1
|
Liu J, Zhang Y, Yu W, Sun L, Hu J, Jiang Y, Wang O, Xing X, Xia W, Li M. TBS as a complementary tool for assessing vertebral fractures and spinal deformity in children and adolescents with osteogenesis imperfecta. Osteoporos Int 2025:10.1007/s00198-025-07423-2. [PMID: 39994027 DOI: 10.1007/s00198-025-07423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
This study evaluated trabecular bone score (TBS) for assessing vertebral fractures and spinal deformity in children and adolescents with osteogenesis imperfecta (OI). TBS showed superior performance in identifying vertebral fractures compared to areal bone mineral density (aBMD), especially in patients without densitometric osteoporosis, suggesting its potential for monitoring vertebral fractures and spinal deformity risk. BACKGROUND TBS, derived from a textural greyscale analysis of lumbar spine dual-energy X-ray absorptiometry (DXA) images, offers a non-invasive and indirect evaluation of bone microarchitecture. This method potentially enhances the assessment of skeletal phenotypes beyond the scope of aBMD. We aim to explore the utility of TBS in assessing vertebral fractures and spinal deformity in children and adolescents with OI. METHODS In this cross-sectional study, 153 children and adolescents with OI were enrolled. DXA was used to measure TBS and aBMD, and their Z-scores were calculated based on reference values for BMD and TBS in normal children and adolescents with the same age and sex. Lateral thoracolumbar films were used to evaluate vertebral fractures and calculate the spine deformity index (SDI). The accuracy of TBS and aBMD for identifying vertebral compression fractures (VCFs) was assessed using area under the curve (AUC). RESULTS TBS Z-score was negatively correlated with the age of children with OI (r = - 0.435, P < 0.001) and was positively correlated to aBMD Z-score at the lumbar spine and femoral neck (both P < 0.01), even after adjusting for confounding factors. TBS Z-score was as effective as lumbar spine aBMD Z-score in discriminating VCFs (AUC, 0.667 vs 0.666, P > 0.05). Notably, in patients without densitometric osteoporosis, TBS Z-score demonstrated superior discriminative power for VCFs compared to lumbar spine aBMD Z-score (AUC, 0.719 vs 0.545, P < 0.05). In this population, only the TBS Z-score (r = - 0.358, P < 0.05), rather than the lumbar spine aBMD Z-score, was negatively correlated with the SDI. CONCLUSION TBS has a close correlation with bone mineral density in children and adolescents with OI. In patients without densitometric osteoporosis, the Z-score of TBS is more effective than that of bone mineral density in assessing VCFs and spinal deformity, highlighting the potential of TBS in evaluating the risk of VCFs and monitoring the progression of spinal deformity.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Yi Zhang
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Wei Yu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:891-914. [PMID: 39127989 PMCID: PMC11607015 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Wang Y, Hu J, Sun L, Zhou B, Lin X, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Correlation of serum DKK1 level with skeletal phenotype in children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:2785-2795. [PMID: 38744806 PMCID: PMC11473575 DOI: 10.1007/s40618-024-02380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE We aim to detect serum DKK1 level of pediatric patients with OI and to analyze its relationship with the genotype and phenotype of OI patients. METHODS A cohort of pediatric OI patients and age-matched healthy children were enrolled. Serum levels of DKK1 and bone turnover biomarkers were measured by enzyme-linked immunosorbent assay. Bone mineral density (BMD) was measured by Dual-energy X-ray absorptiometry. Pathogenic mutations of OI were detected by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 62 OI children with mean age of 9.50 (4.86, 12.00) years and 29 healthy children were included in this study. The serum DKK1 concentration in OI children was significantly higher than that in healthy children [5.20 (4.54, 6.32) and 4.08 (3.59, 4.92) ng/mL, P < 0.001]. The serum DKK1 concentration in OI children was negatively correlated with height (r = - 0.282), height Z score (r = - 0.292), ALP concentration (r = - 0.304), lumbar BMD (r = - 0.276), BMD Z score of the lumbar spine and femoral neck (r = - 0.32; r = - 0.27) (all P < 0.05). No significant difference in serum DKK1 concentration was found between OI patients with and without vertebral compression fractures. In patients with spinal deformity (22/62), serum DKK1 concentration was positively correlated with SDI (r = 0.480, P < 0.05). No significant correlation was observed between serum DKK1 concentration and the annual incidence of peripheral fractures, genotype and types of collagen changes in OI children. CONCLUSION The serum DKK1 level was not only significantly elevated in OI children, but also closely correlated to their skeletal phenotype, suggesting that DKK1 may become a new biomarker and a potential therapeutic target of OI.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - B Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China.
| |
Collapse
|
4
|
Byrd JJ, White AC, Nissen CG, Schissel M, Van Ormer M, Velasco D, Wallace M. Genotype-phenotype correlations in 294 pediatric patients with osteogenesis imperfecta. JBMR Plus 2024; 8:ziae125. [PMID: 39450342 PMCID: PMC11499677 DOI: 10.1093/jbmrpl/ziae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited disorder characterized by bone fragility with extraskeletal manifestations mostly due to COL1A1 and COL1A2 variants. Currently, 23 genes have been implicated in the pathogenesis of OI; however, literature on genotype-phenotype correlation and incidence of non-skeletal clinical features are limited. This study aims to identify genotype-phenotype correlations in patients with OI, allowing clinicians to better inform families of prognosis, optimize patient care, and facilitate evidence-based clinical decision-making. We retrospectively reviewed 294 patients with OI to collect demographic data, clinical characteristics, and genotypic information. Patients were stratified by COL1A1/1A2 vs non-COL1A1/1A2 variants to evaluate differences in phenotype. The majority of OI was due to variants in COL1A1/1A2 (91%), with the remaining 9% due to non-COL1A1/1A2 variants. Most patients in the COL1A1/2 group were White compared to the non-COL1A1/2 group (78% vs 50%; p = 0.004). COL1A/1A2 patients had higher incidence of blue sclerae (83% vs 58%, p = 0.002), dentinogenesis imperfecta (49% vs 15%, p < 0.001), and family history of OI (34% vs 12%, p = 0.03). Those in the non-COL1A1/1A2 group have higher rates of scoliosis compared to those in the COL1A1/1A2 group (62% vs 40%, p = 0.04), as well as higher rates of expressive language disorder/delay (15% vs 0.4% in non-COL1A1/1A2 and COL1A1/1A2 patients, respectively; p < 0.001). Identifying the underlying molecular etiology early is imperative for optimal clinical care, allowing for appropriate risk counseling, identification of affected relatives, and improved anticipatory care and management. These data support that rare subtypes of OI occur more frequently in non-White individuals and demonstrated genetic associations with incidence of blue sclera, dentinogenesis imperfecta, scoliosis, and expressive language disorders.
Collapse
Affiliation(s)
- Jay J Byrd
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Andrew C White
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Claire G Nissen
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Makayla Schissel
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Matthew Van Ormer
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Danita Velasco
- Children’s Nebraska, Department of Pediatrics, Division of Genetics Omaha, NE, 68114, United States
| | - Maegen Wallace
- Phoenix Childrens Hospital, Department of Pediatric Orthopaedic Surgery Phoenix, AZ, 85016, United States
| |
Collapse
|
5
|
Aliyeva L, Ongen YD, Eren E, Sarisozen MB, Alemdar A, Temel SG, Sag SO. Genotype and Phenotype Correlation of Patients with Osteogenesis Imperfecta. J Mol Diagn 2024; 26:754-769. [PMID: 39025364 DOI: 10.1016/j.jmoldx.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/17/2024] [Accepted: 05/16/2024] [Indexed: 07/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) is the most common inherited connective tissue disease of the bone, characterized by recurrent fractures and deformities. In patients displaying the OI phenotype, genotype-phenotype correlation is used to screen multiple genes swiftly, identify new variants, and distinguish between differential diagnoses and mild subtypes. This study evaluated variants identified through next-generation sequencing in 58 patients with clinical characteristics indicative of OI. The cohort included 18 adults, 37 children, and 3 fetuses. Clinical classification revealed 25 patients as OI type I, three patients as OI type II, 18 as OI type III, and 10 as OI type IV. Fifteen variants in COL1A1 were detected in 19 patients, 9 variants in COL1A2 (n = 19), 5 variants in LEPRE1/P3H1 (n = 7), 3 variants in FKBP10 (n = 4), 3 variants in SERPINH1 (n = 2), 1 variant in IFITM5 (n = 1), and 1 variant in PLS3 (n = 1). In total, 37 variants (18 pathogenic, 14 likely pathogenic, and 5 variants of uncertain significance), including 16 novel variants, were identified in 43 (37 probands, 6 family members) of the 58 patients analyzed. This study highlights the efficacy of panel testing in the molecular diagnosis of OI, the significance of the next-generation sequencing technique, and the importance of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Lamiya Aliyeva
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Medical Genetics, Atakent Hospital, Acibadem Health Group, Istanbul, Türkiye
| | - Yasemin Denkboy Ongen
- Department of Pediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Erdal Eren
- Department of Pediatric Endocrinology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Mehmet B Sarisozen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Adem Alemdar
- Department of Translational Medicine, Health Sciences Institute, Bursa Uludag University, Bursa, Türkiye
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey; Department of Translational Medicine, Health Sciences Institute, Bursa Uludag University, Bursa, Türkiye.
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| |
Collapse
|
6
|
Lin X, Hu J, Zhou B, Wang X, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M. Efficacy and Safety of Denosumab vs Zoledronic Acid in OI Adults: A Prospective, Open-Label, Randomized Study. J Clin Endocrinol Metab 2024; 109:1873-1882. [PMID: 38181430 PMCID: PMC11180512 DOI: 10.1210/clinem/dgae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT The comparative effectiveness of denosumab and zoledronic acid for adult patients with osteogenesis imperfecta (OI) has not been established. OBJECTIVE To evaluate the efficacy and safety of denosumab and zoledronic acid in adult patients with OI. METHODS This was a prospective, open-label study. Patients were randomized to receive denosumab 60 mg every 6 months or zoledronic acid 5 mg once for 12 months. Pathogenic mutations of OI were identified by next-generation sequencing and confirmed by Sanger sequencing. Percentage changes in the areal bone mineral density (aBMD), trabecular bone score (TBS), and bone turnover biomarkers (BTMs) from baseline to 6 and 12 months of treatment, as well as safety, were evaluated. RESULTS A total of 51 adults with OI (denosumab: 25, zoledronic acid: 26) were included, of whom 49 patients had identified pathogenic mutations. At 12 months, aBMD at the lumbar spine and total hip significantly increased by 4.34% (P = .005) and 1.45% (P = .023) in the denosumab group and by 4.92% (P = .006) and 2.02% (P = .016) in the zoledronic acid group, respectively. TBS showed an increasing trend by 1.39% and 2.70% in denosumab and zoledronic acid groups, respectively. Serum levels of β-isomerized carboxy-telopeptide of type I collagen and alkaline phosphatase markedly decreased after denosumab treatment. Percentage changes in aBMD, TBS, and BTMs during the treatment were similar between the 2 groups. Patients with OI with milder phenotypes showed a significantly higher increase in the TBS after 12 months of denosumab treatment than those with more severe phenotypes (P = .030). During the study period, the denosumab group had fewer adverse events than the zoledronic acid group. CONCLUSION Denosumab effectively increases aBMD in adults with OI, with similar efficacy to zoledronic acid. Long-term and large-sample studies are needed to confirm the antifracture efficacy and safety of denosumab in adult patients with OI.
