1
|
Imdad A, Sherwani R, Wall K. Pediatric Formulas: An Update. Pediatr Rev 2024; 45:394-405. [PMID: 38945989 DOI: 10.1542/pir.2023-006002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 07/02/2024]
Abstract
The recent shortage of pediatric formulas in the United States, caused by supply chain issues and contamination of formula products in 1 of the major manufacturing plants, led many families to seek an alternate formula for their children. The Food and Drug Administration (FDA) allowed import of infant formulas from selected European and non-European countries. The European infant formulas differ from those produced in the United States regarding the primary source of the formula, age category, mixing instructions, labeling requirements, and formula composition in terms of macronutrients and micronutrients. Although most European infant formulas are nutritionally adequate, pediatricians and families need to be aware of the differences between the European and FDA-regulated formulas for their correct use and preparation for infants and young children. Supplementation with cow milk is recommended for children beyond infancy, and older infant formulas are not recommended for otherwise healthy growing children. However, pediatric formulas have been used to support the nutrition needs of children with feeding difficulties, especially those dependent on tube feeding and with certain medical conditions. The FDA does not regulate the production of pediatric formulas beyond infant formula, and significant variations exist in their composition. The pediatric formulas are available as polymeric (intact), hydrolyzed, elemental, or food-based blenderized formulas. The plant-based nonformula (milk) drinks are being used increasingly for children. These products might not be nutritionally complete and should be avoided in infants and children dependent on liquid nutrition.
Collapse
Affiliation(s)
- Aamer Imdad
- Division of Gastroenterology, Hepatology, Pancreatology, and Nutrition, Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, IA
| | - Rida Sherwani
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY
| | - Kellie Wall
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY
| |
Collapse
|
2
|
Shen Q, Li Z, Bai H, Gu M, Kang J, Jia R, Zhang J, Dong A. Regulation of band gap and localized surface plasmon resonance by loading Au nanorods on violet phosphene nanosheets for photodynamic/photothermal synergistic anti-infective therapy. J Mater Chem B 2024; 12:3392-3403. [PMID: 38512335 DOI: 10.1039/d4tb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In the face of the serious threat to human health and the economic burden caused by bacterial antibiotic resistance, 2D phosphorus nanomaterials have been widely used as antibacterial agents. Violet phosphorus nanosheets (VPNSs) are an exciting bandgap-adjustable 2D nanomaterial due to their good physicochemical properties, yet the study of VPNS-based antibiotics is still in its infancy. Here, a composite of gold nanorods (AuNRs) loaded onto VPNS platforms (VPNS/AuNR) is constructed to maximize the potential of VPNSs for antimicrobial applications. The loading with AuNRs not only enhances the photothermal performance via a localized surface plasmon resonance (LSPR) effect, but also enhances the light absorption capacity due to the narrowing of the band gap of the VPNSs, thus increasing the ROS generation capacity. The results demonstrate that VPNS/AuNR exhibits outstanding antibacterial properties and good biocompatibility. Attractively, VPNS/AuNR is then extensively tested for treating skin wound infections, suggesting promising in vivo antibacterial and wound-healing features. Our findings may open a novel direction to develop a versatile VPNS-based treatment platform, which can significantly boost the progress of VPNS exploration.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Zhihao Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 130023 Changchun, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| |
Collapse
|
3
|
