects of SOX6 and miR-499-5p on the modulation and regulation of chicken muscle fiber type and its regulatory mechanism. The expression levels of miR-499-5p and SOX6 demonstrated opposing trends in different skeletal muscles and were associated with muscle fiber type composition. Differential expression analysis revealed that miR-499-5p overexpression led to significant changes in the expression of 297 genes in chicken primary myoblasts (CPMs). Myofiber type-related genes, including MYH7B and CSRP3, showed expression patterns similar to those in slow-twitch muscle. According to functional enrichment analysis, differentially expressed genes were mostly associated with muscle development and muscle fiber-related processes. SOX6 was identified as the target gene of miR-499-5p in CPM using target gene mining and luciferase reporter assays. SOX6 knockdown resulted in upregulation of the slow myosin genes and downregulation of fast myosin genes. Furthermore, protein-protein interaction network analysis revealed that MYH7B and RUNX2 may be the direct targets of SOX6. These results indicated that chicken miR-499-5p may promote slow-twitch muscle fiber formation by repressing SOX6 expression. Our study provides a dataset that can be used as a reference for animal meat quality and human muscle disease studies.
Collapse
Affiliation(s)
- Yi-Fan Liu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Ming Zhang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yan-Ju Shan
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Li-Chuan Pang
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Gai-Ge Ji
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Xiao-Jun Ju
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Yun-Jie Tu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Shi-Ying Shi
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of China, Yangzhou University, Yangzhou, China
| | - Jian-Min Zou
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jing-Ting Shu
- Jiangsu Institute of Poultry Science Innovation Co., Yangzhou, China
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Jiangsu Institute of Poultry Science, Yangzhou, China
- *Correspondence: Jing-Ting Shu,
| |
Collapse
|
3
|
Zhu DL, Chen XF, Zhou XR, Hu SY, Tuo XM, Hao RH, Dong SS, Jiang F, Rong Y, Yang TL, Yang Z, Guo Y. An Osteoporosis Susceptibility Allele at 11p15 Regulates SOX6 Expression by Modulating TCF4 Chromatin Binding. J Bone Miner Res 2022; 37:1147-1155. [PMID: 35373860 DOI: 10.1002/jbmr.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022]
Abstract
Osteoporosis is an age-related complex disease clinically diagnosed with bone mineral density (BMD). Although several genomewide association studies (GWASs) have discovered multiple noncoding genetic variants at 11p15 influencing osteoporosis risk, the functional mechanisms of these variants remain unknown. Through integrating bioinformatics and functional experiments, a potential functional single-nucleotide polymorphism (SNP; rs1440702) located in an enhancer element was identified and the A allele of rs1440702 acted as an allelic specificities enhancer to increase its distal target gene SOX6 (~600 Kb upstream) expression, which plays a key role in bone formation. We also validated this long-range regulation via conducting chromosome conformation capture (3C) assay. Furthermore, we demonstrated that SNP rs1440702 with a risk allele (rs1440702-A) could increase the activity of the enhancer element by altering the binding affinity of the transcription factor TCF4, resulting in the upregulation expression of SOX6 gene. Collectively, our integrated analyses revealed how the noncoding genetic variants (rs1440702) affect osteoporosis predisposition via long-range gene regulatory mechanisms and identified its target gene SOX6 for downstream biomarker and drug development. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao-Rong Zhou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Shou-Ye Hu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao-Mei Tuo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Ruo-Han Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Zhi Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.,Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| |
Collapse
|
4
|
