1
|
Geng Z, Ji L, Li Z, Wang J, He H, Cui Z, Yang X, Liu C. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioact Mater 2020; 6:905-915. [PMID: 33102935 PMCID: PMC7553892 DOI: 10.1016/j.bioactmat.2020.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element. In this study, we fabricated a series of apatite and Sr-substituted apatite coatings via electrochemical deposition under different acidic conditions. The results showed that Ca and Sr exhibited different mineralization behaviors. The main mineralization products for Ca were CaHPO4·2H2O and Ca3(PO4)2 with the structure changed from porous to spherical as the pH values increased. The main mineralization products for Sr were SrHPO4 and Sr5(PO4)3OH with the structure changed from flake to needle as the pH values increased. The in vitro experiment demonstrated that coatings fabricated at high pH condition with the presence of Sr were favorable to MSCs adhesion, spreading, proliferation, and osteogenic differentiation. In addition, Sr-substituted apatite coatings could evidently inhibit osteoclast differentiation and fusion. Moreover, the in vivo study indicated that nano-needle like Sr-substituted apatite coating could suppress osteoclastic activity, improve new bone formation, and enhance bone-implant integration. This study provided a new theoretical guidance for implant coating design and the fabricated Sr-substituted coating might have potential applications for osteoporotic patients. Ca2+ and Sr2+ showed different mineralization behaviors in acidic environments. Apatites fabricated at high pH conditions were beneficial to MSCs growth. Sr-substituted apatite exhibited superior anti-osteoclast activity ability. Sr-substituted apatite facilitated osteogenesis, bone growth, and osseointegration.
Collapse
Affiliation(s)
- Zhen Geng
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoyang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianjin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Xie H, Gu Z, He Y, Xu J, Xu C, Li L, Ye Q. Microenvironment construction of strontium-calcium-based biomaterials for bone tissue regeneration: the equilibrium effect of calcium to strontium. J Mater Chem B 2018; 6:2332-2339. [PMID: 32254572 DOI: 10.1039/c8tb00306h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strontium-doped calcium phosphate-based biomaterials have gained increased recognition due to their beneficial effects on bone formation. However, the underlying mechanism is still not clear. In this study, we detected the calcification effects of strontium-based materials on osteoblasts in vitro and bone formation in vivo. The results showed that strontium may inhibit bone cell function in osteoblasts under a standard calcium concentration (1.8 mM) by both reducing alkaline phosphatase activity and inhibiting absorption of osteopontin and osteocalcin. In contrast, a high calcium concentration (9 mM) enhances the bone regeneration effect of strontium-based materials. Cultured osteoblasts underwent increased proliferation, calcification and alkaline phosphatase activity upon increasing calcium concentrations. An experimental animal model was utilized to simulate a high calcium concentration microenvironment in bone tissue and low calcium concentration in the subcutaneous part and the in vivo results are similar to the in vitro results. These findings suggest that strontium only promoted an anabolic effect on osteoblasts to enhance osteogenesis in a calcium rich microenvironment. Strontium would inhibit bone regeneration under a low dose of calcium in vivo. Therefore, strontium seems to be a potentially effective therapeutic option for bone regeneration in combination with a high concentration environment of calcium ions. These results would provide an in-depth knowledge of an ion-based bone tissue substitute for bone regeneration.
Collapse
Affiliation(s)
- Huixu Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Shi J, Yuan D, Haburcak R, Zhang Q, Zhao C, Zhang X, Xu B. Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels. Chemistry 2015; 21:18047-51. [PMID: 26462722 PMCID: PMC4743537 DOI: 10.1002/chem.201504087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Indexed: 11/06/2022]
Abstract
Enzyme-catalyzed dephosphorylation is essential for biomineralization and bone metabolism. Here we report the exploration of using enzymatic reaction to transform biocomposites of phosphopeptides and calcium (or strontium) ions to supramolecular hydrogels as a mimic of enzymatic dissolution of biominerals. (31) P NMR shows that strong affinity between the phosphopeptides and alkaline metal ions (e.g., Ca(2+) or Sr(2+) ) induces the formation of biocomposites as precipitates. Electron microscopy reveals that the enzymatic reaction regulates the morphological transition from particles to nanofibers. Rheology confirms the formation of a rigid hydrogel. As the first example of enzyme-instructed dissolution of a solid to form supramolecular nanofibers/hydrogels, this work provides an approach to generate soft materials with desired properties, expands the application of supramolecular hydrogelators, and offers insights to control the demineralization of calcified soft tissues.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA 02454 (USA), Fax: (+1) 781-736-2516
| | - Dan Yuan
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA 02454 (USA), Fax: (+1) 781-736-2516
| | - Richard Haburcak
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA 02454 (USA), Fax: (+1) 781-736-2516
| | - Qiang Zhang
- Division of Physical Science & Engineering and Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)
| | - Chao Zhao
- Division of Physical Science & Engineering and Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)
| | - Xixiang Zhang
- Division of Physical Science & Engineering and Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St, Waltham, MA 02454 (USA), Fax: (+1) 781-736-2516.
| |
Collapse
|