Cannalire G, Pilloni S, Esposito S, Biasucci G, Di Franco A, Street ME. Alkaline phosphatase in clinical practice in childhood: Focus on rickets. Front Endocrinol (Lausanne) 2023; 14:1111445. [PMID: 36817604 PMCID: PMC9931734 DOI: 10.3389/fendo.2023.1111445] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Serum alkaline phosphatase (ALP) and its isoenzymes reflect bone metabolism: ALP increases the ratio of inorganic phosphate to pyrophosphate systemically and facilitates mineralization as well as reduces extracellular pyrophosphate concentration, an inhibitor of mineral formation. On the contrary, low ALP activity is associated with reduction of bone turnover. ALP includes four isoenzymes depending on the site of tissue expression: intestinal ALP, placental ALP, germ cell ALP and tissue nonspecific ALP or liver/bone/kidney ALP. The bone isoenzyme (B-ALP) is involved in bone calcification and is a marker of bone turnover as a result of osteoblastic activity. ALP and its isoenzymes are crucial in the diagnostic process of all the forms of rickets.The most common cause of rickets is vitamin D nutritional deficiency. The aim of this review is to update on the role played by ALP serum concentrations as a relevant marker in thediagnosis and treatment of rickets. Indeed, the diagnosis of rickets is based on its clinical, radiological and laboratory characteristics. An elevated ALP level is one of the markers for the diagnosis of rickets in children, though it is also associated with bone formation process. ALP is also useful for the differentiation between rickets and other disorders that can mimic rickets because of their clinical and laboratory characteristics, and, together with other biochemical markers, is crucial for the differential diagnosis of the different forms of rickets. Age, severity and duration of rickets may also modulate ALP elevation. Finally, ALP measurements are useful in clinical and therapeutic follow-up.
Collapse
Affiliation(s)
- Giuseppe Cannalire
- Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Simone Pilloni
- Unit of Pediatrics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Susanna Esposito
- Unit of Pediatrics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, Piacenza, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Giacomo Biasucci,
| | - Anna Di Franco
- Department of Laboratory Medicine, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Maria Elisabeth Street
- Unit of Pediatrics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part II-management. Pediatr Nephrol 2022; 37:2289-2302. [PMID: 35352187 PMCID: PMC9395459 DOI: 10.1007/s00467-022-05505-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
Here, we discuss the management of different forms of rickets, including new therapeutic approaches based on recent guidelines. Management includes close monitoring of growth, the degree of leg bowing, bone pain, serum phosphate, calcium, alkaline phosphatase as a surrogate marker of osteoblast activity and thus degree of rickets, parathyroid hormone, 25-hydroxyvitamin D3, and calciuria. An adequate calcium intake and normal 25-hydroxyvitamin D3 levels should be assured in all patients. Children with calcipenic rickets require the supplementation or pharmacological treatment with native or active vitamin D depending on the underlying pathophysiology. Treatment of phosphopenic rickets depends on the underlying pathophysiology. Fibroblast-growth factor 23 (FGF23)-associated hypophosphatemic rickets was historically treated with frequent doses of oral phosphate salts in combination with active vitamin D, whereas tumor-induced osteomalacia (TIO) should primarily undergo tumor resection, if possible. Burosumab, a fully humanized FGF23-antibody, was recently approved for treatment of X-linked hypophosphatemia (XLH) and TIO and shown to be superior for treatment of XLH compared to conventional treatment. Forms of hypophosphatemic rickets independent of FGF23 due to genetic defects of renal tubular phosphate reabsorption are treated with oral phosphate only, since they are associated with excessive 1,25-dihydroxyvitamin D production. Finally, forms of hypophosphatemic rickets caused by Fanconi syndrome, such as nephropathic cystinosis and Dent disease require disease-specific treatment in addition to phosphate supplements and active vitamin D. Adjustment of medication should be done with consideration of treatment-associated side effects, including diarrhea, gastrointestinal discomfort, hypercalciuria, secondary hyperparathyroidism, and development of nephrocalcinosis or nephrolithiasis.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Pediatric Research Center, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany
| |
Collapse
|
5
|
Sekkidou M, Muhardi L, Constantinou C, Kudla U, Vandenplas Y, Nicolaou N. Nutritional Management With a Casein-Based Extensively Hydrolysed Formula in Infants With Clinical Manifestations of Non-IgE-Mediated CMPA Enteropathies and Constipation. FRONTIERS IN ALLERGY 2021; 2:676075. [PMID: 35387002 PMCID: PMC8974831 DOI: 10.3389/falgy.2021.676075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The majority of mixed-fed infants with non-IgE-mediated cow's milk protein allergy (CMPA) enteropathies are managed with an extensively hydrolysed cow's milk based infant formula (eHF). Given the high variability in peptide distribution of available eHFs, it is important to understand the suitability of a specific product in the management of distinct phenotypes. Objective: To assess the symptom resolution of various phenotypes of clinical manifestations of CMPA enteropathies and constipation managed by a casein-based eHF. Methods: The data of 20 full-term infants (n = 15 with non-IgE-mediated CMPA and n = 5 with constipation) attending a paediatric allergy clinic in Cyprus and managed with a casein-based eHF were retrospectively analysed. Results: Based on the clinical symptoms and history, infants were classified into the following phenotypes: (a) 11/15 (73.3%) FPIAP, (b) 3/15 (20%) FPIES, and (c) 1/15 (6.7%) severe diarrhoea. Overall, 14 (93.3%) patients were successfully managed with the casein-based eHF and 1 (6.7%) required an AAF. This formula was effective in 91% of patients with FPIAP, in 100% with FPIES and with diarrhoea. Three (60%) patients with constipation responded to the eHF. Conclusion: This case-series report supports the efficacy of a particular casein-based eHF for the nutritional management of non-IgE mediated CMPA enteropathies.
Collapse
Affiliation(s)
| | - Leilani Muhardi
- Friesland Campina AMEA, Singapore, Singapore
- *Correspondence: Leilani Muhardi
| | | | | | - Yvan Vandenplas
- Kidz Health Castle University Hospital Brussels, Brussels, Belgium
| | - Nicolaos Nicolaou
- N Asthma and Allergy Center, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
6
|
Zepeda-Ortega B, Goh A, Xepapadaki P, Sprikkelman A, Nicolaou N, Hernandez REH, Latiff AHA, Yat MT, Diab M, Hussaini BA, Setiabudiawan B, Kudla U, van Neerven RJJ, Muhardi L, Warner JO. Strategies and Future Opportunities for the Prevention, Diagnosis, and Management of Cow Milk Allergy. Front Immunol 2021; 12:608372. [PMID: 34177882 PMCID: PMC8222906 DOI: 10.3389/fimmu.2021.608372] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
The prevalence of food allergy has increased over the last 20-30 years, including cow milk allergy (CMA) which is one of the most common causes of infant food allergy. International allergy experts met in 2019 to discuss broad topics in allergy prevention and management of CMA including current challenges and future opportunities. The highlights of the meeting combined with recently published developments are presented here. Primary prevention of CMA should start from pre-pregnancy with a focus on a healthy lifestyle and food diversity to ensure adequate transfer of inhibitory IgG- allergen immune complexes across the placenta especially in mothers with a history of allergic diseases and planned c-section delivery. For non-breastfed infants, there is controversy about the preventive role of partially hydrolyzed formulae (pHF) despite some evidence of health economic benefits among those with a family history of allergy. Clinical management of CMA consists of secondary prevention with a focus on the development of early oral tolerance. The use of extensive Hydrolysate Formulae (eHF) is the nutrition of choice for the majority of non-breastfed infants with CMA; potentially with pre-, probiotics and LCPUFA to support early oral tolerance induction. Future opportunities are, among others, pre- and probiotics supplementation for mothers and high-risk infants for the primary prevention of CMA. A controlled prospective study implementing a step-down milk formulae ladder with various degrees of hydrolysate is proposed for food challenges and early development of oral tolerance. This provides a more precise gradation of milk protein exposure than those currently recommended.