Collapse
Affiliation(s)
- Xiaoyun Lin
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bingna Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaojie Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Liu J, Lin X, Sun L, Zhang Q, Jiang Y, Wang O, Xing X, Xia W, Li M. Safety and Efficacy of Denosumab in Children With Osteogenesis Imperfecta-the First Prospective Comparative Study. J Clin Endocrinol Metab 2024; 109:1827-1836. [PMID: 38198649 PMCID: PMC11180505 DOI: 10.1210/clinem/dgad732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 01/12/2024]
Abstract
CONTEXT Denosumab is a potential therapeutic agent for osteogenesis imperfecta (OI), but its efficacy and safety remain unclear in children with OI. OBJECTIVE We aimed to investigate the effects of denosumab on bone mineral density (BMD), spinal morphometry, and safety in children with OI compared with zoledronic acid. METHODS In this prospective study, 84 children or adolescents with OI were randomized to receive denosumab subcutaneous injection every 6 months or zoledronic acid intravenous infusion once. Changes of BMD and its Z-score, vertebral shape, serum levels of calcium and bone turnover biomarkers were assessed during the 1-year treatment. RESULTS After 12 months of treatment, BMD at the lumbar spine, femoral neck, and total hip significantly increased by 29.3%, 27.8%, and 30.2% in the denosumab group, and by 32.2%, 47.1%, and 41.1% in the zoledronic acid group (all P < .001 vs baseline). Vertebral height and projection area significantly increased after denosumab and zoledronic acid treatment. Rebound hypercalcemia was found to be a common and serious side effect of denosumab, of which 14.3% reached hypercalcemic crisis. Rebound hypercalcemia could be alleviated by switching to zoledronic acid treatment. CONCLUSION Treatment with denosumab or zoledronic acid is beneficial in increasing BMD and improving the spinal morphometry of children with OI. However, denosumab should be used with caution in pediatric patients with OI because of its common and dangerous side effect of rebound hypercalcemia. The appropriate dosage and dosing interval of denosumab need to be further explored in children with OI.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Marom R, Song IW, Busse EC, Washington ME, Berrier AS, Rossi VC, Ortinau L, Jeong Y, Jiang MM, Dawson BC, Adeyeye M, Leynes C, Lietman CD, Stroup BM, Batkovskyte D, Jain M, Chen Y, Cela R, Castellon A, Tran AA, Lorenzo I, Meyers DN, Huang S, Turner A, Shenava V, Wallace M, Orwoll E, Park D, Ambrose CG, Nagamani SC, Heaney JD, Lee BH. The IFITM5 mutation in osteogenesis imperfecta type V is associated with an ERK/SOX9-dependent osteoprogenitor differentiation defect. J Clin Invest 2024; 134:e170369. [PMID: 38885336 PMCID: PMC11290974 DOI: 10.1172/jci170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes, in addition to the bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in interferon-induced transmembrane protein 5 (IFITM5). Here, we generated a conditional Rosa26-knockin mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in patients with OI type V. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with an increase in the skeletal progenitor cell population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 had decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupted early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Emily C. Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian C. Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary Adeyeye
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, UT Health Houston MD Anderson Cancer Center, Houston, Texas, USA
| | - Carolina Leynes
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Caressa D. Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dominyka Batkovskyte
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mahim Jain
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Racel Cela
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Castellon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - D. Nicole Meyers
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, and Huffington Department of Education, Innovation, and Technology, Advanced Technology Cores, and
| | - Alicia Turner
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Vinitha Shenava
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Maegen Wallace
- Orthopaedic Surgery, University of Nebraska Medical Center, Children’s Hospital and Medical Center, Omaha, Nebraska, USA
| | - Eric Orwoll
- Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland, Oregon, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine G. Ambrose
- Department of Orthopaedic Surgery, McGovern Medical School at UT Health, Houston, Texas, USA
| | - Sandesh C.S. Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Yap JYC, Lim JY, Bhatia A, Tan VKJ, Koo S, Nishimura G, Moosa S, Koh AL, Tan EC, Fong N, Jamuar SS. The IFITM5 Ser40Leu variant can manifest as prenatal Caffey disease. Am J Med Genet A 2024; 194:358-362. [PMID: 37799085 DOI: 10.1002/ajmg.a.63420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
We report on a female neonate with a clinico-radiological presentation in keeping with a lethal form of prenatal Caffey disease (PCH). She had antenatal and postnatal features of severely bowed long bones, small chest, diaphyseal hyperostosis and polyhydramnios and died shortly after birth. Initial testing excluded COL1A1-related PCH, as an OI gene panel, consisting of COL1A1, COL1A2, CRTAP, and P3H1 genes, was negative. Targeted sequencing using a gene panel was performed and a de novo heterozygous, likely pathogenic variant in IFITM5: c.119C > T(p.Ser40Leu) was identified, which was previously described to cause a severe form of progressively deforming osteogenesis imperfect (OI). To our knowledge, variants in IFITM5 have not been reported in infantile Caffey disease (ICH) or PCH. Given that the pathogenesis of PCH is largely unknown, we postulate that a subset of PCH may be associated with variants in IFITM5.
Collapse
Affiliation(s)
- Jia Ying Celeste Yap
- Nephrology Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiin Ying Lim
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Genetics Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Anju Bhatia
- Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Vic Khi June Tan
- Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Stephanie Koo
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Gen Nishimura
- Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan
| | - Shahida Moosa
- Faculty of Medicine and Health Sciences, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Department of Medical Genetics, Tygerberg Hospital, Cape Town, South Africa
| | - Ai Ling Koh
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Genetics Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ene Choo Tan
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nikki Fong
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Genetics Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Saumya Shekhar Jamuar
- Pediatric Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
- Genetics Service, Department of Pediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
10
|
Lin X, Hu J, Zhou B, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M. Genotype-phenotype relationship and comparison between eastern and western patients with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:67-77. [PMID: 37270749 PMCID: PMC10776744 DOI: 10.1007/s40618-023-02123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To evaluate the genotypic and phenotypic relationship in a large cohort of OI patients and to compare the differences between eastern and western OI cohorts. METHODS A total of 671 OI patients were included. Pathogenic mutations were identified, phenotypic information was collected, and relationships between genotypes and phenotypes were analyzed. Literature about western OI cohorts was searched, and differences were compared between eastern and western OI cohorts. RESULTS A total of 560 OI patients were identified as carrying OI pathogenic mutations, and the positive detection rate of disease-causing gene mutations was 83.5%. Mutations in 15 OI candidate genes were identified, with COL1A1 (n = 308, 55%) and COL1A2 (n = 164, 29%) being the most common mutations, and SERPINF1 and WNT1 being the most common biallelic variants. Of the 414 probands, 48.8, 16.9, 29.2 and 5.1% had OI types I, III, IV and V, respectively. Peripheral fracture was the most common phenotype (96.6%), and femurs (34.7%) were most commonly affected. Vertebral compression fracture was observed in 43.5% of OI patients. Biallelic or COL1A2 mutation led to more bone deformities and poorer mobility than COL1A1 mutation (all P < 0.05). Glycine substitution of COL1A1 or COL1A2 or biallelic variants led to more severe phenotypes than haploinsufficiency of collagen type I α chains, which induced the mildest phenotypes. Although the gene mutation spectrum varied among countries, the fracture incidence was similar between eastern and western OI cohorts. CONCLUSION The findings are valuable for accurate diagnosis and treatment of OI, mechanism exploration and prognosis judgment. Genetic profiles of OI may vary among races, but the mechanism needs to be explored.
Collapse
Affiliation(s)
- X Lin
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - J Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - B Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - W Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - X Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Zheng WB, Hu J, Sun L, Liu JY, Zhang Q, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Correlation of lipocalin 2 and glycolipid metabolism and body composition in a large cohort of children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:47-58. [PMID: 37326909 PMCID: PMC10776749 DOI: 10.1007/s40618-023-02121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
PURPOSE Lipocalin 2 (LCN2) is a newly recognized bone-derived factor that is important in regulation of energy metabolism. We investigated the correlation of serum LCN2 levels and glycolipid metabolism, and body composition in a large cohort of patients with osteogenesis imperfecta (OI). METHODS A total of 204 children with OI and 66 age- and gender-matched healthy children were included. Circulating levels of LCN2 and osteocalcin were measured by enzyme-linked immunosorbent assay. Serum levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), and low- and high-density lipoprotein cholesterol (LDL-C, HDL-C) were measured by automated chemical analyzers. The body composition was measured by dual-energy X-ray absorptiometry. Grip strength and timed-up-and-go (TUG) were tested to evaluate the muscle function. RESULTS Serum LCN2 levels were 37.65 ± 23.48 ng/ml in OI children, which was significantly lower than those in healthy control (69.18 ± 35.43 ng/ml, P < 0.001). Body mass index (BMI) and serum FBG level were significantly higher and HDL-C levels were lower in OI children than healthy control (all P < 0.01). Grip strength was significantly lower (P < 0.05), and the TUG was significantly longer in OI patients than healthy control (P < 0.05). Serum LCN2 level was negatively correlated to BMI, FBG, HOMA-IR, HOMA-β, total body, and trunk fat mass percentage, and positively correlated to total body and appendicular lean mass percentage (all P < 0.05). CONCLUSIONS Insulin resistance, hyperglycemia, obesity, and muscle dysfunction are common in OI patients. As a novel osteogenic cytokine, LCN2 deficiency may be relevant to disorders of glucose and lipid metabolism, and dysfunction of muscle in OI patients.
Collapse
Affiliation(s)
- W-B Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
- Department of Endocrinology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - J-Y Liu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - W-B Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - X-P Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Chen P, Zhou Y, Tan Z, Lin Y, Lin DLL, Wu J, Li Z, Shek HT, Wu J, Hu Y, Zhu F, Chan D, Cheung KMC, To MKT. Scoliosis in osteogenesis imperfecta: identifying the genetic and non-genetic factors affecting severity and progression from longitudinal data of 290 patients. Orphanet J Rare Dis 2023; 18:295. [PMID: 37730650 PMCID: PMC10510243 DOI: 10.1186/s13023-023-02906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Scoliosis is widely prevalent among osteogenesis imperfecta (OI) patients, and is progressive with age. However, factors affecting scoliosis in OI are not well known. METHODS We retrospectively retrieved longitudinal radiographic and clinical records of consecutive OI patients seeking treatments at our hospital from 2014 to 2022, graded their pre-operative spinal conditions into four outcome groups, estimated their progression rates, and descriptively and inferentially analyzed the genetic and non-genetic factors that may affect the outcomes and progression rates. RESULTS In all, 290 OI patients met the inclusion criteria, where 221 had genetic records. Of these 221, about 2/3 had mutations in COL1A1 or COL1A2, followed by mutations in WNT1 (9.0%), IFITM5 (9.0%) and other OI risk genes. With an average age of 12.0 years (interquartile range [IQR] 6.9-16.1), 70.7% of the cohort had scoliosis (Cobb angle > 10°), including 106 (36.5%) mild (10°-25°), 40 (13.8%) moderate (25°-50°), and 59 (20.3%) severe (> 50°) scoliosis patients. Patients with either COL1A1 and COL1A2 were strongly biased toward having mild or no scoliosis, whereas patients with mutations in IFITM5, WNT1 and other recessive genes were more evenly distributed among the four outcome grades. Lower-limb discrepancy, bone mineral density (BMD) and age of first drug used were all significantly correlated with severity outcomes. Using multivariate logistic regression, we estimated that each year older adds an odds ratio of 1.13 (95% confidence interval [CI] 1.07-1.2) in progression into advanced stages of scoliosis. We estimated a cohort-wide progression rate of 2.7 degrees per year (95% CI 2.4-3.0). Early-onset patients experienced fast progressions during both infantile and adolescent stages. Twenty-five of the 59 (42.8%) patients with severe scoliosis underwent spinal surgeries, enjoying an average Cobb angle reduction of 33° (IQR 23-40) postoperatively. CONCLUSION The severity and progression of scoliosis in osteogenesis imperfecta were affected by genetic factors including genotypes and mutation types, and non-genetic factors including age and BMD. As compared with COL1A1, mutations in COL1A2 were less damaging while those on IFITM5 and other recessive genes conferred damaging effects. Progression rates were the fastest in the adolescent adult age-group.
Collapse
Affiliation(s)
- Peikai Chen
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- The Artificial Intelligence and Big Data (AIBD) Lab, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, Guangdong, China.
| | - Yapeng Zhou
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Zhijia Tan
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yunzhi Lin
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Daniel Li-Liang Lin
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jingwei Wu
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Zeluan Li
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Hiu Tung Shek
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jianbin Wu
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Yong Hu
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
- The Artificial Intelligence and Big Data (AIBD) Lab, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, Guangdong, China
| | - Feng Zhu
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Danny Chan
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kenneth Man-Chee Cheung
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopedics and Traumatology, The University of Hong Kong - Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.
- Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
13
|
Zhao D, Sun L, Zheng W, Hu J, Zhou B, Wang O, Jiang Y, Xia W, Xing X, Li M. Novel mutation in LRP5 gene cause rare osteosclerosis: cases studies and literature review. Mol Genet Genomics 2023; 298:683-692. [PMID: 36971833 PMCID: PMC10133070 DOI: 10.1007/s00438-023-02008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
AbstractTo study the effects of low-density lipoprotein receptor-related protein 5 (LRP5) gene mutations on bone, and to open up our view of LRP5 and Wnt pathways on bone mass regulation. Three patients with increased bone mineral density or thickened bone cortex were included, who were 30-year-old, 22-year-old and 50-year-old men, respectively. The latter two patients were son and father of a same family. The characteristics of bone X-rays were evaluated in detail. Bone turnover markers were detected, such as procollagen type 1 amino-terminal peptide (P1NP), alkaline phosphatase (ALP), and type 1 collagen carboxyl terminal peptide (β-CTX). Dual energy X-ray absorptiometry (DXA) was used to measure the bone mineral density (BMD) at lumbar spine and proximal femur of the patients. The targeted next-generation sequencing (NGS) technology was used to detect pathogenic gene mutations, which were further verified by Sanger sequencing. Moreover, the gene mutation spectrum and phenotypic characteristics of reported patients with LRP5 gain-of-function mutations were summarized by reviewing the literature. The main characteristics of the first patient were headache, facial paralysis, high BMD (lumbar vertebrae 1–4: 1.877 g/cm2, Z-score: 5.8; total hip: 1.705 g/cm2, Z-score: 5.7), slightly increased P1NP (87.0 ng/mL) and β-CTX (0.761 ng/mL) level, and with thickened bone cortex, especially the cranial vault. The latter two patients showed enlargement of the mandible and enlarged osseous prominence of the tours palatinus. X-rays showed that the bone cortex of skull and long bones were thickened. The bone turnover markers and BMD were normal. All three cases carried novel missense mutations in LRP5 gene, which were mutation in exon 3 (c.586 T > G, p.Trp196Gly) of the first patient, and mutation in exon 20 (c.4240C > A, p.Arg1414Ser) of the latter two patients. Combined with the reported literature, a total of 19 gain-of-function mutations in LRP5 were detected in 113 patients from 33 families. Hotspot mutations included c.724G > A, c.512G > T and c.758C > T. Furthermore, mutations in the exon 3 of LRP5 may cause severe phenotypes. LRP5 gain-of-function mutations can lead to rare autosomal dominant osteosclerosis type Ι (ADO Ι), which was characterized by increased bone mass and thickened bone cortex. In-depth research on the Wnt pathway will be benefit for discovering important mechanisms of bone mass regulation.
