1
|
Li X, Cai X, Wang X, Zhu L, Yan H, Yao J, Yang C. Understanding the Causes of Keel Bone Damage and Its Effects on the Welfare of Laying Hens. Animals (Basel) 2024; 14:3655. [PMID: 39765559 PMCID: PMC11672575 DOI: 10.3390/ani14243655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Keel bone damage (KBD) is a prominent concern within the realm of the egg-laying industry, exerting substantial impacts on the welfare and productivity of laying hens. This comprehensive review undertakes a detailed exploration of the diverse factors contributing to KBD, such as inadequate calcium sources in the medullary bone, genetic factors, nutritional deficiencies, and physical stressors. The consequences of KBD on production performance, stress and inflammation levels, and the physical and chemical properties of the keel are meticulously examined. Additionally, the review evaluates the existing methods for assessing KBD, including keel curvature scoring, imaging techniques, palpation, biomechanical testing, behavioral observations, and biochemical markers. Finally, management strategies, including nutritional adjustments, genetic selection, and environmental modifications, are proposed to potentially mitigate the prevalence and severity of KBD, thereby aiming to enhance the welfare and productivity of laying hens.
Collapse
Affiliation(s)
- Xin Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Xia Cai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Xiaoliang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Lihui Zhu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Huaxiang Yan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Junfeng Yao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| | - Changsuo Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (X.L.); (X.C.); (X.W.); (L.Z.); (H.Y.)
- National Poultry Engineering Technology Research Center, Shanghai 201106, China
| |
Collapse
|
2
|
Ruan X, Jin X, Sun F, Pi J, Jinghu Y, Lin X, Zhang N, Chen G. IGF signaling pathway in bone and cartilage development, homeostasis, and disease. FASEB J 2024; 38:e70031. [PMID: 39206513 DOI: 10.1096/fj.202401298r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The skeleton plays a fundamental role in the maintenance of organ function and daily activities. The insulin-like growth factor (IGF) family is a group of polypeptide substances with a pronounced role in osteoblast differentiation, bone development, and metabolism. Disturbance of the IGFs and the IGF signaling pathway is inextricably linked with assorted developmental defects, growth irregularities, and jeopardized skeletal structure. Recent findings have illustrated the significance of the action of the IGF signaling pathway via growth factors and receptors and its interactions with dissimilar signaling pathways (Wnt/β-catenin, BMP, TGF-β, and Hh/PTH signaling pathways) in promoting the growth, survival, and differentiation of osteoblasts. IGF signaling also exhibits profound influences on cartilage and bone development and skeletal homeostasis via versatile cell-cell interactions in an autocrine, paracrine, and endocrine manner systemically and locally. Our review summarizes the role and regulatory function as well as a potentially integrated gene network of the IGF signaling pathway with other signaling pathways in bone and cartilage development and skeletal homeostasis, which in turn provides an enlightening insight into visualizing bright molecular targets to be eligible for designing effective drugs to handle bone diseases and maladies, such as osteoporosis, osteoarthritis, and dwarfism.
