1
|
Hasegawa K, Miyake T, Kobashi M, Tetsunaga T, Ago Y, Futagawa N, Miyahara H, Higuchi Y, Morizane S, Tsukahara H. Effect of calcium supplementation on bone deformity and histopathological findings of skin papules in a pediatric patient with vitamin D-dependent rickets type 2A: A case report. Clin Pediatr Endocrinol 2025; 34:131-136. [PMID: 40201379 PMCID: PMC11972871 DOI: 10.1297/cpe.2024-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 04/10/2025] Open
Abstract
Vitamin D-dependent rickets type 2A (VDDR2A) is an autosomal recessive disease caused by pathogenic variants of the vitamin D receptor (VDR) gene. VDDR2A rickets are usually resistant to native or active vitamin D treatment because of impaired active calcium absorption against the calcium concentration gradient, which is a ligand-dependent VDR action in the small intestine. Alopecia due to an impaired skin follicular cycle is occasionally observed in patients with VDDR2A. Among the pathogenic VDR variants, most in the DNA-binding domain and some in the ligand-binding domain, which affect the dimerization of VDR with the retinoic X receptor, are associated with alopecia. Herein, we report a case of VDDR2A caused by compound heterozygous pathogenic variants of the DNA-binding domain of VDR. Active vitamin D treatment did not ameliorate genu varum, rachitic changes in the roentgenogram, or abnormal laboratory findings. However, oral administration of calcium lactate dramatically improved these findings. The patient also experienced hair loss at two months of age and multiple papules on the skin at two yr of age, which did not improve with vitamin D or calcium supplementation. We also report the histopathological findings of skin papules in this patient.
Collapse
Affiliation(s)
- Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Tomoko Miyake
- Department of Dermatology, Okayama University Hospital, Okayama, Japan
| | - Mina Kobashi
- Department of Dermatology, Okayama University Hospital, Okayama, Japan
| | | | - Yuko Ago
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Natsuko Futagawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yousuke Higuchi
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Shin Morizane
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Jiang H, Chanpaisaeng K, Christakos S, Fleet JC. Intestinal Vitamin D Receptor Is Dispensable for Maintaining Adult Bone Mass in Mice With Adequate Calcium Intake. Endocrinology 2023; 164:bqad051. [PMID: 36960562 PMCID: PMC10282920 DOI: 10.1210/endocr/bqad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3)-mediated intestinal calcium (Ca) absorption supplies Ca for proper bone mineralization during growth. We tested whether vitamin D receptor (VDR)-mediated 1,25(OH)2D3 signaling is critical for adult Ca absorption and bone by using mice with inducible Vdr gene knockout in the whole intestine (villin-CreERT2+/- × Vdrf/f, WIK) or in the large intestine (Cdx2-CreERT2+/- ×Vdrf/f, LIK). At 4-month-old, Vdr alleles were recombined (0.05 mg tamoxifen/g BW, intraperitoneally [i.p.], 5 days) and mice were fed diets with either 0.5% (adequate) or 0.2% (low) Ca. Ca absorption was examined after 2 weeks while serum 1,25(OH)2D3, bone mass, and bone microarchitecture were examined after 16 weeks. Intestinal and renal gene expression was measured at both time points (n = 12/genotype/diet/time point). On the 0.5% Ca diet, all phenotypes in WIK and LIK mice were similar to the controls. Control mice adapted to the 0.2% low-Ca diet by increasing renal Cyp27b1 mRNA (3-fold), serum 1,25(OH)2D3 level (1.9-fold), and Ca absorption in the duodenum (Dd, + 131%) and proximal colon (PCo, + 28.9%), which prevented bone loss. In WIK mice, low-Ca diet increased serum 1,25(OH)2D3 (4.4-fold) but Ca absorption remained unaltered in the Dd and PCo. Consequently, significant bone loss occurred in WIK mice (e.g., cortical thickness, Ct.Th, -33.7%). LIK mice adapted to the low-Ca diet in the Dd but not the PCo, and the effect on bone phenotypes was milder (e.g., Ct.Th, -13.1%). Our data suggest intestinal VDR in adult mice prevents bone loss under low Ca intake but is dispensable under adequate calcium intake.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| | - Krittikan Chanpaisaeng
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - James C Fleet