Collapse
|
14
|
Rapoport M, Bober MB, Raggio C, Wekre LL, Rauch F, Westerheim I, Hart T, van Welzenis T, Mistry A, Clancy J, Booth L, Prince S, Semler O. The patient clinical journey and socioeconomic impact of osteogenesis imperfecta: a systematic scoping review. Orphanet J Rare Dis 2023; 18:34. [PMID: 36814274 PMCID: PMC9945474 DOI: 10.1186/s13023-023-02627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare heritable connective tissue disorder primarily characterised by skeletal deformity and fragility, and an array of secondary features. The purpose of this review was to capture and quantify the published evidence relating specifically to the clinical, humanistic, and economic impact of OI on individuals, their families, and wider society. METHODS A systematic scoping review of 11 databases (MEDLINE, MEDLINE in-progress, EMBASE, CENTRAL, PsycINFO, NHS EED, CEA Registry, PEDE, ScHARRHUd, Orphanet and Google Scholar), supplemented by hand searches of grey literature, was conducted to identify OI literature published 1st January 1995-18th December 2021. Searches were restricted to English language but without geographical limitations. The quality of included records was assessed using the AGREE II checklist and an adapted version of the JBI cross-sectional study checklist. RESULTS Of the identified 7,850 records, 271 records of 245 unique studies met the inclusion criteria; overall, 168 included records examined clinical aspects of OI, 67 provided humanistic data, 6 reported on the economic impact of OI, and 30 provided data on mixed outcomes. Bone conditions, anthropometric measurements, oral conditions, diagnostic techniques, use of pharmacotherapy, and physical functioning of adults and children with OI were well described. However, few records included current care practice, diagnosis and monitoring, interactions with the healthcare system, or transition of care across life stages. Limited data on wider health concerns beyond bone health, how these concerns may impact health-related quality of life, in particular that of adult men and other family members, were identified. Few records described fatigue in children or adults. Markedly few records provided data on the socioeconomic impact of OI on patients and their caregivers, and associated costs to healthcare systems, and wider society. Most included records had qualitative limitations. CONCLUSION Despite the rarity of OI, the volume of recently published literature highlights the breadth of interest in the OI field from the research community. However, significant data gaps describing the experience of OI for individuals, their families, and wider society warrant further research to capture and quantify the full impact of OI.
Collapse
Affiliation(s)
| | | | | | - Lena Lande Wekre
- TRS National Resource Center for Rare Disorders, Sunnaas Rehabilitation Hospital, Bjørnemyr, Nesodden, Norway
| | | | | | - Tracy Hart
- Osteogenesis Imperfecta Foundation, Gaithersburg, MD, USA
| | | | | | | | - Lucy Booth
- Wickenstones Ltd, Abingdon, Oxfordshire, UK
| | | | | |
Collapse
|
15
|
Tan Z, Shek HT, Dong Z, Feng L, Zhou Y, Yin S, Qiu A, Dong L, Gao B, Chen P, To MKT. Retrospective analyses of clinical features in 28 Chinese patients with type V osteogenesis imperfecta: new perspectives in an old issue. Osteoporos Int 2023; 34:369-377. [PMID: 36456709 PMCID: PMC9852172 DOI: 10.1007/s00198-022-06581-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 12/04/2022]
Abstract
UNLABELLED Type V osteogenesis imperfecta (OI) is a form of OI characterized by radial head dislocation (RHD), calcification of interosseous membrane (CIM), and hyperplastic callus (HPC). In this study, we characterized the clinical features of 28 type V OI patients. We presented that dysfunctions of elbow, hip joint, and abnormal epiphyseal growth plate were associated with ectopic calcification and summarized the history of HPC progression and treatment. INTRODUCTION The current study aims to systematically characterize the skeletal phenotypes of patients with type V OI and suggested possible surgical solutions. METHODS A total of 28 patients were admitted for inpatient care at The Hong Kong University-Shenzhen Hospital diagnosed with type V OI (either clinically diagnosed or genetically confirmed with the IFITM5 c.-14C > T mutation). RESULTS Prevalence of type V radiological features was comparable to previous literatures (RHD, 100%; CIM, 100%; HPC, 44%; and scoliosis, 50%). Novel skeletal phenotypes were presented including extension of coronoid process, acetabular labrum, acetabular protrusion, spontaneous autofusion of the hip, bulbous epiphysis, and popcorn calcification. Significant increase in BMD was observed in patients with bisphosphonate treatment. Twenty-five percent (3/12) of patients with preoperative use of indomethacin developed HPC postoperatively, and HPCs were absorbed in 2 young patients 2 years later. CONCLUSION This retrospective study summarized the clinical features and highlighted the abnormalities in elbow, hip joint, and growth plate in type V OI patients. Our study contributed to a more comprehensive clinical spectrum of type V OI. We also characterized the natural progression of HPC formation and resorption in patients in different ages. The use of bisphosphonate treatment is effective in improving bone mineral density in type V OI patients, and whether indomethacin can reduce incidence of HPC formation deserves further investigation.
Collapse
Affiliation(s)
- Zhijia Tan
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hiu Tung Shek
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhongxin Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lin Feng
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yapeng Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shijie Yin
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anmei Qiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lina Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Gao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Michael Kai Tsun To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Amorim DMR, Koga GKC, Dos Santos RN, Secundo PFC, de Ávila Fernandes E, Cardili L, Maeda SS, da Rocha Corrêa Fernandes A, Lazaretti-Castro M. Rare Association Between Osteogenesis Imperfecta and Chondrosarcoma: Could a Pathogenic Variant in the Gene SERPINF1 Explain It? Calcif Tissue Int 2023; 112:118-122. [PMID: 36322168 DOI: 10.1007/s00223-022-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Osteogenesis imperfecta (OI) type VI is a rare inherited disorder of the connective tissue caused by pathogenic variants in SERPINF1 gene, which encodes the pigment epithelium-derived factor (PEDF). PEDF is implicated in many biologic processes, including an anti-cancer role. This information is supported by in vitro and in vivo studies that evidenced its anti-angiogenic, anti-tumorigenic, and anti-metastatic properties. Although OI is related to skeletal changes such as bone fragility and deformities, as well as to other connective tissue defects, it does not represent a greater predisposition to the development of skeletal tumors. Here, we report on an adult with OI in which a deletion in exon 8 of the SERPINF1 gene (c.1152_1170del; p.384_390del) was identified. The patient presented popcorn calcification in both femoral epiphyses, but one of them presented radiological characteristics and evolution suspected of malignancy. Later, it was diagnosed as chondrosarcoma. This paper discusses that OI type VI patients may be at risk of developing some types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Leonardo Cardili
- Departament of Pathology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Setsuo Maeda
- Department of Endocrinology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
17
|
Does the c.-14C>T Mutation in the IFITM5 Gene Provide Identical Phenotypes for Osteogenesis Imperfecta Type V? Data from Russia and a Literature Review. Biomedicines 2022; 10:biomedicines10102363. [PMID: 36289625 PMCID: PMC9598403 DOI: 10.3390/biomedicines10102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a large group of genetically heterogeneous diseases resulting from decreased bone density and an abnormal microarchitecture, which are clinically manifested by abnormal bone fractures. A distinctive clinical feature of this group of diseases is the presence of spontaneous fractures and skeletal deformities. However, the clinical manifestations of different types of OI are characterized by marked polymorphism with variable severity of skeletal and extra-skeletal features. Previous studies have shown that a mutation (c.-14C>T) in the IFITM5 gene is responsible for autosomal dominant OI type V. However, the mutation has a variable expression pattern and marked clinical heterogeneity. In this study, a clinical and genetic analysis of 12 cases with molecularly confirmed OI type V from 12 unrelated families was performed. Significant clinical heterogeneity of the disease with the same molecular defect was detected. In six subjects (50%), there were no classic signs of OI type V (formation of a hyperplastic bone callus, calcification of the interosseous membrane and dislocation of the radial head). In all cases, the mutation occurred de novo.
Collapse
|
18
|
Sun L, Hu J, Liu J, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Relationship of Pathogenic Mutations and Responses to Zoledronic Acid in a Cohort of Osteogenesis Imperfecta Children. J Clin Endocrinol Metab 2022; 107:2571-2579. [PMID: 35727737 DOI: 10.1210/clinem/dgac366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Osteogenesis imperfecta (OI) is a rare, heterogeneous, genetic disorder characterized by bone fragility and recurrent fractures. Bisphosphonates (BPs) are the most commonly used medications for OI, but their efficacy has great variability. OBJECTIVE We investigated the relationship of pathogenic gene mutations and responses to zoledronic acid (ZOL) in a large cohort of children with OI. METHODS Children with OI who received ZOL treatment were included and were followed up for at least 1 year. Bone mineral density (BMD) and serum levels of β-isomerized carboxy-telopeptide of type I collagen (β-CTX, bone resorption marker) were measured at baseline and during follow-up. Causative mutations of OI were identified using next-generation sequencing and Sanger sequencing. RESULTS 201 children with OI were included. They had initiated ZOL treatment at a median age of 5 years, with mutations identified in 11 genes. After 3 years of treatment, the increase in femoral neck BMD Z-score in patients with OI with autosomal dominant (AD) inheritance was greater than that in patients with autosomal recessive or X-linked inheritance (non-AD) (4.5 ± 2.9 vs 2.0 ± 1.0, P < .001). Collagen structural defects were negatively correlated with the increase in femoral neck BMD Z-score. Patients with collagen structural defects had higher incidence of new fractures (35.1% vs 18.4%, relative risk 0.52, P = .044) and less decline in β-CTX level than those with collagen quantitative reduction. Increase in lumbar spine BMD and change in height Z-score was not associated with the genotype of children with OI. CONCLUSION Patients with OI with non-AD inheritance or with pathogenic mutations leading to collagen structural defects may have relatively poor responses to ZOL treatment, which is possibly associated with their more severe phenotypes. New therapeutic agents are worth developing in these patients.
Collapse
Affiliation(s)
- Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
19
|
Chen P, Tan Z, Qiu A, Yin S, Zhou Y, Dong Z, Qiu Y, Xu J, Li K, Dong L, Shek HT, Liu J, Yeung EHK, Gao B, Cheung KMC, To MKT. Patient-reported outcomes in a Chinese cohort of osteogenesis imperfecta unveil psycho-physical stratifications associated with clinical manifestations. Orphanet J Rare Dis 2022; 17:249. [PMID: 35765008 PMCID: PMC9238011 DOI: 10.1186/s13023-022-02394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a rare congenital disorder of the skeletal system, inflicting debilitating physical and psychological distress on patients and caregivers. Over the decades, much effort has been channeled towards understanding molecular mechanisms and developing new treatments. It has recently become more apparent that patient-reported outcome measurements (PROM) during treatment, healing and rehabilitation are helpful in facilitating smoother communication, refining intervention strategies and achieving higher quality of life. To date, systematic analyses of PROM in OI patients remain scarce. Results Here, utilizing a PROM Information System, we report a cross-sectional and longitudinal study in a southern Chinese cohort of 90 OI patients, covering both the child and adult age-groups. In the child group where both self and parental surveys were obtained, we identified two clusters of comparable sizes showing different outlooks in physical mobility and emotional experiences. One cluster (Cluster 1) is more negative about themselves than the other (Cluster 2). A concordance of 84.7% between self and parental assessments was recorded, suggesting the stability and validity of PROM-based stratification. Clinical subtyping, deformity, leg length discrepancy, and limited joint mobility were significantly associated with this stratification, with Cluster 1 showing higher percentages of severe phenotypes than Cluster 2. Since OI is a genetic disorder, we performed genetic testing on 72 of the 90 patients, but found no obvious association between genotypes and the PROM stratification. Analyses of longitudinal data suggested that patients tended to stay in the same psychological state, in both clusters. Adult patients also showed a continuous spectrum of self-evaluation that matches their clinical manifestations. Conclusion By systematically analyzing patient-reported outcomes, our study demonstrated the link between the sociopsychological wellbeing of OI patients, and their clinical manifestations, which may serve as the basis for evaluating clinical interventions and help achieve better patient-centric medical practices. The lack of genotype-PROM association may be due to the diverse mutational spectrum in OI, which warrants further investigation when a larger sample size is available. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02394-7.
