1
|
Luo Y. Biomechanical perspectives on image-based hip fracture risk assessment: advances and challenges. Front Endocrinol (Lausanne) 2025; 16:1538460. [PMID: 40104137 PMCID: PMC11915145 DOI: 10.3389/fendo.2025.1538460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hip fractures pose a significant health challenge, particularly in aging populations, leading to substantial morbidity and economic burden. Most hip fractures result from a combination of osteoporosis and falls. Accurate assessment of hip fracture risk is essential for identifying high-risk individuals and implementing effective preventive strategies. Current clinical tools, such as the Fracture Risk Assessment Tool (FRAX), primarily rely on statistical models of clinical risk factors derived from large population studies. However, these tools often lack specificity in capturing the individual biomechanical factors that directly influence fracture susceptibility. Consequently, image-based biomechanical approaches, primarily leveraging dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), have garnered attention for their potential to provide a more precise evaluation of bone strength and the impact forces involved in falls, thereby enhancing risk prediction accuracy. Biomechanical approaches rely on two fundamental components: assessing bone strength and predicting fall-induced impact forces. While significant advancements have been made in image-based finite element (FE) modeling for bone strength analysis and dynamic simulations of fall-induced impact forces, substantial challenges remain. In this review, we examine recent progress in these areas and highlight the key challenges that must be addressed to advance the field and improve fracture risk prediction.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Sass JO, Saemann M, Kebbach M, Soodmand E, Wree A, Bader R, Kluess D. The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip-A Computational Biomechanical Study. Life (Basel) 2024; 14:841. [PMID: 39063595 PMCID: PMC11277570 DOI: 10.3390/life14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Proximal femur fracture risk depends on subject-specific factors such as bone mineral density and morphological parameters. Here, we aim to analyze the dependency of the femoral strength on sixteen morphological parameters. Therefore, finite-element analyses of 20 human femurs during stumbling and lateral falls on the hip were conducted. Pearson correlation coefficients were calculated and morphological parameters with significant correlations were examined in principal component analysis and linear regression analysis. The dependency of the fracture strength on morphological parameters was more pronounced during lateral falls on the hip compared to stumbling. Significant correlations were observed between the neck shaft angle (r = -0.474), neck diameter (r = 0.507), the true distance between the femoral head center and femoral shaft axis (r = 0.459), and its projected distance on the frontal plane (r = 0.511), greater trochanter height (r = 0.497), and distance between the femoral head center and a plane parallel to the frontal plane containing the projection of the femoral head center to the femoral neck axis (r = 0.669). Principal component analysis was strongly weighted by parameters defining the lever arm during a lateral fall as well as the loaded cross-section in the femoral neck.
Collapse
Affiliation(s)
- Jan-Oliver Sass
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Michael Saemann
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Maeruan Kebbach
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Ehsan Soodmand
- Julius Wolff Institut, Center for Musculoskeletal Biomechanics and Regeneration, Berlin Institute of Health—Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| | - Daniel Kluess
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopaedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW We re-evaluated clinical applications of image-to-FE models to understand if clinical advantages are already evident, which proposals are promising, and which questions are still open. RECENT FINDINGS CT-to-FE is useful in longitudinal treatment evaluation and groups discrimination. In metastatic lesions, CT-to-FE strength alone accurately predicts impending femoral fractures. In osteoporosis, strength from CT-to-FE or DXA-to-FE predicts incident fractures similarly to DXA-aBMD. Coupling loads and strength (possibly in dynamic models) may improve prediction. One promising MRI-to-FE workflow may now be tested on clinical data. Evidence of artificial intelligence usefulness is appearing. CT-to-FE is already clinical in opportunistic CT screening for osteoporosis, and risk of metastasis-related impending fractures. Short-term keys to improve image-to-FE in osteoporosis may be coupling FE with fall risk estimates, pool FE results with other parameters through robust artificial intelligence approaches, and increase reproducibility and cross-validation of models. Modeling bone modifications over time and bone fracture mechanics are still open issues.
Collapse
Affiliation(s)
- Enrico Schileo
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Fulvia Taddei
- Bioengineering and Computing Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
4
|
Barkaoui A, Ait Oumghar I, Ben Kahla R. Review on the use of medical imaging in orthopedic biomechanics: finite element studies. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2021. [DOI: 10.1080/21681163.2021.1888317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelwahed Barkaoui
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
| | - Imane Ait Oumghar
- Laboratoire des Énergies Renouvelables et Matériaux Avancés, Université Internationale de Rabat, Sala Al Jadida Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Rabeb Ben Kahla
- Laboratoire de Systémes et de Mécanique Appliquée, Ecole Polytechnique de Tunis, Université de Carthage, Tunis, Tunisia
- Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis el Manar, Campus Universitaire, Tunis, Tunisia
| |
Collapse
|
5
|
Chiang MH, Kuo YJ, Chen YP. The Association Between Sarcopenia and Postoperative Outcomes Among Older Adults With Hip Fracture: A Systematic Review. J Appl Gerontol 2021; 40:1903-1913. [PMID: 33870747 DOI: 10.1177/07334648211006519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hip fracture is a serious clinical event with high morbidity and mortality. Sarcopenia is characterized by age-related loss of muscle mass and function, leading to several adverse health outcomes. In this systematic review, no limitation criteria were used for study selection and 327 studies were identified in the initial search. Of these, 11 studies comprising a total of 2,314 patients were selected. The overall proportion of older adults with hip fracture having sarcopenia was 44%, with a disparity of approximately 10% between men and women. Most studies have indicated that older adults with sarcopenia had poorer postoperative functional recovery than those without sarcopenia; the association between sarcopenia and high postoperative mortality or long hospital stay was heterogeneous. Well-organized studies with longer follow-up periods are warranted.