Qin W, Li C, Liu C, Wu S, Liu J, Ma J, Chen W, Zhao H, Zhao X. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. J Biomater Appl 2022; 36:1838-1851. [PMID: 35196910 DOI: 10.1177/08853282211067646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue-engineered bone material is one of the effective methods to repair bone defects, but the application is restricted in clinical because of the lack of excellent scaffolds that can induce bone regeneration as well as the difficulty in making scaffolds with personalized structures. 3D printing is an emerging technology that can fabricate bespoke 3D scaffolds with precise structure. However, it is challenging to develop the scaffold materials with excellent printability, osteogenesis ability, and mechanical strength. In this study, graphene oxide (GO), attapulgite (ATP), type I collagen (Col I) and polyvinyl alcohol were used as raw materials to prepare composite scaffolds via 3D bioprinting. The composite materials showed excellent printability. The microcosmic architecture and properties was characterized by scanning electron microscopy, Fourier transform infrared and thermal gravimetric analyzer, respectively. To verify the biocompatibility of the scaffolds, the viability, proliferation and osteogenic differentiation of Bone Marrow Stromal Cells (BMSCs) on the scaffolds were assessed by CCK-8, Live/Dead staining and Real-time PCR in vitro. The composited scaffolds were then implanted into the skull defects on rat for bone regeneration. Hematoxylin-eosin staining, Masson staining and immunohistochemistry staining were carried out in vivo to evaluate the regeneration of bone tissue.The results showed that GO/ATP/COL scaffolds have been demonstrated to possess controlled porosity, water absorption, biodegradability and good apatite-mineralization ability. The scaffold consisting of 0.5% GO/ATP/COL have excellent biocompatibility and was able to promote the growth, proliferation and osteogenic differentiation of mouse BMSCs in vitro. Furthermore, the 0.5% GO/ATP/COL scaffolds were also able to promote bone regeneration of in rat skull defects. Our results illustrated that the 3D printed GO/ATP/COL composite scaffolds have good mechanical properties, excellent cytocompatibility for enhanced mouse BMSCs adhesion, proliferation, and osteogenic differentiation. All these advantages made it potential as a promising biomaterial for osteogenic reconstruction.
Collapse
Affiliation(s)
- Wen Qin
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Chenkai Li
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Siyu Wu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiayi Ma
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Wenyang Chen
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou, China.,Department of Chemical and Biological Engineering, 7315University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Zhao Y, Liu H, Zhao C, Dang P, Li H, Farzaneh M. Paracrine Interactions Involved in Human Induced Pluripotent Stem Cells Differentiation into Chondrocytes. Curr Stem Cell Res Ther 2020; 15:233-242. [PMID: 31889496 DOI: 10.2174/1574888x15666191224122058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA), as a degenerative joint disease, is the most common form of joint disorder that causes pain, stiffness, and other symptoms associated with OA. Various genetic, biomechanical, and environmental factors have a relevant role in the development of OA. To date, extensive efforts are currently being made to overcome the poor self-healing capacity of articular cartilage. Despite the pivotal role of chondrocytes, their proliferation and repair capacity after tissue injury are limited. Therefore, the development of new strategies to overcome these constraints is urgently needed. Recent advances in regenerative medicine suggest that pluripotent stem cells are promising stem cell sources for cartilage repair. Pluripotent stem cells are undifferentiated cells that have the capacity to differentiate into different types of cells and can self-renew indefinitely. In the past few decades, numerous attempts have been made to regenerate articular cartilage by using induced pluripotent stem cells (iPSCs). The potential applications of patient-specific iPSCs hold great promise for regenerative medicine and OA treatment. However, there are different culture conditions for the preparation and characterization of human iPSCs-derived chondrocytes (hiChondrocytes). Recent biochemical analyses reported that several paracrine factors such as TGFb, BMPs, WNT, Ihh, and Runx have been shown to be involved in cartilage cell proliferation and differentiation from human iPSCs. In this review, we summarize and discuss the paracrine interactions involved in human iPSCs differentiation into chondrocytes in different cell culture media.