Collapse
Affiliation(s)
- Benjamin Zepeda-Ortega
- Pediatric Allergist Private Practice, Angeles Lomas Hospital Huixquilucan Mexican State, Mexico City, Mexico
| | - Anne Goh
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Paraskevi Xepapadaki
- Allergy Department, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Aline Sprikkelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | | | | | - Miu Ting Yat
- Department of Paediatrics, Queen Elizabeth Hospital, Hong Kong, China
| | - Mohamed Diab
- Pediatric Department Faculty of Medicine, Children Hospital Cairo University, Cairo, Egypt
| | - Bakr Al Hussaini
- Department of Pediatrics, Abdul Aziz University Hospital, Jeddah, Saudi Arabia
| | - Budi Setiabudiawan
- Department of Child Health, Faculty of Medicine, Univesitas Padjadjaran, Bandung, Indonesia.,Department of Pediatrics, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | | | - R J Joost van Neerven
- R&D, FrieslandCampina, Amersfoort, Netherlands.,Wageningen University & Research, Wageningen, Netherlands
| | - Leilani Muhardi
- Medical Affairs, Friesland Campina AMEA, Singapore, Singapore
| | - John O Warner
- Inflammation Repair and Development, National Heart and Lung Institute Imperial College, London, United Kingdom.,Paediatrics, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
8
|
Bergwitz C, Eussen SRBM, Janssens PLHR, Visser M, Carpenter TO, van Helvoort A. Different elemental infant formulas show equivalent phosphorus and calcium bioavailability in healthy volunteers. Nutr Res 2020; 85:71-83. [PMID: 33450668 DOI: 10.1016/j.nutres.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Retrospective chart reviews have reported hypophosphatemia associated with elemental formula use in infants and children with systemic disease involving multiple diagnoses. The present study aims to evaluate the bioavailability of phosphorus from 2 commercial elemental formulas and to test our hypothesis of bioequivalence of the 2 products in healthy volunteers receiving gastric acid-suppressive medication. A single-center, double-blind, randomized, cross-over study was conducted in healthy volunteers with esomeprazole-induced hypochlorhydria. After a standardized low phosphorus meal followed by overnight fasting, subjects consumed 1 gram of phosphorus in a single oral dose of 1217 kcal of Product A (Neocate) or Product B (Elecare). The alternate product was given following a 1-week washout period. Blood and urine were collected at baseline and different time-points for up to 6 hours after product consumption. Area-under-the-curve (AUC) and peak values (Cpeak) for serum phosphate and calcium and urinary creatinine-corrected phosphate and calcium were assessed for bioequivalence of Products A and B. Results show that the geometric mean ratio (GMR) and 90% CI for serum phosphate were 1.041 (0.998-1.086) and 1.020 (0.963-1.080) for AUC0-360 and Cpeak, respectively, meeting the predetermined criteria for bioequivalence. Urinary creatinine-corrected phosphate followed a similar pattern after intake of Product A and B, but did not reach bioequivalence criteria (GMR: AUC70-370 = 1.105 (0.918-1.330); Cpeak = 1.182 (1.040-1.343)). Serum calcium concentrations (GMR: AUC0-360 = 1.002 (0.996-1.009); Cpeak = 0.991 (0.983-0.999)) and urinary creatinine-corrected calcium excretion (GMR: AUC70-370 = 1.117 (1.023-1.219); Cpeak = 1.157 (1.073-1.247)) demonstrated bioequivalence of the products. In conclusion, both elemental infant formulas showed equivalent serum phosphorus and calcium bioavailability in healthy volunteers even if combined with treatment with acid-suppressive medication.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Yale University School of Medicine, Section of Endocrinology and Metabolism, New Haven, CT, USA
| | | | | | | | - Thomas O Carpenter
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT, USA
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, The Netherlands; Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| |
Collapse
|
9
|