Collapse
Affiliation(s)
- Ming-Hsiu Chiang
- Department of General Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Pin Chen
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
6
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|
7
|
Bone Mineral Density and Bone Turnover Markers in Postmenopausal Women Subjected to an Aqua Fitness Training Program. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142505. [PMID: 31337049 PMCID: PMC6678096 DOI: 10.3390/ijerph16142505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/30/2023]
Abstract
The purpose of this study was to analyze the influence of aqua fitness training in deep water on bone tissue. The study was performed with 18 postmenopausal women separated into two groups: training and control groups. Before and after the training program, the hip and spine areal bone mineral density were measured along with the biochemical parameters of serum concentration of osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTX). The most significant effect was found in differences between the two groups of women in terms of femur strength index (p < 0.05) during the period of the training program. The study demonstrated that an aqua fitness training program caused favorable changes in femur strength index in postmenopausal women, and this kind of exercise could be a useful form of physical activity for postmenopausal women.
Collapse
|
8
|
Neuro-musculoskeletal flexible multibody simulation yields a framework for efficient bone failure risk assessment. Sci Rep 2019; 9:6928. [PMID: 31061388 PMCID: PMC6503141 DOI: 10.1038/s41598-019-43028-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fragility fractures are a major socioeconomic problem. A non-invasive, computationally-efficient method for the identification of fracture risk scenarios under the representation of neuro-musculoskeletal dynamics does not exist. We introduce a computational workflow that integrates modally-reduced, quantitative CT-based finite-element models into neuro-musculoskeletal flexible multibody simulation (NfMBS) for early bone fracture risk assessment. Our workflow quantifies the bone strength via the osteogenic stresses and strains that arise due to the physiological-like loading of the bone under the representation of patient-specific neuro-musculoskeletal dynamics. This allows for non-invasive, computationally-efficient dynamic analysis over the enormous parameter space of fracture risk scenarios, while requiring only sparse clinical data. Experimental validation on a fresh human femur specimen together with femur strength computations that were consistent with literature findings provide confidence in the workflow: The simulation of an entire squat took only 38 s CPU-time. Owing to the loss (16% cortical, 33% trabecular) of bone mineral density (BMD), the strain measure that is associated with bone fracture increased by 31.4%; and yielded an elevated risk of a femoral hip fracture. Our novel workflow could offer clinicians with decision-making guidance by enabling the first combined in-silico analysis tool using NfMBS and BMD measurements for optimized bone fracture risk assessment.
Collapse
|
9
|
Viceconti M, Qasim M, Bhattacharya P, Li X. Are CT-Based Finite Element Model Predictions of Femoral Bone Strength Clinically Useful? Curr Osteoporos Rep 2018; 16:216-223. [PMID: 29656377 PMCID: PMC5945796 DOI: 10.1007/s11914-018-0438-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW This study reviews the available literature to compare the accuracy of areal bone mineral density derived from dual X-ray absorptiometry (DXA-aBMD) and of subject-specific finite element models derived from quantitative computed tomography (QCT-SSFE) in predicting bone strength measured experimentally on cadaver bones, as well as their clinical accuracy both in terms of discrimination and prediction. Based on this information, some basic cost-effectiveness calculations are performed to explore the use of QCT-SSFE instead of DXA-aBMD in (a) clinical studies with femoral strength as endpoint, (b) predictor of the risk of hip fracture in low bone mass patients. RECENT FINDINGS Recent improvements involving the use of smooth-boundary meshes, better anatomical referencing for proximal-only scans, multiple side-fall directions, and refined boundary conditions increase the predictive accuracy of QCT-SSFE. If these improvements are adopted, QCT-SSFE is always preferable over DXA-aBMD in clinical studies with femoral strength as the endpoint, while it is not yet cost-effective as a hip fracture risk predictor, although pathways that combine both QCT-SSFE and DXA-aBMD are promising.
Collapse
Affiliation(s)
- Marco Viceconti
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
- Insigneo Institute for in silico medicine, University of Sheffield, Pam Liversidge Building, Sheffield, S13JD, UK.
| | - Muhammad Qasim
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Pinaki Bhattacharya
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Xinshan Li
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|