Collapse
Affiliation(s)
- Peikai Chen
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China. .,School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Zhijia Tan
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anmei Qiu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Shijie Yin
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Yapeng Zhou
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Zhongxin Dong
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Yan Qiu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jichun Xu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Kangsen Li
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Lina Dong
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Hiu Tung Shek
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jingwen Liu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Eric H K Yeung
- Department of Physiotherapy, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Bo Gao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China. .,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
20
|
Zhang Y, Gao P, Yan S, Zhang Q, Wang O, Jiang Y, Xing X, Xia W, Li M. Clinical, Biochemical, Radiological, and Genetic Analyses of a Patient with VCP Gene Variant-Induced Paget's Disease of Bone. Calcif Tissue Int 2022; 110:518-528. [PMID: 34800131 DOI: 10.1007/s00223-021-00929-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Paget's disease of bone (PDB) is a rare metabolic bone disorder, which is extremely rare in Asian population. This study aimed to investigate the phenotypes and the pathogenic mutations of woman with early-onset PDB. The clinical features, bone mineral density, x-ray, radionuclide bone scan, and serum levels of alkaline phosphatase (ALP), procollagen type 1 N-terminal propeptide (P1NP), and β-carboxy-terminal cross-linked telopeptide of type 1 collagen (β-CTX) were measured in detail. The pathogenic mutations were identified by whole-exon sequencing and confirmed by Sanger sequencing. We also evaluated the effects of intravenous infusion of zoledronic acid on the bones of the patient and summarized the phenotypic characteristics of reported patients with mutation at position 155 of the valosin-containing protein (VCP). The patient only exhibited bone pain as the initial manifestation with vertebral compression fracture and extremely elevated ALP, P1NP, and β-CTX levels; she had no inclusion body myopathy and frontotemporal dementia. The missense mutation in exon 5 of the VCP gene (p.Arg155His) was identified by whole-exome sequencing and further confirmed by Sanger sequencing. No mutation in candidate genes of PDB, such as SQSTM1, CSF1, TM7SF4, OPTN, PFN1, and TNFRSF11A, were identified in the patient by Sanger sequencing. Rapid relief of bone pain and a marked decline in ALP, P1NP, and β-CTX levels were observed after zoledronic acid treatment. Previously reported patients with VCP missense mutation at position 155 (R155H) always had myopathy, frontotemporal dementia, and PDB, but the patient in this study exhibited only PDB. This was the first report of R155H mutation-induced early-onset in the VCP gene in Asian population. PDB was the only manifestation having a favorable response to zoledronic acid treatment. We broadened the genetic and clinical phenotype spectra of the VCP mutation.
Collapse
Affiliation(s)
- Yongze Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Peng Gao
- Department of Orthopedics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, Fujian, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Shuaifuyuan No.1, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
21
|
Ahmad N, Aleysae NA, Sobaihi M, Naitah N, Rasol MA, Al-Kouatli AA, Almaghamsi TM, Heaphy ELG, Attiyah MH, Hrays M, Alghamdi B, Alzahrani AS. A single-centre study of genetic mutations, audiology, echocardiogram and pulmonary function in Saudi children with osteogenesis imperfecta. J Pediatr Endocrinol Metab 2022; 35:355-362. [PMID: 34954934 DOI: 10.1515/jpem-2021-0587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Osteogenesis imperfecta (OI) is a heterogeneous group of inherited connective tissue disorders, characterised by skeletal fragility. Patients with OI may also exhibit extra-skeletal features like blue or grey scleral colour, fragile skin, easy bruising, joint laxity, short stature, deafness, cardiac valve abnormalities and abnormal pulmonary function. The objective of this study is to describe genetic mutations, prevalence of hearing issues, cardiac complications and impaired pulmonary function in children with OI. METHODS This is a cross-sectional study of 23 Saudi children aged 6 months to 18 years who were diagnosed with OI. The revised Sillence classification (2,105) was used to classify the OI type. Whole exome sequencing was performed for genetic mutations. The hearing was assessed by either pure-tone audiometry and/or otoacoustic emission testing. Cardiac defects were screened by echocardiograms. Spirometry was performed to assess pulmonary function. Data were analysed with descriptive statistics. RESULTS Based on the Sillence classification, 16 patients had OI type III, 6 had type IV and 1 had type I. Of the18 patients who had genetic sequencing, 66.6% had autosomal dominant and 33.3% had autosomal recessive mutations. Among children who had screening, hearing loss was diagnosed in 53% (9/17), congenital cardiac malformations in 26% (5/19) and restrictive lung disease in 70% (7/10). CONCLUSIONS We found significant extra-skeletal features and a high yield of genetic mutations associated with OI. We suggest further studies to develop a screening protocol for extra-skeletal features in children with OI.
Collapse
Affiliation(s)
- Noman Ahmad
- King Faisal Specialist Hospital & Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | | | | | | | - Mohammed Amin Rasol
- King Faisal Specialist Hospital & Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| | | | | | | | | | | | - Balgees Alghamdi
- Molecular Oncology Department, King Faisal Specialist Hospital & Research Centre (Gen. Org.), Riyadh, Saudi Arabia
| | - Ali Saeed Alzahrani
- Research Centre, King Faisal Specialist Hospital & Research Centre (Gen. Org.), Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Choi Y, Hwang S, Kim GH, Lee BH, Yoo HW, Choi JH. Genotype-phenotype correlations and long-term efficacy of pamidronate therapy in patients with osteogenesis imperfecta. Ann Pediatr Endocrinol Metab 2022; 27:22-29. [PMID: 35073670 PMCID: PMC8984751 DOI: 10.6065/apem.2142144.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/07/2021] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Osteogenesis imperfecta (OI) is a rare bone fragility disorder caused by defects in type 1 collagen biosynthesis. This study investigated the genotype-phenotype correlations and the efficacy of pamidronate therapy in patients with OI in a single academic center. METHODS This study included 24 patients with OI. A clinical scoring system was used to evaluate disorder severity. COL1A1 and COL1A2 genes were analyzed in 13 patients using Sanger sequencing. Genotype-phenotype correlations and the efficacy of pamidronate therapy were analyzed through a retrospective medical chart review. RESULTS Of the 24 patients, 18 (75%) were classified as type I (12 with type Ia and 6 with type Ib), 2 as type III (8.4%), and 4 as type IV (16.7%). Type Ia patients showed relatively higher lumbar bone mineral density (BMD) standard deviation scores (SDS) and lower clinical scores than those with other types. Seven patients with qualitative mutations had lower lumbar BMD-SDS (P=0.015) and higher clinical scores (P=0.008) than 6 patients with quantitative mutations. The annual fracture frequency and lumbar BMD-SDS improved in patients with qualitative mutations after pamidronate treatment. CONCLUSION This study demonstrated that OI patients with qualitative mutations in COL1A1/2 had a more severe phenotype than those with quantitative mutations. Patients with qualitative mutations showed a significant reduction in fracture frequency and an increase in lumbar BMD-SDS after pamidronate treatment. Clinical score and genotype might be helpful for predicting phenotype and response to pamidronate therapy in OI patients.
Collapse
Affiliation(s)
- Yunha Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Address for correspondence: Jin-Ho Choi Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| |
Collapse
|
23
|
Tüysüz B, Elkanova L, Uludağ Alkaya D, Güleç Ç, Toksoy G, Güneş N, Yazan H, Bayhan AI, Yıldırım T, Yeşil G, Uyguner ZO. Osteogenesis imperfecta in 140 Turkish families: Molecular spectrum and, comparison of long-term clinical outcome of those with COL1A1/A2 and biallelic variants. Bone 2022; 155:116293. [PMID: 34902613 DOI: 10.1016/j.bone.2021.116293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by increased bone fragility and deformities. Although most patients with OI have heterozygous mutations in COL1A1 or COL1A2, 17 genes have been reported to cause OI, most of which are autosomal recessive (AR) inherited, during the last years. The aim of this study is to determine the mutation spectrum in Turkish OI cohort and to investigate the genotype-phenotype correlation. METHODS 150 patients from 140 Turkish families with OI phenotype were included in this study. Mutations in OI-related genes were identified using targeted gene panel, MLPA analysis for COL1A1 and whole exome sequencing. 113 patients who had OI disease-causing variants were followed for 1-20 years. RESULTS OI disease-causing variants were detected in 117 families, of which 62.4% in COL1A1/A2, 35.9% in AR-related genes. A heterozygous variant in IFITM5 and a hemizygous in MBTPS2 were also described, one in each patient. Eighteen biallelic variants (13 novel) were identified in nine genes (FKBP10, P3H1, SERPINF1, TMEM38B, WNT1, BMP1, CRTAP, FAM46A, MESD) among which FKBP10, P3H1 and SERPINF1 were most common. The most severe phenotypes were in patients with FKBP10, SERPINF1, CRTAP, FAM46A and MESD variants. P3H1 patients had moderate, while BMP1 had the mild phenotype. Clinical phenotypes were variable in patients with WNT1 and TMEM38B mutations. We also found mutations in ten genes (PLS3, LRP5, ANO5, SLC34A1, EFEMP2, PRDM5, GORAB, OCRL1, TNFRSF11B, DPH1) associated with diseases presenting clinical features which overlap OI, in eleven families. CONCLUSION We identified disease-causing mutations in 83.6% in a large Turkish pediatric OI cohort. 40 novel variants were described. Clinical features and long-term follow-up findings of AR inherited OI types and especially very rare biallelic variants were presented for the first time. Unlike previously reported studies, the mutations that we found in P3H1 were all missense, causing a moderate phenotype.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey.
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Hakan Yazan
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - A Ilhan Bayhan
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Timur Yıldırım
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Gözde Yeşil
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
24
|
Treurniet S, Burger P, Ghyczy EA, Verbraak FD, Curro‐ Tafili KR, Micha D, Bravenboer N, Ralston SH, Vries R, Moll AC, Eekhoff EMW. Ocular characteristics and complications in patients with osteogenesis imperfecta: a systematic review. Acta Ophthalmol 2022; 100:e16-e28. [PMID: 34009739 PMCID: PMC9290710 DOI: 10.1111/aos.14882] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Osteogenesis imperfecta (OI) is a rare inherited heterogeneous connective tissue disorder characterized by bone fragility, low bone mineral density, skeletal deformity and blue sclera. The dominantly inherited forms of OI are predominantly caused by mutations in either the COL1A1 or COL1A2 gene. Collagen type I is one of the major structural proteins of the eyes and therefore is the eye theoretically prone to alterations in OI. The aim of this systematic review was to provide an overview of the known ocular problems reported in OI. METHODS A literature search (in PubMed, Embase and Scopus), which included articles from inception to August 2020, was performed in accordance with the PRISMA guidelines. RESULTS The results of this current review show that almost every component of the eye could be affected in OI. Decreased thickness of the cornea and sclera is an important factor causing eye problems in patients with OI such as blue sclera. Findings that stand out are ruptures, lacerations and other eye problems that occur after minor trauma, as well as complications from standard surgical procedures. DISCUSSION Alterations in collagen type I affect multiple structural components of the eye. It is recommended that OI patients wear protective glasses against accidental eye trauma. Furthermore, when surgery is required, it should be approached with caution. The prevalence of eye problems in different types of OI is still unknown. Additional research is required to obtain a better understanding of the ocular defects that may occur in OI patients and the underlying pathology.
Collapse
Affiliation(s)
- Sanne Treurniet
- Department of Internal Medicine, Section Endocrinology Amsterdam Bone Center Amsterdam University Medical Center Amsterdam The Netherlands
| | - Pia Burger
- Department of Internal Medicine, Section Endocrinology Amsterdam Bone Center Amsterdam University Medical Center Amsterdam The Netherlands
| | - Ebba A.E. Ghyczy
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Katie R. Curro‐ Tafili
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics Amsterdam Movement Sciences Amsterdam University Medical Center Amsterdam The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Bone and Calcium Metabolism Lab Amsterdam University Medical Center Amsterdam The Netherlands
| | - Stuart H. Ralston
- Centre for Genomic and Experimental Medicine MRC Institute of Genetics and Molecular Medicine University of Edinburgh Edinburgh UK
| | - Ralph Vries
- Medical library Vrije Universiteit Amsterdam The Netherlands
| | - Annette C. Moll
- Department of Ophthalmology Amsterdam University Medical Center Amsterdam The Netherlands
| | - Elisabeth Marelise W. Eekhoff
- Department of Internal Medicine, Section Endocrinology Amsterdam Bone Center Amsterdam University Medical Center Amsterdam The Netherlands
| |
Collapse
|
25
|
Chen P, Tan Z, Shek HT, Zhang JN, Zhou Y, Yin S, Dong Z, Xu J, Qiu A, Dong L, Gao B, To MKT. Phenotypic Spectrum and Molecular Basis in a Chinese Cohort of Osteogenesis Imperfecta With Mutations in Type I Collagen. Front Genet 2022; 13:816078. [PMID: 35154279 PMCID: PMC8831862 DOI: 10.3389/fgene.2022.816078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare inherited connective tissue dysplasia characterized with skeletal fragility, recurrent fractures and bone deformity, predominantly caused by mutations in the genes COL1A1 or COL1A2 that encode the chains of type I collagen. In the present study, clinical manifestations and genetic variants were analysed from 187 Chinese OI patients, majority of whom are of southern Chinese origin. By targeted sequencing, 63 and 58 OI patients were found carrying mutations in COL1A1 and COL1A2 respectively, including 8 novel COL1A1 and 7 novel COL1A2 variants. We validated a novel splicing mutation in COL1A1. A diverse mutational and phenotypic spectrum was observed, coupling with the heterogeneity observed in the transcriptomic data derived from osteoblasts of six patients from our cohort. Missense mutations were significantly associated (χ2p = 0.0096) with a cluster of patients with more severe clinical phenotypes. Additionally, the severity of OI was more correlated with the quality of bones, rather than the bone mineral density. Bone density is most responsive to bisphosphonate treatment during the juvenile stage (10–15 years old). In contrast, height is not responsive to bisphosphonate treatment. Our findings expand the mutational spectrum of type I collagen genes and the genotype-phenotype correlation in Chinese OI patients. The observation of effective bisphosphonate treatment in an age-specific manner may help to improve OI patient management.