Collapse
Affiliation(s)
- Yunchang Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Honghao Liu
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Chunjie Zhao
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Peng Dang
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Haijian Li
- Department of Orthopedics III, Zhoukou Central Hospital, Zhoukou, Henan 466000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Wilhelm D, Kempf H, Bianchi A, Vincourt JB. ATDC5 cells as a model of cartilage extracellular matrix neosynthesis, maturation and assembly. J Proteomics 2020; 219:103718. [PMID: 32097723 DOI: 10.1016/j.jprot.2020.103718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 01/03/2023]
Abstract
Fibrillar collagens and proteoglycans (PGs) are quantitatively the major constituents of extracellular matrices (ECM). They carry numerous crucial post-translational modifications (PTMs) that tune the resulting biomechanical properties of the corresponding tissues. The mechanisms determining these PTMs remain largely unknown, notably because available established cell lines do not recapitulate much of the complexity of the machineries involved. ATDC5 cells are a model of chondrogenesis widely used for decades, but it remains described mostly at histological and transcriptional levels. Here, we asked to what extent this model recapitulates the events of ECM synthesis and processing occurring in cartilage. Insulin-stimulated ATDC5 cells exhibit up- or down-regulation of more than one-hundred proteins, including a number of known participants in chondrogenesis and major markers thereof. However, they also lack several ECM components considered of significant, yet more subtle, function in cartilage. Still, they assemble the large PG aggrecan and type II collagen, both carrying most of their in vivo PTMs, into an ECM. Remarkably, collagen crosslinking is fully lysyl oxidase (LOX)-dependent. The ATDC5 model recapitulates critical aspects of the cartilage ECM-processing machinery and should be useful to decipher the mechanisms involved. Proteomics data are available via ProteomeXchange with identifier PXD014121. SIGNIFICANCE: The present work provides the first proteome characterization of the ATDC5 chondrogenesis model, which has been used for decades in the field of cartilage biology. The results demonstrate the up- and down-regulation of more than one hundred proteins. Overall, specific drawbacks of the model are pointed out, that will be important to take into consideration for future studies. However, major cartilage components are massively assembled into an extracellular matrix and carry most of their post-translational modifications occurring in cartilage tissue. Unlike other available established cell lines, the ATDC5 model recapitulates major aspects of cartilage biosynthesis and should be useful in investigating the mechanisms that regulate collagen maturation events.
Collapse
Affiliation(s)
- Dafné Wilhelm
- UMR 7365 CNRS-UL IMoPA, Vandoeuvre-lès-Nancy, France
| | - Hervé Kempf
- UMR 7365 CNRS-UL IMoPA, Vandoeuvre-lès-Nancy, France
| | | | - Jean-Baptiste Vincourt
- UMR 7365 CNRS-UL IMoPA, Vandoeuvre-lès-Nancy, France; Proteomics core facility of UMS 2008 UL-CNRS-INSERM IBSLor, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
7
|
Gizer M, Köse S, Karaosmanoglu B, Taskiran EZ, Berkkan A, Timuçin M, Korkusuz F, Korkusuz P. The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells. Biol Trace Elem Res 2020; 193:364-376. [PMID: 31069715 DOI: 10.1007/s12011-019-01710-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/27/2019] [Indexed: 02/02/2023]
Abstract
Metabolic diseases or injuries damage bone structure and self-renewal capacity. Trace elements and hydroxyapatite crystals are important in the development of biomaterials to support the renewal of bone extracellular matrix. In this study, it was assumed that the boron-loaded nanometer-sized hydroxyapatite composite supports the construction of extracellular matrix by controlled boron release in order to prevent its toxic effect. In this context, boron release from nanometer-sized hydroxyapatite was calculated by ICP-MS as in large proportion within 1 h and continuing release was provided at a constant low dose. The effect of the boron-containing nanometer-sized hydroxyapatite composite on the proliferation of SaOS-2 osteoblasts and human bone marrow-derived mesenchymal stem cells was evaluated by WST-1 and compared with the effects of nano-hydroxyapatite and boric acid. Boron increased proliferation of mesenchymal stem cells at high doses and exhibited different effects on osteoblastic cell proliferation. Boron-containing nano-hydroxyapatite composites increased osteogenic differentiation of mesenchymal stem cells by increasing alkaline phosphatase activity, when compared to nano-hydroxyapatite composite and boric acid. The molecular mechanism of effective dose of boron-containing hydroxyapatite has been assessed by transcriptomic analysis and shown to affect genes involved in Wnt, TGF-β, and response to stress signaling pathways when compared to nano-hydroxyapatite composite and boric acid. Finally, a safe osteoconductive dose range of boron-containing nano-hydroxyapatite composites for local repair of bone injuries and the molecular effect profile in the effective dose should be determined by further studies to validation of the regenerative therapeutic effect window.
