1
|
Wang Y, Wu Z, Li C, Ma C, Chen J, Wang M, Gao D, Wu Y, Wang H. Effect of bisphosphonate on bone microstructure, mechanical strength in osteoporotic rats by ovariectomy. BMC Musculoskelet Disord 2024; 25:725. [PMID: 39256676 PMCID: PMC11386083 DOI: 10.1186/s12891-024-07846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Bisphosphonate (BP) can treat osteoporosis and prevent osteoporotic fractures in clinical. However, the effect of BP on microstructure and mechanical properties of cortical and trabecular bone has been taken little attention, separately. METHODS In this study, BP was used to intervene in ovariectomized female SD rats. The femoral micro-CT images were used to measure the structural parameters and reconstruct the 3D models in volume of interest. The structural parameters of cortical and trabecular bone were measured, and the mechanical properties were predicted using micro-finite element analysis. RESULTS There was almost no significant difference in the morphological structure parameters and mechanical properties of cortical bone between normal, ovariectomized (sham-OVX) and BP intervention groups. However, BP could significantly improve bone volume fraction (BV/TV) and trabecular separation (Tb.SP) in inter-femoral condyles (IT) (sham-OVX vs. BP, p < 0.001), and had no significant effect on BV/TV in medial and lateral femoral condyles (MT, LT). Similarly, BPs could significantly affect the effective modulus in IT (sham-OVX vs. BP, p < 0.001), and had no significant difference in MT and LT. In addition, the structural parameters and effective modulus showed a good linear correlation. CONCLUSION In a short time, the effects of BP intervention and osteoporosis on cortical bone were not obvious. The effects of BP on trabecular bone in non-main weight-bearing area (IT) were valuable, while for osteoporosis, the main weight-bearing area (MT, LT) may improve the structural quality and mechanical strength of trabecular bone through exercise compensation.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Zhanglin Wu
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510920, China
| | - Chun Li
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Chenhao Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Jingyang Chen
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Mincong Wang
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510920, China.
| | - Dawei Gao
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Yufeng Wu
- Department of Orthopaedic Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, 528401, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| |
Collapse
|
2
|
Zhang J, Li H, Zhou Y, Chen S, Rong Q. An Analysis of Trabecular Bone Structure Based on Principal Stress Trajectory. Bioengineering (Basel) 2023; 10:1224. [PMID: 37892954 PMCID: PMC10604682 DOI: 10.3390/bioengineering10101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
To understand the mechanism of Wolff's law, a finite element analysis was performed for a human proximal femur, and the principal stress trajectories of the femur were extracted using the principal stress visualization method. The mechanism of Wolff's law was evaluated theoretically based on the distribution of the principal stress trajectories. Due to the dynamics of the loads, there was no one-to-one correspondence between the stress trajectories of the fixed load and the trabeculae in the cancellous architecture of the real bone. The trabeculae in the cancellous bone were influenced by the magnitude of the principal stress trajectory. Equivalent principal stress trajectories suitable for different load changes were proposed through the change in load cycle and compared with the anatomical structure of the femur. In addition, the three-dimensional distribution of the femoral principal stress trajectory was established, and the adaptability potential of each load was discussed. The principal stress visualization method could also be applied to bionic structure design.
Collapse
Affiliation(s)
| | | | | | | | - Qiguo Rong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; (J.Z.); (H.L.); (Y.Z.); (S.C.)
| |
Collapse
|
3
|
Pienkowski D, Wood CL, Malluche HH. Trabecular bone microcrack accumulation in patients treated with bisphosphonates for durations up to 16 years. J Orthop Res 2023; 41:1033-1039. [PMID: 36163612 PMCID: PMC10039958 DOI: 10.1002/jor.25441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 02/04/2023]
Abstract
This study quantified the length, number, and density of microcracks in bone from patients treated with bisphosphonates as a function of duration. Anterior iliac crest bone samples from 51 osteoporotic Caucasian females continuously treated with oral bisphosphonates for 1-16 years were obtained by bone biopsy. Samples were histologically processed and analyzed for bone area, microcrack number, and microcrack length. The analyses used statistical modeling and considered patient age, bone mineral density, bone volume/total volume, trabecular thickness, and bone turnover as potential covariates. Microcrack density (number of microcracks/total examined bone area) was linearly related (p = 0.018) to bisphosphonate treatment duration. None of the analyzed covariates contributed significantly to the observed relationship between microcrack density and bisphosphonate treatment duration. Observed increases in microcrack density with increasing bisphosphonate treatment duration is important because increasing levels of microcracks may not only affect bone remodeling but also reduce elastic modulus and are suspected to adversely affect other mechanical properties that may influence fracture risk. The present findings add to our prior results showing changes in bone material properties and modulus with bisphosphonate treatment duration and thereby provide a more comprehensive assessment of the relationship between bisphosphonate treatment duration and bone quality. Statement of Clinical Significance: The present findings provide information guiding clinical use of oral bisphosphonates for post-menopausal osteoporosis therapy.