Collapse
Affiliation(s)
- Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhijia Tan
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Zhijia Tan, ; Bo Gao, ; Michael Kai Tsun To,
| | - Hiu Tung Shek
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Jia-nan Zhang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yapeng Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Shijie Yin
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Zhongxin Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Jichun Xu
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Anmei Qiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Lina Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Bo Gao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Zhijia Tan, ; Bo Gao, ; Michael Kai Tsun To,
| | - Michael Kai Tsun To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Zhijia Tan, ; Bo Gao, ; Michael Kai Tsun To,
| |
Collapse
|
26
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Wang RL, Ruan DD, Hu YN, Gan YM, Lin XF, Fang ZT, Liao LS, Tang FQ, He WB, Luo JW. Genetic Analysis and Functional Study of a Pedigree With Bruck Syndrome Caused by PLOD2 Variant. Front Pediatr 2022; 10:878172. [PMID: 35601416 PMCID: PMC9120662 DOI: 10.3389/fped.2022.878172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bruck syndrome (BS) is a rare autosomal recessive inherited osteogenesis imperfecta disease characterized by increased bone fragility and joint contracture. The pathogenic gene of type I BS is FKBPl0, whereas that of type II BS is PLOD2. No significant difference has been found in the clinical phenotype between the two types of BS. In this study, we performed genetic analysis of a BS pedigree caused by PLOD2 variant and studied the corresponding cellular function. METHODS Serum biochemistry, parathyroid hormone (PTH), 25-hydroxyvitamin D [25-(OH) D], osteocalcin, and 24-h urinary calcium levels of a family member with BS was assessed. The genes of the proband were analyzed by second-generation sequencing and exon capture techniques. Sanger sequencing was also performed for the suspected responsible variant of the family member. Wild- and variant-type lentivirus plasmids were constructed by gene cloning and transfected into HEK293T cells. Cell function was verified by real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence detection. RESULTS In this pedigree, the proband was found to have a homozygous variant c.1856G > A (p.Arg619His) in exon 17 of PLOD2 (NM_182943.3). His consanguineous parents and sisters were p.Arg619His heterozygous carriers. The mRNA expression of PLOD2 in the constructed p.Arg619His variant cells was significantly upregulated, while the expression of PLOD2 and collagen I protein in the cell lysate was significantly downregulated. Immunofluorescence revealed that the wild-type PLOD2 was mainly located in the cytoplasm, and the expression of the PLOD2 protein after c.1856G > A variant was significantly downregulated, with almost no expression, aligning with the western blot results. The serum sodium, potassium, calcium, phosphorus, magnesium, alkaline phosphatase, PTH, 25-(OH) D, osteocalcin, and 24 h urinary calcium levels of the proband, his parents, and sisters were normal. CONCLUSION Through gene and cell function analyses, PLOD2 Arg619His missense variant was preliminarily confirmed to cause BS by reducing protein expression.
Collapse
Affiliation(s)
- Ruo-Li Wang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Dan-Dan Ruan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Ya-Nan Hu
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Yu-Mian Gan
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Xin-Fu Lin
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Zhu-Ting Fang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Intervention, Fujian Provincial Hospital, Fuzhou, China
| | - Li-Sheng Liao
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Hematology, Fujian Provincial Hospital, Fuzhou, China
| | - Fa-Qiang Tang
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, China
| | - Wu-Bing He
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Emergency, Fujian Provincial Hospital, Fuzhou, China.,Fujian Trauma Medical Center, Fuzhou, China
| | - Jie-Wei Luo
- Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
28
|
Zhao D, Liu Y, Liu J, Hu J, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Cardiovascular abnormalities and its correlation with genotypes of children with osteogenesis imperfecta. Front Endocrinol (Lausanne) 2022; 13:1004946. [PMID: 36339400 PMCID: PMC9632612 DOI: 10.3389/fendo.2022.1004946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Osteogenesis imperfecta (OI) is a rare disorder of abnormal production or modification of type I collagen, which is caused by mutations in COL1A1, COL1A2 or other genes. We investigate the cardiac abnormalities and its correlation with pathogenic mutations in OI children. METHODS A cross-sectional comparative study was completed in a relatively large sample of OI children, who were matched in body surface area (BSA) with healthy controls. All echocardiography was performed by experienced cardiologists using Vivid 7 equipment (GE Medical Systems, Horton, Norway). The resting standard 12-lead electrocardiogram (ECG) were obtained in OI patients by FX-8600 machine. Skeletal phenotypes of OI patients were evaluated, including information of bone fractures, deformities, motility, and bone mineral density (BMD). Pathogenic mutations of OI were detected by a next-generation sequencing panel and confirmed by Sanger sequencing. RESULTS A total of 69 OI children and 42 healthy children matched in BSA were enrolled. Abnormalities of echocardiography were found in 6 OI children, including enlarged left atrium (n=5), increased internal diameter of the left ventricle (n=1), who all carried the COL1A1 mutation. Mild regurgitation of mitral or tricuspid valves was observed in 26 OI patients. Abnormal ECG manifestations were found in 8 OI children, including deep Q wave, T wave change, premature ventricular complexes, short P-R interval, incomplete bundle branch block and high voltage of left ventricular. Compared with healthy controls, OI children had significant larger values in the main pulmonary artery (1.84 vs 1.60 cm, P < 0.01), left atrial diameter (2.58 vs 2.11 cm, P < 0.001), left ventricular internal dimension at end-diastolic (LVEDd) (3.85 vs 3.50 cm, P < 0.05) and lower left ventricular ejection fraction (LVEF) (68.40% vs 71.74%, P < 0.01). Moreover, OI patients with COL1A1 mutation tended to have greater main pulmonary artery, larger diameters of left atrial and LVEDd, and lower LVEF than healthy controls. COL1A1 mutation was correlated to dilated MPA (β = 1.557, P < 0.01), LAD (β = 3.915, P < 0.001), and LVEDd (β = 2.714, P < 0.01), and decreased LVEF (β = -3.249, P < 0.01). CONCLUSIONS Cardiovascular alterations were identified in OI children, including increased dimensions of the main pulmonary artery and left chamber, and low LVEF. The cardiovascular abnormalities seemed to be correlated to COL1A1 mutation and defects of type I collagen, which expanded our understandings of the cardiac phenotypes of OI children.
Collapse
Affiliation(s)
- Dichen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongtai Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
29
|
Mei Y, Zhang H, Zhang Z. Comparing Clinical and Genetic Characteristics of De Novo and Inherited COL1A1/COL1A2 Variants in a Large Chinese Cohort of Osteogenesis Imperfecta. Front Endocrinol (Lausanne) 2022; 13:935905. [PMID: 35909573 PMCID: PMC9329653 DOI: 10.3389/fendo.2022.935905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Nearly 85%-90% of osteogenesis imperfecta (OI) cases are caused by autosome dominant mutations of COL1A1 and COL1A2 genes, of which de novo mutations cover a large proportion, whereas their characteristics remain to be elucidated. This study aims to compare the differences in clinical and genetic characteristics of de novo and inherited COL1A1/COL1A2 mutations of OI, assess the average paternal and maternal age at conception in de novo mutations, and research the rate of nonpenetrance in inherited mutations. MATERIALS AND METHODS A retrospective comparison between de novo and inherited mutations was performed among 135 OI probands with COL1A1/COL1A2 mutations. Mutational analyses of all probands and their family members were completed by Sanger sequencing. A new clinical scoring system was developed to assess the clinical severity of OI quantitatively. RESULTS A total of 51 probands (37.78%) with de novo mutations and 84 probands (62.22%) with inherited mutations were grouped by the results of the parental gene verification. The proportion of clinical type III (P<0.001) and clinical scores (P<0.001) were significantly higher in de novo mutations. Missense mutations covered a slightly higher proportion of de novo COL1A1 mutations (46.34%) compared with inherited COL1A1 mutations (33.33%), however, lacking a significant difference (P=0.1923). The mean BMD Z/T-score at the lumbar spine in de novo mutations was -2.3 ± 1.5, lower than inherited mutations (-1.7 ± 1.8), but lacking statistical significance (P=0.0742). There was no significant difference between the two groups in OI-related phenotypes (like fracture frequency, blue sclera, and hearing loss) and biochemical indexes. In de novo mutations, the average paternal and maternal age at conception was 29.2 (P<0.05) and 26.8 (P<0.0001), respectively, which were significantly younger than the average gestational age of the population. Additionally, 98.04% of pedigrees (50/51) with de novo mutations were spontaneous conception. The rate of nonpenetrance of parents with pathogenic variants in the inherited mutation group was 25.64% (20/78). CONCLUSIONS Our data revealed that the proportion of clinical type III and clinical scores were significantly higher in de novo mutations than in inherited mutations, demonstrating that de novo mutations are more damaging because they have not undergone purifying selection.
Collapse
Affiliation(s)
| | - Hao Zhang
- *Correspondence: Zhenlin Zhang, ; Hao Zhang,
| | | |
Collapse
|
30
|
Zheng WB, Hu J, Zhao DC, Zhou BN, Wang O, Jiang Y, Xia WB, Xing XP, Li M. The role of osteocalcin in regulation of glycolipid metabolism and muscle function in children with osteogenesis imperfecta. Front Endocrinol (Lausanne) 2022; 13:898645. [PMID: 35983511 PMCID: PMC9378831 DOI: 10.3389/fendo.2022.898645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Osteoblasts are discovered to secrete hormones with endocrine effects on metabolism, and osteocalcin (OC) is the most abundant non-collagenous protein in bone. We investigate the relationship between serum OC levels and glycolipid metabolism and muscle function in children with osteogenesis imperfecta (OI). METHODS A total of 225 children with OI and 80 healthy controls matched in age and gender were included in this single center study. Serum levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low- and high-density lipoprotein cholesterol (LDL-C, HDL-C) were measured by automated analyzers. Serum levels of fasting insulin (FINS) were measured using an automated electrochemiluminescence system. Serum levels of OC and undercarboxylated osteocalcin (ucOC) were measured by enzyme-linked immunosorbent assay. Grip strength and timed-up-and-go (TUG) test were measured. Bone mineral density (BMD) and body composition were measured using dual-energy X-ray absorptiometry. RESULTS OI patients had significantly higher body mass index (BMI), FBG, and HOMA-IR, but lower HDL-C levels, lower grip strength and longer TUG than control group (all P<0.05). Serum OC, ucOC levels, and ucOC/OC in OI type III patients were significantly lower than those in OI patients with type I and IV. Serum levels of OC, ucOC, and ucOC/OC were negatively correlated to BMI, FBG, insulin levels, and HOMA-IR (all P<0.05). The ratio of ucOC/OC was positively correlated to grip strength (r=0.512, P=0.036), lean mass percentage (%LM) of the total body and limbs, and negatively correlated to fat mass percentage (%FM) of the total body, %FM and fat mass index (FMI) of the trunk (all P<0.05). CONCLUSIONS Obesity, glucolipid metabolic abnormalities, and reduced grip strength were common in children with OI. Circulating osteocalcin and ucOC may play an important role in the regulation of glucose metabolism, as well as the muscle function of children with OI.
Collapse
Affiliation(s)
- Wen-bin Zheng
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di-Chen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing-Na Zhou
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Bo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-ping Xing
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
31
|
Zhang Y, Hu J, Lin X, Sun L, Yan S, Zhang Q, Jiang Y, Wang O, Xia W, Xing X, Li M. Skeletal outcomes of patients with osteogenesis imperfecta during drug holiday of bisphosphonates: a real-world study. Front Endocrinol (Lausanne) 2022; 13:901925. [PMID: 36225201 PMCID: PMC9549175 DOI: 10.3389/fendo.2022.901925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study aimed to investigate the skeletal outcomes of patients with osteogenesis imperfecta (OI) who received bisphosphonate (BP) treatment and entered drug holiday after achieving an age- and sex-specific bone mineral density (BMD) reference. METHODS Patients with OI receiving BP treatment were enrolled when they entered drug holidays of BPs. The skeletal outcomes were evaluated in detail during the drug holiday, including BMD, X-ray of the bone, bone fracture incidence, and bone turnover biomarkers. The pathogenic mutations of OI were identified by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 149 OI patients (127 juveniles and 22 adults) who entered drug holidays after nearly 4 years of BP treatment were included. Areal BMD at the lumbar spine increased from 0.934 ± 0.151 to 0.990 ± 0.142 g/cm2 and was stable in the second (1.029 ± 0.176 g/cm2) and third years (1.023 ± 0.174 g/cm2) of BP drug holidays, and BMD at the femoral neck, trochanter, and total hip had no significant change, but it was gradually inferior to that of the same-gender juveniles in the second and third years of the drug holiday. BMD at the lumbar spine and proximal hip did not change and was inferior to that of the same-gender adults. The average time of fractures fluctuated from 0.18 to 0.08 per year in juveniles, while only one adult suffered from a fracture during BP drug holidays. Bone turnover markers were in the normal range, except for a mildly high level of β-carboxy-terminal cross-linked telopeptide of type 1 collagen in the juvenile group. A total of 17 (11.4%) patients received BP retreatment because of bone loss during the drug holiday. OI type III and type IV and COL1A2 mutation were correlated to a longer duration of BP treatment to enter drug holidays (all p < 0.05). Old age at initial treatment (OR, 1.056) and OI type III (OR, 10.880) were correlated to a higher risk of BP retreatment. CONCLUSIONS OI patients will undergo nearly 4 years of BP treatment to achieve drug holidays. During the 3 years of the drug holiday, the patients' BMD is stable, and fracture incidence does not increase significantly. Patients are more inclined to need retreatment during drug holidays owing to the late start of BP treatment and more severe OI phenotypes.