Collapse
Affiliation(s)
- Merve Gizer
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Sevil Köse
- Faculty of Medicine, Department of Medical Biology, Atilim University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ekim Z Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aysel Berkkan
- Department of Analytical Chemistry, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Muharrem Timuçin
- Department of Metallurgical and Materials Engineering, Middle East Technical University Faculty of Engineering, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
8
|
Chen J, Wu X. MicroRNA-103 contributes to osteoarthritis development by targeting Sox6. Biomed Pharmacother 2019; 118:109186. [DOI: 10.1016/j.biopha.2019.109186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023] Open
|
9
|
Nakatani S, Taguchi Y, Ueda H, Ishida Y, Morita Y, Kato K, Wada M, Kobata K. Short communication: Milk basic protein promotes proliferation and inhibits differentiation of mouse chondrogenic ATDC5 cells. J Dairy Sci 2019; 102:2873-2878. [PMID: 30712929 DOI: 10.3168/jds.2018-15656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
It has been reported that the intake of milk basic protein (MBP) increases bone density by promoting bone formation and suppressing bone resorption. However, few studies have been done on MBP in cartilage, the tissue adjacent to bone. We therefore investigated the effect of MBP on a chondrocyte cell line, ATDC5. In a proliferative assay using the WST-1 method, the addition of 10, 100, and 1,000 µg/mL of MBP to ATDC5 cells significantly increased the cell number by about 1.2-, 1.5-, and 1.7-fold, respectively, compared with the control cells. The cell cycle analysis using flow-cytometry revealed that the proportion of S- and G2/M-phase cells was increased but that of G0/G1 phase was decreased in a dose-dependent manner with MBP addition. We measured the alkaline phosphatase activity of MBP-treated ATDC5 cells to examine the differentiation stage of the cells. Alkaline phosphatase activity was suppressed in a dose-dependent manner with MBP addition and was especially drastic at higher doses of MBP (100 and 1,000 µg/mL). The Alizarin Red S staining intensity, the indicator for calcification of cells, was lower in the MBP-treated (100 µg/mL) cells than in nontreated control cells. In the reverse-transcription PCR experiment, the mRNA level of SRY-box containing gene 9 (Sox9) and type II collagen (Col2) was significantly increased in the MBP-treated cells compared with the control cells. A significant decrease of the mRNA level of runt-related transcription factor 2 (Runx2) and type X collagen (Col10) was also observed in the MBP-treated cells. These results suggested that MBP promoted the proliferation of chondrocytes by suppressing their differentiation toward calcification.
Collapse
Affiliation(s)
- Sachie Nakatani
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yousuke Taguchi
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Hiroya Ueda
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Yuko Ishida
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - Yoshikazu Morita
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - Ken Kato
- Milk Science Research Institute, Megmilk Snow Brand Co. Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - Masahiro Wada
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan
| | - Kenji Kobata
- Graduate School of Pharmaceutical Sciences, Josai University, Saitama 350-0295, Japan.
| |
Collapse
|
10
|
Correa-Rodríguez M, Schmidt-RioValle J, Rueda-Medina B. SOX6 rs7117858 polymorphism is associated with osteoporosis and obesity-related phenotypes. Eur J Clin Invest 2018; 48:e13011. [PMID: 30062780 DOI: 10.1111/eci.13011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND SOX6 has been recently proposed as a pleiotropic gene for obesity and osteoporosis. The aim of this study was to investigate whether the rs7117858 genetic variant in SOX6 was associated with bone mass assessed by quantitative ultrasound (QUS) and obesity-related measures in a population of young adults. METHODS A cross-sectional study was conducted in 550 unrelated healthy individuals of Caucasian ancestry (381 (69.3%) female and 169 (30.7%) male; mean age 20.46 ± 2.69). Bone mass was assessed through calcaneal QUS) parameter (BUA, dB/MHz). Obesity-related traits including weight, body mass index (BMI), fat mass (FM) and fat-free mass (FFM) were analysed. RESULTS The linear regression analysis revealed that the rs7117858 SNP was significantly associated with FFM after adjustments for covariables in the whole sample (P = 0.027, β (95% CI) = 0.053 (0.092, 1.516). In addition, a significant association with QUS measurement adjusted for confounding factors was found in females (P = 0.043, β (95% CI) = 0.104 (0.138. 8.384). CONCLUSIONS We demonstrate for the first time that SOX6 influence FFM and QUS trait in a population of young adults, suggesting the implication of this gene in obesity and osteoporosis-related phenotypes during early adulthood.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Centro de Investigación Mente, Cerebro y Comportamiento (CIMCYC), University of Granada, Granada, Spain