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
3
|
Wiedemann A, Renard E, Molin A, Weryha G, Oussalah A, Guéant JL, Feillet F. Prolonged 25-OH Vitamin D Deficiency Does Not Impair Bone Mineral Density in Adult Patients With Vitamin D 25-Hydroxylase Deficiency (CYP2R1). Calcif Tissue Int 2020; 107:191-194. [PMID: 32430692 DOI: 10.1007/s00223-020-00704-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
Vitamin D-dependent rickets type 1B (VDDR1B) is an autosomal semidominant genetic disorder caused by a deficiency in CYP2R1, which encodes vitamin D 25-hydroxylase, an enzyme that plays a crucial role in the conversion of vitamin D to 25-dihydroxyvitamin D3. VDDR1B is a severe form of rickets that occurs during infancy and which is responsive to 25-OH vitamin D supplementation. We studied three adult patients from a multi-consanguineous family with VDDR1B. They have been diagnosed with pseudo-nutritional rickets and treated during their adolescence with 25-OH vitamin D. These patients stopped their treatments at the end of adolescence and were contacted 14 to 17 years later when VDDR1B diagnosis was carried out in their niece and nephews. These three patients had undetectable 25-OH vitamin D, but normal levels of plasma 1-25(OH)2 vitamin D. All patients had a hip bone mineral density and a normal vertebral despite osteoarthritis degenerative lesions which may impact BMD evaluation. These findings show that vitamin D supplementation has a questionable effect, if any, for osteoporosis prevention in adulthood in contrast to its crucial importance during infancy and adolescence.
Collapse
Affiliation(s)
- Arnaud Wiedemann
- Reference Center for Inborn Errors of Metabolism, Pediatric Unit, University Hospital of Nancy, Nancy, France.
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France.
| | - Emeline Renard
- Reference Center for Inborn Errors of Metabolism, Pediatric Unit, University Hospital of Nancy, Nancy, France
| | - Arnaud Molin
- Department of Genetics, University Hospital of Caen, Caen, France
| | - Georges Weryha
- Department of Endocrinology Unit, University Hospital of Nancy, Nancy, France
| | - Abderrahim Oussalah
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, Department of Molecular Medicine, University Hospital of Nancy, Nancy, France
| | - Jean-Louis Guéant
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
- Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, Department of Molecular Medicine, University Hospital of Nancy, Nancy, France
| | - François Feillet
- Reference Center for Inborn Errors of Metabolism, Pediatric Unit, University Hospital of Nancy, Nancy, France
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| |
Collapse
|
4
|
Costa PLF, França MM, Katayama ML, Carneiro ET, Martin RM, Folgueira MAK, Latronico AC, Ferraz-de-Souza B. Transcriptomic Response to 1,25-Dihydroxyvitamin D in Human Fibroblasts with or without a Functional Vitamin D Receptor (VDR): Novel Target Genes and Insights into VDR Basal Transcriptional Activity. Cells 2019; 8:cells8040318. [PMID: 30959822 PMCID: PMC6523947 DOI: 10.3390/cells8040318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 01/30/2023] Open
Abstract
The vitamin D receptor (VDR) mediates vitamin D actions beyond bone health. While VDR activation by 1,25-dihydroxyvitamin D (1,25D) leads to robust transcriptional regulation, less is known about VDR actions in the absence of 1,25D. We analyzed the transcriptomic response to 1,25D in fibroblasts bearing a severe homozygous hereditary vitamin D resistant rickets-related p.Arg30* VDR mutation (MUT) and in control fibroblasts (CO). Roughly 4.5% of the transcriptome was regulated by 1,25D in CO fibroblasts, while MUT cells without a functional VDR were insensitive to 1,25D. Novel VDR target genes identified in human fibroblasts included bone and cartilage factors CILP, EFNB2, and GALNT12. Vehicle-treated CO and MUT fibroblasts had strikingly different transcriptomes, suggesting basal VDR activity. Indeed, oppositional transcriptional effects in basal conditions versus after 1,25D activation were implied for a subset of target genes mostly involved with cell cycle. Cell proliferation assays corroborated this conjectured oppositional basal VDR activity, indicating that precise 1,25D dosage in target tissues might be essential for modulating vitamin D actions in human health.