Collapse
Affiliation(s)
- Yongze Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Hu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoyun Lin
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Lei Sun
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Mei Li,
| |
Collapse
|
32
|
Knocking out TMEM38B in human foetal osteoblasts hFOB 1.19 by CRISPR/Cas9: A model for recessive OI type XIV. PLoS One 2021; 16:e0257254. [PMID: 34582479 PMCID: PMC8478202 DOI: 10.1371/journal.pone.0257254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV molecular basis is largely unknown and, due to the rarity of the disease, the availability of patients’ osteoblasts is challenging. Thus, CRISPR/Cas9 was used to knock out (KO) TMEM38B in the human Foetal Osteoblast hFOB 1.19 to obtain an OI type XIV model. CRISPR/Cas9 is a powerful technology to generate in vitro and in vivo models for heritable disorders. Its limited cost and ease of use make this technique widely applicable in most laboratories. Nevertheless, to fully take advantage of this approach, it is important to be aware of its strengths and limitations. Three gRNAs were used and several KO clones lacking the expression of TRIC-B were obtained. Few clones were validated as good models for the disease since they reproduce the altered ER calcium flux, collagen I structure and impaired secretion and osteoblastic markers expression detected in patients’ cells. Impaired proliferation and mineralization in KO clones unveiled the relevance of TRIC-B in osteoblasts functionality.
Collapse
|
33
|
Zeng Y, Pan Y, Mo J, Ling Z, Jiang L, Xiong F, Yan W. Case Report: A Novel COL1A1 Missense Mutation Associated With Dentineogenesis Imperfecta Type I. Front Genet 2021; 12:699278. [PMID: 34249109 PMCID: PMC8260930 DOI: 10.3389/fgene.2021.699278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Osteogenesis imperfecta (OI) is a clinical and genetic disorder that results in bone fragility, blue sclerae and dentineogenesis imperfecta (DGI), which is mainly caused by a mutation in the COL1A1 or COL1A2 genes, which encode type I procollagen. Case Report: A missense mutation (c.1463G > C) in exon 22 of the COL1A1 gene was found using whole-exome sequencing. However, the cases reported herein only exhibited a clinical DGI-I phenotype. There were no cases of bone disease or any other common abnormal symptom caused by a COL1A1 mutation. In addition, the ultrastructural analysis of the tooth affected with non-syndromic DGI-I showed that the abnormal dentine was accompanied by the disruption of odontoblast polarization, a reduced number of odontoblasts, a reduction in hardness and elasticity, and the loss of dentinal tubules, suggesting a severe developmental disorder. We also investigated the odontoblast differentiation ability using dental pulp stem cells (DPSCs) that were isolated from a patient with DGI-I and cultured. Stem cells isolated from patients with DGI-I are important to elucidate their pathogenesis and underlying mechanisms to develop regenerative therapies. Conclusion: This study can provide new insights into the phenotype-genotype association in collagen-associated diseases and improve the clinical diagnosis of OI/DGI-I.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Pan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiting Ling
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lifang Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Harrington J, AlSubaihin A, Dupuis L, Kannu P, Mendoza-Londono R, Howard A. Diagnostic utility of next-generation sequence genetic panel testing in children presenting with a clinically significant fracture history. Arch Osteoporos 2021; 16:88. [PMID: 34091789 DOI: 10.1007/s11657-021-00943-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
UNLABELLED We assessed the diagnostic utility of genetic panel testing to detect pathogenic variants associated with osteogenesis imperfecta in children presenting with multiple fractures. Thirty-five percent of children had a pathogenic variant. A history of a femur fracture or a first fracture occurring under 2 years of age were significant clinical predictors. PURPOSE The use of next-generation sequencing (NGS) genetic panels offers a comprehensive rapid diagnostic test to evaluate for pathogenic variants in the expanding list of genes associated with osteogenesis imperfecta (OI). We aimed to assess the diagnostic utility of this method in children with a clinically significant fracture history. METHODS NGS panel testing was performed in 87 children presenting with multiple long bone or vertebral fractures. Subjects with a known family history of OI were excluded. Associations between genetic findings and clinical characteristics were analyzed in a retrospective observational study. RESULTS Thirty-five percent of patients were found to have a disease-causing variant, with a higher detection rate in those patients with extra-skeletal features of OI (94 vs. 20%, p < 0.001). In subjects with extra-skeletal clinical OI features, 69% were found to have pathogenic variants in COL1A1 or COL1A2. In children without extra-skeletal features, 14 of 70 (20%) had pathogenic variants, of which 7 were variants in type 1 collagen, and the remaining 7 variants were associated with osteoblast function or signaling (PLS3, SP7, LRP5). Clinical predictors for detecting a disease-causing variant included a history of having a first fracture that occurred under 2 years of age (Odds ratio 5.5, 95%CI 1.8, 16.9) and a history of a femur fracture (Odds ratio 3.3, 95%CI 1.0, 11.1). CONCLUSION NGS panel testing will detect causative pathogenic variants in up to a third of children with a clinically significant fracture history, particularly where there is a history of early femur fracture.
Collapse
Affiliation(s)
- Jennifer Harrington
- Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Abdulmajeed AlSubaihin
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Peter Kannu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Andrew Howard
- Division of Orthopedics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
35
|
Higuchi Y, Hasegawa K, Futagawa N, Yamashita M, Tanaka H, Tsukahara H. Genetic analysis in Japanese patients with osteogenesis imperfecta: Genotype and phenotype spectra in 96 probands. Mol Genet Genomic Med 2021; 9:e1675. [PMID: 33939306 PMCID: PMC8222851 DOI: 10.1002/mgg3.1675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/14/2021] [Accepted: 03/23/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare connective-tissue disorder characterized by bone fragility. Approximately 90% of all OI cases are caused by variants in COL1A1 or COL1A2. Additionally, IFITM5 variants are responsible for the unique OI type 5. We previously analyzed COL1A1/2 variants in 22 Japanese families with OI through denaturing high-performance liquid chromatography screening, but our detection rate was low (41%). METHODS To expand the genotype-phenotype correlations, we performed a genetic analysis of COL1A1/2 and IFITM5 in 96 non-consanguineous Japanese OI probands by Sanger sequencing. RESULTS Of these individuals, 54, 41, and 1 had type 1 (mild), type 2-4 (moderate-to-severe), and type 5 phenotypes, respectively. In the mild group, COL1A1 nonsense and splice-site variants were prevalent (n = 30 and 20, respectively), but there were also COL1A1 and COL1A2 triple-helical glycine substitutions (n = 2 and 1, respectively). In the moderate-to-severe group, although COL1A1 and COL1A2 glycine substitutions were common (n = 14 and 18, respectively), other variants were also detected. The single case of type 5 had the characteristic c.-14C>T variant in IFITM5. CONCLUSION These results increase our previous detection rate for COL1A1/2 variants to 99% and provide insight into the genotype-phenotype correlations in OI.
Collapse
Affiliation(s)
- Yousuke Higuchi
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Natsuko Futagawa
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Pediatrics, Okayama University Hospital, Okayama, Japan
| | - Miho Yamashita
- Faculty of Human Life Sciences, Notre Dame Seishin University, Okayama, Japan
| | - Hiroyuki Tanaka
- Department of Pediatrics, Okayama Saiseikai General Hospital, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
36
|
Xi L, Zhang H, Zhang ZL. Clinical and genetic analysis in 185 Chinese probands of osteogenesis imperfecta. J Bone Miner Metab 2021; 39:416-422. [PMID: 33070251 DOI: 10.1007/s00774-020-01163-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a well-known heritable disorder of connective tissue characterized by skeletal fragility and low bone mass. Nearly 90% of patients with OI have disease variants in COL1A1 and COL1A2 that encode for the α1 and α2 chains of type I collagen. MATERIALS AND METHODS A retrospective analysis of 185 probands who were diagnosed with OI in Shanghai Jiao Tong University Affiliated Sixth People's Hospital from March 2005 to December 2019 was performed. RESULTS A total of 140 mutations in COL1A1 and 45 mutations in COL1A2 were identified, of which 18 variations were novel. In the phenotype analysis, there were more sporadic cases than familial OI cases in China (54.6% vs. 45.4%, P < 0.001). A total of 98.9% of patients presented with a fracture history. The most common fracture sites were extremity long bones (femur, tibia-fibula and radius-ulna accounted for 36.6%, 17.1% and 11.7%, respectively). Patients with OI types III and IV, especially type III, had a higher proportion of dentinogenesis imperfecta (DI) than patients with OI type I (55% vs. 28%, P < 0.001). Interestingly, G767S and D1219N in COL1A1 and G337S in COL1A2 were the most frequent (3.52%, 2.11% and 8.89%, respectively), which seem to be hotspot mutations in the COL1A1 and COL1A2 genes in Chinese patients. CONCLUSIONS This study describes the mutations in the main pathogenic genes, COL1A1 and COL1A2, and the clinical characteristics of osteogenesis imperfecta in China. Furthermore, these findings help reveal the genetic basis of Asian OI patients and contribute to genetic counselling.
Collapse
Affiliation(s)
- Lei Xi
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hao Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
37
|
Zhang J, Hu H, Mu W, Yu M, Chen W, Mi D, Yang K, Guo Q. Case Report: Exome Sequencing Identified a Novel Compound Heterozygous Variation in PLOD2 Causing Bruck Syndrome Type 2. Front Genet 2021; 12:619948. [PMID: 33664768 PMCID: PMC7921790 DOI: 10.3389/fgene.2021.619948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022] Open
Abstract
Bruck Syndrome (BRKS) is a rare type of recessive osteogenesis imperfecta (OI) and consists of two subtypes, BRKS1 and BRKS2, which are caused by variations in FKBP10 and PLOD2 genes, respectively. In this study, a family that had experienced multiple miscarriages and recurrent fetal skeletal dysplasia was recruited for the purpose of a multiplatform laboratory investigation. Prenatal genetic testing with whole-exome sequencing (WES) identified a compound heterozygous variation in the PLOD2 gene with two variants, namely c.2038C>T (p.R680*) and c.191_201+3 delATACTGTGAAGGTA (p.Y64Cfs*12). The amino acids affected by the two variants maintained conserved across species. And the result of immunohistochemistry (IHC) indicated that the expression of PLOD2 protein in the proband's osteochondral tissue was significantly decreased. These findings in our study expanded the variation spectrum of PLOD2 gene, provided solid evidence for the family's counseling in regard to future pregnancies, strongly supported the application of WES in prenatal diagnosis, and might give insight into the understanding of PLOD2 function.
Collapse
Affiliation(s)
- Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Huaying Hu
- School of Medicine, Xiamen University, Xiamen, China.,Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing, China
| | - Weihong Mu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Mei Yu
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Dongqing Mi
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qing Guo
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, China
| |
Collapse
|
38
|
Pan H, Ding Y, Jiang Y, Wang X, Rao J, Zhang X, Yu H, Hou Q, Li T. LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell Int 2021; 21:7. [PMID: 33407453 PMCID: PMC7789183 DOI: 10.1186/s12935-020-01644-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND LncRNA was known to be closely associated with the progression of human tumors. The role of lncRNA LIFR-AS1 in the pathogenesis and progression of gastric tumor is still unclear. The aim of this study was to investigate the function of LIFR-AS1 and the underlying mechanism in the pathogenesis and progression of gastric cancer. METHODS QRT-PCR was used to evaluate the expression of LIFR-AS1, miR-29a-3p and COL1A2 in gastric tumor tissues and cells. Western blotting was used to evaluate the protein expression of COL1A2 in gastric tumor cells. CCK-8 assay, transwell assay and flow cytometry were used to evaluate the roles of LIFR-AS1, miR-29a-3p and COL1A2 in cell proliferation, invasion, migration and apoptosis. The relationship among LIFR-AS1, miR-29a-3p and COL1A2 was assessed by bioinformatics analyses and luciferase reporter assay. RESULTS The expression levels of LIFR-AS1 were significantly increased in gastric tumor tissues and cells, while the expression levels of miR-29a-3p were decreased. The expression of miR-29a-3p was negatively correlated with the expression of LIFR-AS1 in gastric cancer tumor tissues. Knocking down of LIFR-AS1 inhibited proliferation, invasion and migration of gastric tumor cells, and induced apoptosis of gastric tumor cells. Bioinformatics analyses and integrated experiments revealed that LIFR-AS1 elevated the expression of COL1A2 through sponging miR-29a-3p, which further resulted in the progression of gastric tumor. CONCLUSION LIFR-AS1 plays an important role as a competing endogenous RNA in gastric tumor pathogenesis and may be a potential target for the diagnosis and treatment of gastric tumor.