| | - Blanca Rueda-Medina
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria, IBS, Granada, Spain
| |
Collapse
|
11
|
Bonyadi Rad E, Musumeci G, Pichler K, Heidary M, Szychlinska MA, Castrogiovanni P, Marth E, Böhm C, Srinivasaiah S, Krönke G, Weinberg A, Schäfer U. Runx2 mediated Induction of Novel Targets ST2 and Runx3 Leads to Cooperative Regulation of Hypertrophic Differentiation in ATDC5 Chondrocytes. Sci Rep 2017; 7:17947. [PMID: 29263341 PMCID: PMC5738421 DOI: 10.1038/s41598-017-18044-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022] Open
Abstract
Knowledge concerning expression and function of Suppression of Tumorigenicity 2 (ST2) in chondrocytes is at present, limited. Analysis of murine growth plates and ATDC5 chondrocytes indicated peak expression of the ST2 transmembrane receptor (ST2L) and soluble (sST2) isoforms during the hypertrophic differentiation concomitant with the expression of the hypertrophic markers Collagen X (Col X), Runx2 and MMP-13. Gain- and loss-of-function experiments in ATDC5 and primary human growth plate chondrocytes (PHCs), confirmed regulation of ST2 by the key transcription factor Runx2, indicating ST2 to be a novel Runx2 target. ST2 knock-out mice (ST2−/−) exhibited noticeable hypertrophic zone (HZ) reduction in murine growth plates, accompanied by lower expression of Col X and Osteocalcin (OSC) compared to wild-type (WT) mice. Likewise, ST2 knockdown resulted in decreased Col X expression and downregulation of OSC and Vascular Endothelial Growth Factor (VEGF) in ATDC5 cells. The ST2 suppression was also associated with upregulation of the proliferative stage markers Sox9 and Collagen II (Col II), indicating ST2 to be a new regulator of ATDC5 chondrocyte differentiation. Runx3 was, furthermore, identified as a novel Runx2 target in chondrocytes. This study suggests that Runx2 mediates ST2 and Runx3 induction to cooperatively regulate hypertrophic differentiation of ATDC5 chondrocytes.
Collapse
Affiliation(s)
- Ehsan Bonyadi Rad
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria.
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Karin Pichler
- Department of Children and Adolescent Medicine, Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maryam Heidary
- Translational Research Department, Institute Curie, Paris, France
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Egon Marth
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Christina Böhm
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sriveena Srinivasaiah
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria
| | - Gerhard Krönke
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Annelie Weinberg
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Graz, Austria
| | - Ute Schäfer
- Department of Neurosurgery, Medical University Graz, Graz, Austria
| |
Collapse
|
12
|
Reppe S, Lien TG, Hsu YH, Gautvik VT, Olstad OK, Yu R, Bakke HG, Lyle R, Kringen MK, Glad IK, Gautvik KM. Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics 2017. [PMID: 28650214 DOI: 10.1080/15592294.2017.1345832] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA methylation affects expression of associated genes and may contribute to the missing genetic effects from genome-wide association studies of osteoporosis. To improve insight into the mechanisms of postmenopausal osteoporosis, we combined transcript profiling with DNA methylation analyses in bone. RNA and DNA were isolated from 84 bone biopsies of postmenopausal donors varying markedly in bone mineral density (BMD). In all, 2529 CpGs in the top 100 genes most significantly associated with BMD were analyzed. The methylation levels at 63 CpGs differed significantly between healthy and osteoporotic women at 10% false discovery rate (FDR). Five of these CpGs at 5% FDR could explain 14% of BMD variation. To test whether blood DNA methylation reflect the situation in bone (as shown for other tissues), an independent cohort was selected and BMD association was demonstrated in blood for 13 of the 63 CpGs. Four transcripts representing inhibitors of bone metabolism-MEPE, SOST, WIF1, and DKK1-showed correlation to a high number of methylated CpGs, at 5% FDR. Our results link DNA methylation to the genetic influence modifying the skeleton, and the data suggest a complex interaction between CpG methylation and gene regulation. This is the first study in the hitherto largest number of postmenopausal women to demonstrate a strong association among bone CpG methylation, transcript levels, and BMD/fracture. This new insight may have implications for evaluation of osteoporosis stage and susceptibility.