Collapse
Affiliation(s)
- Pedro L F Costa
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| | - Monica M França
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Maria L Katayama
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| | - Eduardo T Carneiro
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| | - Regina M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Maria A K Folgueira
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 01246-000, SP, Brazil.
| | - Ana C Latronico
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-900, SP, Brazil.
| | - Bruno Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 01246-903, SP, Brazil.
| |
Collapse
|
5
|
Abstract
Calcium is vital for life, and extracellular calcium concentrations must constantly be maintained within a precise concentration range. Low serum calcium (hypocalcemia) occurs in conjunction with multiple disorders and can be life-threatening if severe. Symptoms of acute hypocalcemia include neuromuscular irritability, tetany, and seizures, which are rapidly resolved with intravenous administration of calcium gluconate. However, disorders that lead to chronic hypocalcemia often have more subtle manifestations. Hypoparathyroidism, characterized by impaired secretion of parathyroid hormone (PTH), a key regulatory hormone for maintaining calcium homeostasis, is a classic cause of chronic hypocalcemia. Disorders that disrupt the metabolism of vitamin D can also lead to chronic hypocalcemia, as vitamin D is responsible for increasing the gut absorption of dietary calcium. Treatment and management options for chronic hypocalcemia vary depending on the underlying disorder. For example, in patients with hypoparathyroidism, calcium and vitamin D supplementation must be carefully titrated to avoid symptoms of hypocalcemia while keeping serum calcium in the low-normal range to minimize hypercalciuria, which can lead to renal dysfunction. Management of chronic hypocalcemia requires knowledge of the factors that influence the complex regulatory axes of calcium homeostasis in a given disorder. This chapter discusses common and rare disorders of hypocalcemia, symptoms and workup, and management options including replacement of PTH in hypoparathyroidism.
Collapse
Affiliation(s)
- Erin Bove-Fenderson
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier 1101, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
6
|
Faiyaz-Ul-Haque M, AlDhalaan W, AlAshwal A, Bin-Abbas BS, AlSagheir A, Alotaiby M, Rafiq Z, Zaidi SHE. Hereditary 1,25-dihydroxyvitamin D-resistant rickets (HVDRR): clinical heterogeneity and long-term efficacious management of eight patients from four unrelated Arab families with a loss of function VDR mutation. J Pediatr Endocrinol Metab 2018; 31:861-868. [PMID: 29949513 DOI: 10.1515/jpem-2017-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/01/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Vitamin D regulates the concentrations of calcium and phosphate in blood and promotes the growth and remodeling of bones. The circulating active form of vitamin D, 1,25-dihydroxyvitamin D, binds to the vitamin D receptor (VDR), which heterodimerizes with the retinoid X receptor to regulate the expression of target genes. Inactivating mutations in the VDR gene cause hereditary vitamin D-resistant rickets (HVDRR), a rare disorder characterized by an early onset of rickets, growth retardation, skeletal deformities, hypocalcemia, hypophosphatemia and secondary hyperparathyroidism, and in some cases alopecia. METHODS We describe eight new HVDRR patients from four unrelated consanguineous families. The VDR gene was sequenced to identify mutations. The management of patients over a period of up to 11 years following the initial diagnosis is assessed. RESULTS Although all patients exhibit main features of HVDRR and carry the same c.885C>A (p.Y295*) loss of function mutation in the VDR gene, there was heterogeneity of the manifestations of HVDRR-associated phenotypes and developmental milestones. These eight patients were successfully treated over a period of 11 years. All clinical symptoms were improved except alopecia. CONCLUSIONS The study concludes that VDR sequencing and laboratory tests are essential to confirm HVDRR and to assess the effectiveness of the treatment.