Collapse
Affiliation(s)
- Haiyan Pan
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Yugang Jiang
- Department of gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, 250021, Shandong, People's Republic of China
| | - Xingjie Wang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Jiawei Rao
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Xingshan Zhang
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Qinghua Hou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Tao Li
- Department of Chemotherapy, The People's Hospital of Gaozhou, Gaozhou, 525200, Guangdong, People's Republic of China.
| |
Collapse
|
39
|
Chetty M, Roomaney IA, Beighton P. The evolution of the nosology of osteogenesis imperfecta. Clin Genet 2020; 99:42-52. [PMID: 32901963 DOI: 10.1111/cge.13846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/19/2023]
Abstract
Osteogenesis imperfecta (OI) is a relatively common genetic skeletal disorder with an estimated frequency of 1 in 20 000 worldwide. The manifestations are diverse and although individually rare, the several different forms contribute to the production of a significant number of affected individuals with considerable morbidity and mortality. During the last decade, there have been extensive molecular investigations into the etiology of OI and these advances have direct relevance to the medical management of the disorder, and the purpose of this review is to document the history and evolution of the nosology of OI. The current nosology, based on molecular concepts, which are crucial in the identification of genotype-phenotype correlations in persons with OI, is also outlined. The successive revisions of the nosology and classification of OI have highlighted the importance of the nomenclature of the condition in order for it to be recognized by clinicians, scientists and patient advocacy groups. In this way, improved counseling of patients and individualized, tailored therapeutic approaches based on the underlying pathophysiology of the individual's type of OI have been facilitated.
Collapse
Affiliation(s)
- Manogari Chetty
- Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.,University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| | - Imaan Amina Roomaney
- Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.,University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| | - Peter Beighton
- Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.,Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| |
Collapse
|
40
|
Intarak N, Budsamongkol T, Theerapanon T, Chanamuangkon T, Srijunbarl A, Boonprakong L, Porntaveetus T, Shotelersuk V. Tooth ultrastructure of a novel COL1A2 mutation expanding its genotypic and phenotypic spectra. Oral Dis 2020; 27:1257-1267. [PMID: 32989910 DOI: 10.1111/odi.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate tooth ultrastructure and mutation of two patients in a family affected with osteogenesis imperfecta (OI) type IV and dentinogenesis imperfecta (DGI). METHODS Mutations were detected by whole exome and Sanger sequencing. The permanent second molar obtained from the proband (DGI1) and the primary first molar from his affected son (DGI2) were studied for their color, roughness, mineral density, hardness, elastic modulus, mineral content, and ultrastructure, compared to the controls. RESULTS Two novel missense COL1A2 variants, c.752C > T (p.Ser251Phe) and c.758G > T (p.Gly253Val), were identified in both patients. The c.758G > T was predicted to be the causative mutation. Pulp cavities of DGI1 (permanent teeth) were obliterated while those of DGI2 (primary teeth) were wide. The patients' teeth had darker and redder colors; reduced dentin hardness; decreased, disorganized, and scattered dentinal tubules and collagen fibers; and irregular dentinoenamel junction (DEJ), compared to controls. Lacunae-like structures were present in DGI2. CONCLUSIONS We reported the novel causative mutation, c.758G > T (p.Gly253Val), in COL1A2 for OI type IV and DGI. The DGI dentin demonstrated inferior mechanical property and ultrastructure, suggesting severe disturbances of dentin formation. These could contribute to fragility and prone to infection of DGI teeth. This study expands phenotypic and genotypic spectra of COL1A2 mutations.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thunyaporn Budsamongkol
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Geriatric Dentistry and Special Patients Care Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Excellence Center in Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
41
|
Li S, Cao Y, Wang H, Li L, Ren X, Mi H, Wang Y, Guan Y, Zhao F, Mao B, Yang T, You Y, Guan X, Yang Y, Zhang X, Zhao X. Genotypic and Phenotypic Analysis in Chinese Cohort With Autosomal Recessive Osteogenesis Imperfecta. Front Genet 2020; 11:984. [PMID: 33093841 PMCID: PMC7523636 DOI: 10.3389/fgene.2020.00984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare heritable skeletal disorder which is mainly caused by defected type I collagen. Autosomal recessive OI (AR-OI) is caused by mutations of genes that are responsible for type I collagen modification and folding, and is often associated with more severe phenotypes. Due to the limited number of recessive OI patients, it has been difficult to study the mutation spectrum as well as the correlation of genotype and phenotype. This study recruited a Chinese cohort of 74 AR-OI families, aiming to establish the mutation spectrum and to examine the genotypic and phenotypic correlation. We identified 82 variants including 25 novel variants and 57 HGMD reported variants in these AR-OI patients, using whole exome sequencing/panel sequencing combined with Sanger sequencing. Pathogenic mutations were found at WNT1 (n = 30, 40.54%), SERPINF1 (n = 22, 29.73%), FKBP10 (n = 10, 13.51%), CRTAP (n = 3, 4.05%), P3H1 (n = 3, 4.05%), SERPINH1 (n = 2, 2.70%), SEC24D (n = 3, 4.05%), and PLOD2 (n = 1, 1.35%) respectively. Thus, WNT1 represents the most frequent pathogenic gene of AR-OI in Chinese population. The most common clinical manifestations of AR-OI patients include walking problem (72.86%), scoliosis (65.28%) and frequent fractures (fractures ≥2/year) (54.05%). Interestingly, ptosis represents a unique phenotype of patients carrying WNT1 variants, and it was rare in patients harboring other pathogenic genes. Our study expanded the mutation spectrum of AR-OI and enriched the knowledge of genotypic and phenotypic correlation in Chinese cohort with AR-OI.
Collapse
Affiliation(s)
- Shan Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yixuan Cao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Han Wang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lulu Li
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuzhi Ren
- The People's Hospital of Wuqing District, Tianjin, China
| | - Huan Mi
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yanzhou Wang
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Feiyue Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bin Mao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi You
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Guan
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yujiao Yang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xue Zhang
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Zheng WB, Li LJ, Zhao DC, Wang O, Jiang Y, Xia WB, Li M. A novel variant in AIRE causing a rare, non‑classical autoimmune polyendocrine syndrome type 1. Mol Med Rep 2020; 22:1285-1294. [PMID: 32627016 PMCID: PMC7339480 DOI: 10.3892/mmr.2020.11227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/14/2020] [Indexed: 11/06/2022] Open
Abstract
Autoimmune polyendocrine syndrome type 1 (APS‑1) is a rare inherited autoimmune disease, characterized by a classic triad, including chronic mucocutaneous candidiasis, primary adrenocortical insufficiency and hypoparathyroidism. The present study investigated phenotypes and pathogenic variants in a Chinese woman with non‑classical APS‑1. Disease‑associated variants in a patient with APS‑1 were identified via targeted next generation sequencing and the variant was confirmed via Sanger sequencing. Serum levels of calcium, phosphorus, parathyroid hormone (PTH), follicle‑stimulating hormone (FSH), luteinizing hormone (LH), estradiol and urinary levels of calcium were measured. Blood count assays and bone marrow morphology were investigated. The patient was a 32‑year‑old woman who had suffered from typical carpopedal spasms since she was 7 years old. She developed syncope, primary amenorrhea, intermittent diarrhea and general fatigue in subsequent years. Hypocalcemia, hyperphosphatemia, low levels of PTH and estradiol, elevated levels of FSH and LH, and absence of erythroblasts were observed, which indicated hypoparathyroidism, primary ovarian insufficiency and pure red cell aplasia. A novel heterozygous missense variant (NM_000383.2: c.623G>T, NP_000374.1: p.Gly208Val) in exon 5 of autoimmune regulator and a reported variant (NM_000383.2: c.371C>T, NP_000374.1: p.Pro124Leu) in exon 3 were detected, of which the c.623G>T variant may be a pathogenic variation that induces APS‑1. Under a regular follow‑up and therapeutic adjustment of calcium, calcitriol, hormone replacement therapy and methylprednisolone, the endocrine function and clinical symptoms of the patient were notably improved. The results of the present study expand the known genetic and phenotypical spectra of APS‑1.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lu-Jiao Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Di-Chen Zhao
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ou Wang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Yan Jiang
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wei-Bo Xia
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Mei Li
- Department of Endocrinology, National Health Commission Key Laboratory of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
43
|
Fernandes AM, Rocha-Braz MGM, França MM, Lerario AM, Simões VRF, Zanardo EA, Kulikowski LD, Martin RM, Mendonca BB, Ferraz-de-Souza B. The molecular landscape of osteogenesis imperfecta in a Brazilian tertiary service cohort. Osteoporos Int 2020; 31:1341-1352. [PMID: 32123938 DOI: 10.1007/s00198-020-05366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
UNLABELLED We have sought the molecular diagnosis of OI in 38 Brazilian cases through targeted sequencing of 15 candidate genes. While 71% had type 1 collagen-related OI, defects in FKBP10, PLOD2 and SERPINF1, and a potential digenic P3H1/WNT1 interaction were prominent causes of OI in this underrepresented population. INTRODUCTION Defects in type 1 collagen reportedly account for 85-90% of osteogenesis imperfecta (OI) cases, but most available molecular data has derived from Sanger sequencing-based approaches in developed countries. Massively parallel sequencing (MPS) allows for systematic and comprehensive analysis of OI genes simultaneously. Our objective was to obtain the molecular diagnosis of OI in a single Brazilian tertiary center cohort. METHODS Forty-nine individuals (84% adults) with a clinical diagnosis of OI, corresponding to 30 sporadic and 8 familial cases, were studied. Sixty-three percent had moderate to severe OI, and consanguinity was common (26%). Coding regions and 25-bp boundaries of 15 OI genes (COL1A1, COL1A2, IFITM5 [plus 5'UTR], SERPINF1, CRTAP, P3H1, PPIB, SERPINH1, FKBP10, PLOD2, BMP1, SP7, TMEM38B, WNT1, CREB3L1) were analyzed by targeted MPS and variants of interest were confirmed by Sanger sequencing or SNP array. RESULTS A molecular diagnosis was obtained in 97% of cases. COL1A1/COL1A2 variants were identified in 71%, whereas 26% had variants in other genes, predominantly FKBP10, PLOD2, and SERPINF1. A potential digenic interaction involving P3H1 and WNT1 was identified in one case. Phenotypic variability with collagen defects could not be explained by evident modifying variants. Four consanguineous cases were associated to heterozygous COL1A1/COL1A2 variants, and two nonconsanguineous cases had compound PLOD2 heterozygosity. CONCLUSIONS Novel disease-causing variants were identified in 29%, and a higher proportion of non-collagen defects was seen. Obtaining a precise diagnosis of OI in underrepresented populations allows expanding our understanding of its molecular landscape, potentially leading to improved personalized care in the future.
Collapse
Affiliation(s)
- A M Fernandes
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M G M Rocha-Braz
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M M França
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Department of Medicine, Section of Endocrinology, The University of Chicago, Chicago, IL, 60637, USA
| | - A M Lerario
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - V R F Simões
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - E A Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - L D Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - R M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - B B Mendonca
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - B Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
44
|
Zheng WB, Li LJ, Zhao DC, Wang O, Jiang Y, Xia WB, Xing XP, Li M. Novel variants in COL2A1 causing rare spondyloepiphyseal dysplasia congenita. Mol Genet Genomic Med 2020; 8:e1139. [PMID: 31972903 PMCID: PMC7057085 DOI: 10.1002/mgg3.1139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background Spondyloepiphyseal dysplasia congenita (SEDC) is an extremely rare inherited chondrodysplasia characterized by abnormal epiphyses, short stature, and flattened vertebral bodies. We investigate the phenotypes and the disease‐associated variants of SEDC in two unrelated Chinese families. Methods We identified disease‐associated variants in two nonconsanguineous families with SEDC using targeted next‐generation sequencing and confirmed the variants using Sanger sequencing. We investigated the phenotypes of the patients, including clinical manifestations, bone turnover biomarkers, bone mineral density and skeletal radiographic features. Results Two probands were diagnosed as SEDC according to the phenotypes of disproportionately short‐trunk stature, kyphosis, lumbar lordosis and adduction deformity of hips. Radiographs revealed kyphosis and lumbar lordosis, flattened vertebral bodies, compressed femoral heads and shortening of the femurs. Bone mineral density of the probands was lower than that of age‐ and gender‐matched normal children, but bone turnover biomarker levels were within normal range. Two novel heterozygous missense variants (NM_001844.5: c.1654 G>A, NP_001835.3: p.Gly552Arg; NM_001844.5: c.3518G>T, NP_001835.3: p.Gly1173Val) in collagen type II alpha 1 chain (COL2A1) were detected in the two families, which would impair the formation of stable triple‐helical type II collagen. Conclusions We identified two novel disease‐associated variants in COL2A1, which led to severe SEDC. Our findings expanded the gene variant spectrum and phenotypic spectrum of extremely rare type II collagenopathies.