Collapse
Affiliation(s)
- Sjur Reppe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway.,b Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute , Oslo , Norway.,c University of Oslo, Institute of Basic Medical Sciences , Oslo , Norway
| | - Tonje G Lien
- d Department of Mathematics , University of Oslo , Oslo , Norway
| | - Yi-Hsiang Hsu
- e Hebrew SeniorLife Institute for Aging Research and Harvard Medical School , Boston , MA , USA.,f Broad Institute of MIT and Harvard , Cambridge , MA , USA.,g Molecular and Physiological Sciences Program, Harvard School of Public Health , Boston , MA , USA.,h Gerontology Division , Department of Medicine , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Vigdis T Gautvik
- c University of Oslo, Institute of Basic Medical Sciences , Oslo , Norway
| | - Ole K Olstad
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Rona Yu
- e Hebrew SeniorLife Institute for Aging Research and Harvard Medical School , Boston , MA , USA
| | - Hege G Bakke
- i Center for Psychopharmacology, Diakonhjemmet Hospital , Oslo , Norway
| | - Robert Lyle
- j Department of Medical Genetics , Oslo University Hospital , Oslo , Norway.,k Department of Medical Genetics , University of Oslo , Oslo , Norway
| | | | - Ingrid K Glad
- d Department of Mathematics , University of Oslo , Oslo , Norway
| | - Kaare M Gautvik
- b Lovisenberg Diakonale Hospital, Unger-Vetlesen Institute , Oslo , Norway.,c University of Oslo, Institute of Basic Medical Sciences , Oslo , Norway
| |
Collapse
|
13
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y, Guo Z, Qi Q, Li W. MiR-199b-5p inhibits osteogenic differentiation in ligamentum flavum cells by targeting JAG1 and modulating the Notch signalling pathway. J Cell Mol Med 2016; 21:1159-1170. [PMID: 27957826 PMCID: PMC5431140 DOI: 10.1111/jcmm.13047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a pathology almost only reported in East Asian countries. The leading cause of OLF is thoracic spinal canal stenosis and myelopathy. In this study, the role of miR-199b-5p and jagged 1 (JAG1) in primary ligamentum flavum cell osteogenesis was examined. MiR-199b-5p was found to be down-regulated during osteogenic differentiation in ligamentum flavum cells, while miR-199b-5p overexpression inhibited osteogenic differentiation. In addition, JAG1 was found to be up-regulated during osteogenic differentiation in ligamentum flavum cells, while JAG1 knockdown via RNA interference caused an inhibition of Notch signalling and osteogenic differentiation. Moreover, target prediction analysis and dual luciferase reporter assays supported the notion that JAG1 was a direct target of miR-199b-5p, with miR-199b-5p found to down-regulate both JAG1 and Notch. Further, JAG1 knockdown was demonstrated to block the effect of miR-199b-5p inhibition. These findings imply that miR-199b-5p performs an inhibitory role in osteogenic differentiation in ligamentum flavum cells by potentially targeting JAG1 and influencing the Notch signalling pathway.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhaoqing Guo
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qiang Qi
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Han Y, Xu H, Cheng J, Zhang Y, Gao C, Fan T, Peng B, Li B, Liu L, Cheng Z. Downregulation of long non-coding RNA H19 promotes P19CL6 cells proliferation and inhibits apoptosis during late-stage cardiac differentiation via miR-19b-modulated Sox6. Cell Biosci 2016; 6:58. [PMID: 27895893 PMCID: PMC5120414 DOI: 10.1186/s13578-016-0123-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Background Regulating cardiac differentiation to maintain normal heart development and function is very important. At present, biological functions of H19 in cardiac differentiation is not completely clear. Methods To explore the functional effect of H19 during cardiac differentiation. Expression levels of early cardiac-specific markers Nkx-2.5 and GATA4, cardiac contractile protein genes α-MHC and MLC-2v were determined by qRT-PCR and western lot. The levels of lncRNA H19 and miR-19b were detected by qRT-PCR. We further predicted the binding sequence of H19 and miR-19b by online softwares starBase v2.0 and TargetScan. The biological functions of H19 and Sox6 were evaluated by CCK-8 kit, cell cycle and apoptosis assay and caspase-3 activity. Results The expression levels of α-MHC, MLC-2v and H19 were upregulated, and miR-19b was downregulated significantly in mouse P19CL6 cells at the late stage of cardiac differentiation. Biological function analysis showed that knockdown of H19 promoted cell proliferation and inhibits cell apoptosis. H19 suppressed miR-19b expression and miR-19b targeted Sox6, which inhibited cell proliferation and promoted apoptosis in P19CL6 cells during late-stage cardiac differentiation. Importantly, Sox6 overexpression could reverse the positive effects of H19 knockdown on P19CL6 cells. Conclusion Downregulation of H19 promoted cell proliferation and inhibited cell apoptosis during late-stage cardiac differentiation by regulating the negative role of miR-19b in Sox6 expression, which suggested that the manipulation of H19 expression could serve as a potential strategy for heart disease.