Eswarakumar AS, Ma NS, Ward LM, Backeljauw P, Wasserman H, Weber DR, DiMeglio LA, Imel EA, Gagne J, Cody D, Zimakas P, Topor LS, Agrawal S, Calabria A, Tebben P, Faircloth RS, Gordon R, Casey L, Carpenter TO. Long-Term Follow-up of Hypophosphatemic Bone Disease Associated With Elemental Formula Use: Sustained Correction of Bone Disease After Formula Change or Phosphate Supplementation. Clin Pediatr (Phila) 2020; 59:1080-1085. [PMID: 32666808 DOI: 10.1177/0009922820941097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this article, we describe the long-term outcomes of children who were previously reported to have developed hypophosphatemic bone disease in association with elemental formula use. An extended chart review allowed for an updated report of 34 children with regard to severity/duration of bone disease, extent of recovery, and time to correction using radiology reports and biochemical data. After implementation of formula change and/or phosphate supplementation, we found that serum phosphorus concentration increased and serum alkaline phosphatase activity decreased in all patients, normalizing by 6.6 ± 4.0 (mean ± SD) months following diagnosis. The decrease in serum alkaline phosphatase from diagnosis to the time of correction was moderately correlated with the concurrent increase in serum phosphorus (R = 0.48, P < .05). Age at diagnosis significantly correlated with time to resolution (R = 0.51, P = .01). This study supports the earlier report that bone disease associated with hypophosphatemia during elemental formula use responds to formula change and/or phosphate supplementation.
Collapse
Affiliation(s)
| | - Nina S Ma
- Children's Hospital Colorado, Aurora, CO, USA.,Boston Children's Hospital, Boston, MA, USA
| | - Leanne M Ward
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Philippe Backeljauw
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, Cincinnati, OH, USA
| | - Halley Wasserman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati, Cincinnati, OH, USA
| | | | - Linda A DiMeglio
- Riley Hospital for Children, Indianapolis, IN, USA.,Indiana University, Indianapolis, IN, USA
| | - Erik A Imel
- Riley Hospital for Children, Indianapolis, IN, USA.,Indiana University, Indianapolis, IN, USA
| | - Julie Gagne
- Centre Hospitalier de l'Université Laval, Quebec City, Quebec, Canada
| | - Declan Cody
- Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Paul Zimakas
- University of Vermont Medical Center, Burlington, VT, USA
| | - Lisa Swartz Topor
- Brown University, Providence, RI, USA.,Hasbro Children's Hospital, Providence, RI, USA
| | - Sungeeta Agrawal
- Brown University, Providence, RI, USA.,Hasbro Children's Hospital, Providence, RI, USA
| | | | | | | | - Rebecca Gordon
- Boston Children's Hospital, Boston, MA, USA.,Columbia University Medical Center, New York, NY, USA
| | - Linda Casey
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
10
|
Florenzano P, Cipriani C, Roszko KL, Fukumoto S, Collins MT, Minisola S, Pepe J. Approach to patients with hypophosphataemia. Lancet Diabetes Endocrinol 2020; 8:163-174. [PMID: 31924563 DOI: 10.1016/s2213-8587(19)30426-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Phosphate metabolism is an evolving area of basic and clinical research. In the past 15 years, knowledge on disturbances of phosphate homoeostasis has expanded, as has the discovery of new targeted therapies. Hypophosphataemia might be the biochemical finding in several diseases, and its clinical evaluation should initially focus on the assessment of pathophysiological mechanisms leading to low serum phosphate concentrations. Clinical consequences of hypophosphataemia can involve multiple organ systems and vary depending on several factors, the most important being the underlying disorder. This Review focuses on the approach to patients with hypophosphataemia and how underlying pathophysiological mechanisms should be understood in the evaluation of differential diagnosis. We define an algorithm for the assessment of hypophosphataemia and review the most up-to-date literature on specific therapies. Continuous research in this area will result in a better understanding and management of patients with hypophosphataemia.
Collapse
Affiliation(s)
- Pablo Florenzano
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Cristiana Cipriani
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy.
| | - Kelly L Roszko
- Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Michael T Collins
- Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy
| |
Collapse
|