Collapse
Affiliation(s)
- Wen-Bin Zheng
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu-Jiao Li
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di-Chen Zhao
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ou Wang
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Jiang
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Bo Xia
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Ping Xing
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Li
- Key Laboratory of Endocrinology, Department of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Mumm S, Gottesman GS, Wenkert D, Campeau PM, Nenninger A, Huskey M, Bijanki VN, Veis DJ, Barnes AM, Marini JC, Stolina M, Zhang F, McAlister WH, Whyte MP. Bruck syndrome 2 variant lacking congenital contractures and involving a novel compound heterozygous PLOD2 mutation. Bone 2020; 130:115047. [PMID: 31472299 PMCID: PMC6945817 DOI: 10.1016/j.bone.2019.115047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
Bruck syndrome (BRKS) is the rare disorder that features congenital joint contractures often with pterygia and subsequent fractures, also known as osteogenesis imperfecta (OI) type XI (OMIM # 610968). Its two forms, BRKS1 (OMIM # 259450) and BRKS2 (OMIM # 609220), reflect autosomal recessive (AR) inheritance of FKBP10 and PLOD2 loss-of-function mutations, respectively. A 10-year-old girl was referred with blue sclera, osteopenia, poorly-healing fragility fractures, Wormian skull bones, cleft soft palate, congenital fusion of cervical vertebrae, progressive scoliosis, bell-shaped thorax, restrictive and reactive pulmonary disease, protrusio acetabuli, short stature, and additional dysmorphic features without joint contractures. Iliac crest biopsy after alendronate treatment that improved her bone density revealed low trabecular connectivity, abundant patchy osteoid, and active bone formation with widely-spaced tetracycline labels. Chromosome 22q11 deletion analysis for velocardiofacial syndrome, COL1A1 and COL1A2 sequencing for prevalent types of OI, and Sanger sequencing of LRP5, PPIB, FKBP10, and IFITM5 for rare pediatric osteoporoses were negative. Copy number microarray excluded a contiguous gene syndrome. Instead, exome sequencing revealed two missense variants in PLOD2 which encodes procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (lysyl hydroxylase 2, LH2); exon 8, c.797G>T, p.Gly266Val (paternal), and exon 12, c.1280A>G, p.Asn427Ser (maternal). In the Exome Aggregation Consortium (ExAC) database, low frequency (Gly266Val, 0.0000419) and absence (Asn427Ser) implicated both variants as mutations of PLOD2. The father, mother, and sister (who carried the exon 12 defect) were reportedly well with normal parental DXA findings. BRKS2, characterized by under-hydroxylation of type I collagen telopeptides compromising their crosslinking, has been reported in at least 16 probands/families. Most PLOD2 mutations involve exons 17-19 (of 20 total) encoding the C-terminal domain with LH activity. However, truncating defects (nonsense, frameshift, splice site mutations) are also found throughout PLOD2. In three reports, AR PLOD2 mutations are not associated with congenital contractures. Our patient's missense defects lie within the central domain of unknown function of PLOD2. In our patient, compound heterozygosity with PLOD2 mutations is associated with a clinical phenotype distinctive from classic BRKS2 indicating that when COL1A1 and COL1A2 mutation testing is negative for OI without congenital contractures or pterygia, atypical BRKS should be considered.
Collapse
Affiliation(s)
- Steven Mumm
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Deborah Wenkert
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | - Angela Nenninger
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Margaret Huskey
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Vinieth N Bijanki
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Deborah J Veis
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Aileen M Barnes
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Joan C Marini
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Marina Stolina
- Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - William H McAlister
- Mallinckrodt Institute of Radiology, Washington University School of Medicine at St. Louis Children's Hospital, St. Louis, MO 63110, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
46
|
A novel Ser40Trp variant in IFITM5 in a family with osteogenesis imperfecta and review of the literature. Clin Dysmorphol 2019; 28:120-125. [PMID: 30985308 DOI: 10.1097/mcd.0000000000000279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Osteogenesis imperfecta, is a genetically and clinically heterogeneous connective tissue disorder that disrupts bone architecture, making it fragile and more prone to fractures. While more than 85% of cases are due to variants in COL1A1 and COL1A2, variants in noncollagen genes have been identified in the remaining cases. The recurring heterozygous variant in IFITM5 (c.-14C>T) leads to osteogenesis imperfecta type V, a second missense variant in IFITM5 (c.119C>T, p.Ser40Leu) leads to phenotype resembling osteogenesis imperfecta type VI. In this report, we describe the first patient with Ser40Trp variant in IFITM5, who presented with multiple fractures in the prenatal period. She remained fracture free after birth (except for trauma-related fractures during puberty) with normal bone mineral densitometry. Her mother, who did not have a history of fracture, was noted to have somatogonadal mosaicism for this variant and became pregnant with a second child with multiple prenatal fractures, found to have the same variant. To our knowledge, this is the first case of somatogonadal mosaicism in IFITM5. In addition, we have summarized the literature on patients presenting with variant in codon 40 (serine) of IFTIM5 protein.
Collapse
|
47
|
Ohata Y, Takeyari S, Nakano Y, Kitaoka T, Nakayama H, Bizaoui V, Yamamoto K, Miyata K, Yamamoto K, Fujiwara M, Kubota T, Michigami T, Yamamoto K, Yamamoto T, Namba N, Ebina K, Yoshikawa H, Ozono K. Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta. Osteoporos Int 2019; 30:2333-2342. [PMID: 31363794 PMCID: PMC7083816 DOI: 10.1007/s00198-019-05076-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022]
Abstract
UNLABELLED To elucidate mutation spectrum and genotype-phenotype correlations in Japanese patients with OI, we conducted comprehensive genetic analyses using NGS, as this had not been analyzed comprehensively in this patient population. Most mutations were located on COL1A1 and COL1A2. Glycine substitutions in COL1A1 resulted in the severe phenotype. INTRODUCTION Most cases of osteogenesis imperfecta (OI) are caused by mutations in COL1A1 or COL1A2, which encode α chains of type I collagen. However, mutations in at least 16 other genes also cause OI. The mutation spectrum in Japanese patients with OI has not been comprehensively analyzed, as it is difficult to identify using classical Sanger sequencing. In this study, we aimed to reveal the mutation spectrum and genotype-phenotype correlations in Japanese patients with OI using next-generation sequencing (NGS). METHODS We designed a capture panel for sequencing 15 candidate OI genes and 19 candidate genes that are associated with bone fragility or Wnt signaling. Using NGS, we examined 53 Japanese patients with OI from unrelated families. RESULTS Pathogenic mutations were detected in 43 out of 53 individuals. All mutations were heterozygous. Among the 43 individuals, 40 variants were identified including 15 novel mutations. We found these mutations in COL1A1 (n = 30, 69.8%), COL1A2 (n = 12, 27.9%), and IFITM5 (n = 1, 2.3%). Patients with glycine substitution on COL1A1 had a higher frequency of fractures and were more severely short-statured. Although no significant genotype-phenotype correlation was observed for bone mineral density, the trabecular bone score was significantly lower in patients with glycine substitutions. CONCLUSION We identified pathogenic mutations in 81% of our Japanese patients with OI. Most mutations were located on COL1A1 and COL1A2. This study revealed that glycine substitutions on COL1A1 resulted in the severe phenotype among Japanese patients with OI.
Collapse
Affiliation(s)
- Y Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - S Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - H Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - V Bizaoui
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Medical Genetics, Reference Center for Skeletal Dysplasia, Hôpital Necker - Enfants Malades, Paris, France
| | - K Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Miyata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - M Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - T Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - K Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - T Yamamoto
- Department of Pediatrics, Minoh City Hospital, Minoh, Japan
| | - N Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization (JCHO), Osaka, Japan
| | - K Ebina
- Department of Musculoskeletal Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - H Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - K Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
48
|
Zhytnik L, Maasalu K, Duy BH, Pashenko A, Khmyzov S, Reimann E, Prans E, Kõks S, Märtson A. IFITM5 pathogenic variant causes osteogenesis imperfecta V with various phenotype severity in Ukrainian and Vietnamese patients. Hum Genomics 2019; 13:25. [PMID: 31159867 PMCID: PMC6547447 DOI: 10.1186/s40246-019-0209-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) covers a spectrum of bone fragility disorders. OI is classified into five types; however, the genetic causes of OI might hide in pathogenic variants of 20 different genes. Often clinical OI types mimic each other. This sometimes makes it impossible to identify the OI type clinically, which can be a risk for patients. Up to 90% of OI types I-IV are caused by pathogenic variants in the COL1A1/2 genes. OI type V is caused by the c.-14C > T pathogenic variant in the 5'UTR of the IFITM5 gene and is characterized by hyperplastic callus formation and the ossification of interosseous membranes. RESULTS In the current study, we performed IFITM5 5'UTR region mutational analysis using Sanger sequencing on 90 patients who were negative for COL1A1/2 pathogenic variants. We also investigated the phenotypes of five patients with genetically confirmed OI type V. The proportion of OI type V patients in our cohort of all OI patients was 1.48%. In one family, there was a history of OI in at least three generations. Phenotype severity differed from mild to extremely severe among patients, but all patients harbored the same typical pathogenic variant. One patient had no visible symptoms of OI type V and was suspected to have had OI type IV previously. We also identified a case of extremely severe hyperplastic callus in a 15-year-old male, who has hearing loss and brittleness of teeth. CONCLUSIONS OI type V is underlined with some unique clinical features; however, not all patients develop them. The phenotype spectrum might be even broader than previously suspected, including typical OI features: teeth brittleness, bluish sclera, hearing loss, long bones deformities, and joint laxity. We suggest that all patients negative for COL1A1/2 pathogenic variants be tested for the presence of an IFITM5 pathogenic variant, even if they are not expressing typical OI type V symptoms. Further studies on the pathological nature and hyperplastic callus formation mechanisms of OI type V are necessary.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.,Clinic of Traumatology and Orthopeadics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
| | - Binh Ho Duy
- Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Andrey Pashenko
- Department of Pediatric Orthopedics, Sytenko Institute of Spine and Joint Pathology, AMS Ukraine, Pushkinska 80, Kharkiv, 61024, Ukraine
| | - Sergey Khmyzov
- Department of Pediatric Orthopedics, Sytenko Institute of Spine and Joint Pathology, AMS Ukraine, Pushkinska 80, Kharkiv, 61024, Ukraine
| | - Ene Reimann
- Centre of Translational Medicine, University of Tartu, Ravila 14a, 50411, Tartu, Estonia.,Department of Pathophysiology, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Ele Prans
- Department of Pathophysiology, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopeadics, University of Tartu, Puusepa 8, 51014, Tartu, Estonia.,Clinic of Traumatology and Orthopeadics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
| |
Collapse
|
49
|
A novel missense mutation in P4HB causes mild osteogenesis imperfecta. Biosci Rep 2019; 39:BSR20182118. [PMID: 30948499 PMCID: PMC6499448 DOI: 10.1042/bsr20182118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare heritable bone disorder characterized by
low bone mineral density (BMD), recurrent bone fractures, and progressive bone
deformities. P4HB encodes protein disulfide isomerase (PDI) and
is identified as a novel candidate gene of OI. The purposes of the present study
are to detect pathogenic mutation, to evaluate the phenotypes of a Chinese
family with mild OI, and to investigate the effects of bisphosphonates on bone
of the proband. We detected the pathogenic mutation by next generation
sequencing and Sanger sequencing. Laboratory and radiological investigations
were conducted to evaluate the phenotypes. The proband was a 12-year-old girl
with low BMD, history of recurrent non-traumatic fractures, slight scoliosis,
with bluish grey sclera and ligamentous laxity. Her father suffered from one
fragility fracture and slight wedge changes of vertebras, with bluish grey
sclera. We identified a novel heterozygous missense mutation (c.692A>C,
p.His231Pro) in P4HB in the proband and her father. This
mutation was predicted to affect the combination of PDI with type I procollagen
and lead to the disorder of its triple helix formation. Bisphosphonates were
effective in reducing bone resorption and increasing BMD of the proband with
well tolerance. In conclusion, we identified a novel mutation in
P4HB in a Chinese family with mild OI, which expanded the
genotypic and phenotypic spectrum of OI. Bisphosphonates were effective to this
extremely rare OI induced by P4HB mutation.
Collapse
|
50
|
Genotype-phenotype relationship in a large cohort of osteogenesis imperfecta patients with COL1A1 mutations revealed by a new scoring system. Chin Med J (Engl) 2019; 132:145-153. [PMID: 30614853 PMCID: PMC6365277 DOI: 10.1097/cm9.0000000000000013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI), a heritable bone fragility disorder, is mainly caused by mutations in COL1A1 gene encoding α1 chain of type I collagen. This study aimed to investigate the COL1A1 mutation spectrum and quantitatively assess the genotype-phenotype relationship in a large cohort of Chinese patients with OI. METHODS A total of 161 patients who were diagnosed as OI in Department of Endocrinology of Peking Union Medical College Hospital from January 2010 to December 2017 were included in the study. The COL1A1 mutation spectrum was identified by next generation sequencing and confirmed by Sanger sequencing. A new clinical scoring system was developed to quantitatively assess the clinical severity of OI and the genotype-phenotype relationship was analyzed. The independent sample t-test, analysis of variance, Mann-Whitney U-test, Chi-squared test, Pearson correlation, and multiple linear regression were applied for statistical analyses. RESULTS Among 161 patients with OI, 32.9% missense mutations, 16.8% non-sense mutations, 24.2% splice-site mutations, 24.8% frameshift mutations, and 1.2% whole-gene deletions were identified, of which 38 variations were novel. These mutations led to 53 patients carrying qualitative defects and 67 patients carrying quantitative defects in type I collagen. Compared to patients with quantitative mutations, patients with qualitative mutations had lower alkaline phosphatase level (296 [132, 346] U/L vs. 218 [136, 284] U/L, P = 0.009) and higher clinical score (12.2 ± 5.3 vs. 7.4 ± 2.4, P < 0.001), denoting more severe phenotypes including shorter stature, lower bone mineral density, higher fracture frequency, more bone deformity, vertebral compressive fractures, limited movement, and dentinogenesis imperfecta (DI). Patients would not present with DI if the glycine substitutions happened before the 79th amino acid in triple helix of α1 chains. CONCLUSIONS This presented distinctive COL1A1 mutation spectrum in a large cohort of Chinese patients with OI. This new quantitative analysis of genotype-phenotype correlation would be helpful to predict the prognosis of OI and genetic counseling.
Collapse
|