Collapse
Affiliation(s)
- David Pienkowski
- F. Joseph Halcomb III, MD Department of Biomedical Engineering, University of Kentucky, Lexington, KY
| | | | - Hartmut H. Malluche
- Division of Nephrology, Bone & Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
4
|
Yang Y, Liu Y, Yuan X, Ren M, Chen X, Luo L, Zheng L, Liu Y. Three-dimensional finite element analysis of stress distribution on short implants with different bone conditions and osseointegration rates. BMC Oral Health 2023; 23:220. [PMID: 37061667 PMCID: PMC10105927 DOI: 10.1186/s12903-023-02945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVE This experiment aimed to investigate the effects of bone conditions and osseointegration rates on the stress distribution of short implants using finite element analysis and also to provide some reference for the application of short implants from a biomechanical prospect. MATERIALS AND METHODS Anisotropic jaw bone models with three bone conditions and 4.1 × 6 mm implant models were created, and four osseointegration rates were simulated. Stress and strain for the implants and jaws were calculated during vertical or oblique loading. RESULTS The cortical bone area around the implant neck was most stressed. The maximum von Mises stress in cortical bone increased with bone deterioration and osseointegration rate, with maximum values of 144.32 MPa and 203.94 MPa for vertical and inclined loading, respectively. The osseointegration rate had the greatest effect on the maximum principal stress in cortical bone of type III bone, with its value increasing by 63.8% at a 100% osseointegration rate versus a 25% osseointegration rate. The maximum and minimum principal stresses under inclined load are 1.3 ~ 1.7 and 1.4 ~ 1.8 times, respectively, those under vertical load. The stress on the jaw bone did not exceed the threshold when the osseointegration rate was ≥ 50% for Type II and 100% for Type III. High strain zones are found in cancellous bone, and the maximum strain increases as the bone condition deteriorate and the rate of osseointegration decreases. CONCLUSIONS The maximum stress in the jaw bone increases as the bone condition deteriorates and the osseointegration rate increases. Increased osseointegration rate reduces cancellous bone strain and improves implant stability without exceeding the yield strength of the cortical bone. When the bone condition is good, and the osseointegration ratio is relatively high, 6 mm short implants can be used. In clinical practice, incline loading is an unfavorable loading condition, and axial loading should be used as much as possible.
Collapse
Affiliation(s)
- Yunhe Yang
- Graduate School of Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Xi Yuan
- Graduate School of Dalian University, Dalian, China
| | - Mingfa Ren
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Xiaodong Chen
- Department of Prosthodontics, Dalian Stomatological Hospital, Dalian, 116021, China
| | - Lailong Luo
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - Lang Zheng
- Graduate School of Dalian University, Dalian, China
| | - Yang Liu
- Department of Prosthodontics, Dalian Stomatological Hospital, Dalian, 116021, China.
| |
Collapse
|
5
|
Ulivieri FM, Rinaudo L. Beyond Bone Mineral Density: A New Dual X-Ray Absorptiometry Index of Bone Strength to Predict Fragility Fractures, the Bone Strain Index. Front Med (Lausanne) 2021; 7:590139. [PMID: 33521014 PMCID: PMC7843921 DOI: 10.3389/fmed.2020.590139] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
For a proper assessment of osteoporotic fragility fracture prediction, all aspects regarding bone mineral density, bone texture, geometry and information about strength are necessary, particularly in endocrinological and rheumatological diseases, where bone quality impairment is relevant. Data regarding bone quantity (density) and, partially, bone quality (structure and geometry) are obtained by the gold standard method of dual X-ray absorptiometry (DXA). Data about bone strength are not yet readily available. To evaluate bone resistance to strain, a new DXA-derived index based on the Finite Element Analysis (FEA) of a greyscale of density distribution measured on spine and femoral scan, namely Bone Strain Index (BSI), has recently been developed. Bone Strain Index includes local information on density distribution, bone geometry and loadings and it differs from bone mineral density (BMD) and other variables of bone quality like trabecular bone score (TBS), which are all based on the quantification of bone mass and distribution averaged over the scanned region. This state of the art review illustrates the methodology of BSI calculation, the findings of its in reproducibility and the preliminary data about its capability to predict fragility fracture and to monitor the follow up of the pharmacological treatment for osteoporosis.
Collapse
Affiliation(s)
- Fabio Massimo Ulivieri
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Unità Operativa (UO) Medicina Nucleare, Milan, Italy
| | | |
Collapse
|
6
|
Hammond MA, Wallace JM, Allen MR, Siegmund T. Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions. Biomech Model Mechanobiol 2017; 17:605-614. [PMID: 29139053 DOI: 10.1007/s10237-017-0981-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/01/2017] [Indexed: 11/30/2022]
Abstract
Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone.
Collapse
Affiliation(s)
- Max A Hammond
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue Universitry Indianapolis, Indianapolis, IN, 46202, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Thomas Siegmund
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| |
Collapse
|
7
|
Ramos-Infante SJ, Pérez MA. In vitro and in silico characterization of open-cell structures of trabecular bone. Comput Methods Biomech Biomed Engin 2017; 20:1562-1570. [DOI: 10.1080/10255842.2017.1390086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. J. Ramos-Infante
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| | - M. A. Pérez
- M2BE-Multiscale in Mechanical and Biological Engineering, Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza Campus Río Ebro, Zaragoza, Spain
| |
Collapse
|