Collapse
Affiliation(s)
- Muhammad Faiyaz-Ul-Haque
- Department of Pathology, Molecular Genetics Pathology Unit, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Waheeb AlDhalaan
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah AlAshwal
- Department of Pediatrics - MBC 58, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bassam S Bin-Abbas
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Afaf AlSagheir
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maram Alotaiby
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zulqurnain Rafiq
- Department of Orthopedic, King Saud University, Riyadh, Saudi Arabia
| | - Syed H E Zaidi
- Genome Technologies, Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
7
|
Rochel N, Molnár F. Structural aspects of Vitamin D endocrinology. Mol Cell Endocrinol 2017; 453:22-35. [PMID: 28257826 DOI: 10.1016/j.mce.2017.02.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
1α,25-Dihydroxvitamin D3 (1,25(OH)2D3) is the hormonally active form of vitamin D3. Its synthesis and its metabolites, their transport and elimination as well as action on transcriptional regulation involves the harmonic cooperation of diverse proteins with vitamin D binding capacities such as vitamin D binding protein (DBP), cytochrome P450 enzymes or the nuclear vitamin receptor (VDR). The genomic mechanism of 1,25(OH)2D3 action involves its binding to VDR that functionally acts as a heterodimer with retinoid X receptor. The crystal structures of the most important proteins for vitamin D3, VDR, DBP, CYP2R1 and CYP24A1, have provided identification of mechanisms of actions of these proteins and those mediating VDR-regulated transcription. This review will present the structural information on recognition of the vitamin D3 and metabolites by CYP proteins and DBP as well as the structural basis of VDR activation by 1,25(OH)2D3 and metabolites. Additionally, we will describe, the implications of the VDR mutants associated with hereditary vitamin D-resistant rickets (HVDRR) that display impaired function.
Collapse
Affiliation(s)
- Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de La Santé et de La Recherche Médicale (INSERM), U964/Centre National de Recherche Scientifique (CNRS), UMR7104/Université de Strasbourg, 67404 Illkirch, France.
| | - Ferdinand Molnár
- Institute of Biopharmacy, School of Pharmacy, Faculty of Heath Science, University of Eastern Finland, Yliopistonranta 1C, Canthia 2036, 70210 Kuopio, Finland.
| |
Collapse
|
8
|
Ghazi AA, Zadeh-Vakili A, Zarif Yeganeh M, Alamdari S, Amouzegar A, Khorsandi AA, Amirbaigloo A, Azizi F. Hereditary Vitamin D Resistant Rickets: Clinical, Laboratory, and Genetic Characteristics of 2 Iranian Siblings. Int J Endocrinol Metab 2017; 15:e12384. [PMID: 29201067 PMCID: PMC5702004 DOI: 10.5812/ijem.12384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/02/2017] [Indexed: 01/31/2023] Open
Abstract
PURPOSE AND METHODS Hereditary vitamin D resistant rickets (HVDRR) is a rare disease that presents with signs and symptoms of rickets, alopecia, and growth retardation during the early years of life. The disease is caused by mutations in the vitamin D receptor (VDR) gene, which leads to unresponsiveness of the mutant receptor to 1-25(OH) 2 D3. The disease is transmitted as an autosomal recessive disorder and is found with equal frequency in males and females. The disease is rarely encountered and only about 100 cases are reported so far. The current paper reported the clinical and laboratory characteristics of 2 Iranian siblings with this disorder. RESULTS AND CONCLUSION They presented with rickets, growth retardation, muscle weakness, hypocalcemia and alopecia totalis since early childhood, and were followed up for 27 years. Sequencing of the DNA extracted from the peripheral white blood cells showed a missense G to A mutation in exon number 4 (g.30994 G > A) that led to the methionine substitution for the naturally occurring valine at position 26 in the DNA binding domain (DBD) of the VDR.
Collapse
Affiliation(s)
- Ali A. Ghazi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Ali Asghar Ghazi, MD, Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O.Box: 19395-4763, 1985717413, Tehran, IR Iran. Tel: +98-2122409309, Fax: +98-2122402463, E-mail:
| | - Azita Zadeh-Vakili
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Marjan Zarif Yeganeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Shahram Alamdari
- Medical Research Development Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ali Akbar Khorsandi
- Department of Orthopedics, Shafa Yahyaian Hospital, Iran University of Medical Sciences, Tehran, IR Iran
| | | | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
9
|
Costa PLF, França MM, Ferraz-de-Souza B. Nonspecific binding of a frequently used vitamin D receptor (VDR) antibody: important implications for vitamin D research in human health. Endocrine 2016; 54:556-559. [PMID: 27393303 DOI: 10.1007/s12020-016-1036-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Pedro L F Costa
- Divisão de Endocrinologia e Laboratórios de Investigação Médica 18 e 25 (LIM-18 e LIM-25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Monica M França
- Divisão de Endocrinologia e Laboratórios de Investigação Médica 18 e 25 (LIM-18 e LIM-25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil
| | - Bruno Ferraz-de-Souza
- Divisão de Endocrinologia e Laboratórios de Investigação Médica 18 e 25 (LIM-18 e LIM-25), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|