Collapse
Affiliation(s)
- Yu Han
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Hongdang Xu
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Jiangtao Cheng
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Yanwei Zhang
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Chuanyu Gao
- Department of Cardiology, Henan Province People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 China
| | - Taibing Fan
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Bangtian Peng
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Bin Li
- Children's Heart Center, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Lin Liu
- Department of Ultrasonography, Henan Province People's Hospital, Zhengzhou, 450003 China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Henan Province People's Hospital, Zhengzhou, 450003 China
| |
Collapse
|
15
|
Qu X, Chen Z, Fan D, Sun C, Zeng Y. MiR-132-3p Regulates the Osteogenic Differentiation of Thoracic Ligamentum Flavum Cells by Inhibiting Multiple Osteogenesis-Related Genes. Int J Mol Sci 2016; 17:ijms17081370. [PMID: 27556448 PMCID: PMC5000765 DOI: 10.3390/ijms17081370] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/08/2016] [Accepted: 08/16/2016] [Indexed: 12/29/2022] Open
Abstract
Ossification of the ligamentum flavum (OLF) is a disorder of heterotopic ossification of spinal ligaments and is the main cause of thoracic spinal canal stenosis. Previous studies suggested that miR-132-3p negatively regulates osteoblast differentiation. However, whether miR-132-3p is involved in the process of OLF has not been investigated. In this study, we investigated the effect of miR-132-3p and its target genes forkhead box O1 (FOXO1), growth differentiation factor 5 (GDF5) and SRY-box 6 (SOX6) on the osteogenic differentiation of ligamentum flavum (LF) cells. We demonstrated that miR-132-3p was down-regulated during the osteogenic differentiation of LF cells and negatively regulated the osteoblast differentiation. Further, miR-132-3p targeted FOXO1, GDF5 and SOX6 and down-regulated the protein expression of these genes. Meanwhile, FOXO1, GDF5 and SOX6 were up-regulated after osteogenic differentiation and the down-regulation of endogenous FOXO1, GDF5 or SOX6 suppressed the osteogenic differentiation of LF cells. In addition, we also found FOXO1, GDF5 and SOX6 expression in the ossification front of OLF samples. Overall, these results suggest that miR-132-3p inhibits the osteogenic differentiation of LF cells by targeting FOXO1, GDF5 and SOX6.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| | - Yan Zeng
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China.
| |
Collapse
|
16
|
Association of miR-146a, miR-149, miR-196a2, and miR-499 Polymorphisms with Ossification of the Posterior Longitudinal Ligament of the Cervical Spine. PLoS One 2016; 11:e0159756. [PMID: 27454313 PMCID: PMC4959720 DOI: 10.1371/journal.pone.0159756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/07/2016] [Indexed: 12/31/2022] Open
Abstract
Background Ossification of the posterior longitudinal ligament (OPLL) of the spine is considered a multifactorial and polygenic disease. We aimed to investigate the association between four single nucleotide polymorphisms (SNPs) of pre-miRNAs [miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444)] and the risk of cervical OPLL in the Korean population. Methods The genotypic frequencies of these four SNPs were analyzed in 207 OPLL patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Findings For four SNPs in pre-miRNAs, no significant differences were found between OPLL patients and controls. However, subgroup analysis based on OPLL subgroup (continuous: continuous type plus mixed type, segmental: segmental and localized type) showed that miR-499GG genotype was associated with an increased risk of segmental type OPLL (adjusted odds ratio = 4.314 with 95% confidence interval: 1.109–16.78). In addition, some allele combinations (C-T-T-G, G-T-T-A, and G-T-C-G of miR-146a/-149/-196a2/-499) and combined genotypes (miR-149TC/miR-196a2TT) were associated with increased OPLL risk, whereas the G-T-T-G and G-C-C-G allele combinations were associated with decreased OPLL risk. Conclusion The results indicate that GG genotype of miR-499 is associated with significantly higher risks of OPLL in the segmental OPLL group. The miR-146a/-149/-196a2/-499 allele combinations may be a genetic risk factor for cervical OPLL in the Korean population.
Collapse
|