Collapse
Affiliation(s)
- Xinyi Ruan
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiuhui Jin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiashun Pi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yihan Jinghu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyi Lin
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nenghua Zhang
- Clinical Laboratory, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Haines MS, Kimball A, Dove D, Chien M, Strauch J, Santoso K, Meenaghan E, Eddy KT, Fazeli PK, Misra M, Miller KK. Deficits in volumetric bone mineral density, bone microarchitecture, and estimated bone strength in women with atypical anorexia nervosa compared to healthy controls. Int J Eat Disord 2024; 57:785-798. [PMID: 37322610 PMCID: PMC10721730 DOI: 10.1002/eat.24014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Anorexia nervosa is associated with low bone mineral density (BMD) and deficits in bone microarchitecture and strength. Low BMD is common in atypical anorexia nervosa, in which criteria for anorexia nervosa are met except for low weight. We investigated whether women with atypical anorexia nervosa have deficits in bone microarchitecture and estimated strength at the peripheral skeleton. METHOD Measures of BMD and microarchitecture were obtained in 28 women with atypical anorexia nervosa and 27 controls, aged 21-46 years. RESULTS Mean tibial volumetric BMD, cortical thickness, and failure load were lower, and radial trabecular number and separation impaired, in atypical anorexia nervosa versus controls (p < .05). Adjusting for weight, deficits in tibial cortical bone variables persisted (p < .05). Women with atypical anorexia nervosa and amenorrhea had lower volumetric BMD and deficits in microarchitecture and failure load versus those with eumenorrhea and controls. Those with a history of overweight/obesity or fracture had deficits in bone microarchitecture versus controls. Tibial deficits were particularly marked. Less lean mass and longer disease duration were associated with deficits in high-resolution peripheral quantitative computed tomography (HR-pQCT) variables in atypical anorexia nervosa. DISCUSSION Women with atypical anorexia nervosa have lower volumetric BMD and deficits in bone microarchitecture and strength at the peripheral skeleton versus controls, independent of weight, and particularly at the tibia. Women with atypical anorexia nervosa and amenorrhea, less lean mass, longer disease duration, history of overweight/obesity, or fracture history may be at higher risk. This is salient as deficits in HR-pQCT variables are associated with increased fracture risk. PUBLIC SIGNIFICANCE Atypical anorexia nervosa is a psychiatric disorder in which psychological criteria for anorexia nervosa are met despite weight being in the normal range. We demonstrate that despite weight in the normal range, women with atypical anorexia nervosa have impaired bone density, structure, and strength compared to healthy controls. Whether this translates to an increased risk of incident fracture in this population requires further investigation.
Collapse
Affiliation(s)
- Melanie S Haines
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Allison Kimball
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Devanshi Dove
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Melanie Chien
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Julianne Strauch
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kate Santoso
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kamryn T Eddy
- Harvard Medical School, Boston, Massachusetts, USA
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14:1124945. [PMID: 37089533 PMCID: PMC10116073 DOI: 10.3389/fmicb.2023.1124945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Gut microbiota is of great importance in human health, and its roles in the maintenance of skeletal homeostasis have long been recognized as the "gut-bone axis." Recent evidence has indicated intercorrelations between gut microbiota, endocrine system and bone metabolism. This review article discussed the complex interactions between gut microbiota and bone metabolism-related hormones, including sex steroids, insulin-like growth factors, 5-hydroxytryptamine, parathyroid hormone, glucagon-like peptides, peptide YY, etc. Although the underlying mechanisms still need further investigation, the regulatory effect of gut microbiota on bone health via interplaying with endocrine system may provide a new paradigm for the better management of musculoskeletal disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyi Kuang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zhang,
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Xin Xu,
| |
Collapse
|
5
|
Gomes MM, da Silva MMR, de Araújo IM, de Paula FJA. Bone, fat, and muscle interactions in health and disease. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:611-620. [PMID: 36382750 PMCID: PMC10118823 DOI: 10.20945/2359-3997000000550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
Energy metabolism is a point of integration among the various organs and tissues of the human body, not only in terms of consumption of energy substrates but also because it concentrates a wide interconnected network controlled by endocrine factors. Thus, not only do tissues consume substrates, but they also participate in modulating energy metabolism. Soft mesenchymal tissues, in particular, play a key role in this process. The recognition that high energy consumption is involved in bone remodeling has been accompanied by evidence showing that osteoblasts and osteocytes produce factors that influence, for example, insulin sensitivity and appetite. Additionally, there are significant interactions between muscle, adipose, and bone tissues to control mutual tissue trophism. Not by chance, trophic and functional changes in these tissues go hand in hand from the beginning of an individual's development until aging. Likewise, metabolic and nutritional diseases deeply affect the musculoskeletal system and adipose tissue. The present narrative review highlights the importance of the interaction of the mesenchymal tissues for bone development and maintenance and the impact on bone from diseases marked by functional and trophic disorders of adipose and muscle tissues.
Collapse
Affiliation(s)
- Mayra Macena Gomes
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Iana Mizumukai de Araújo
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brasil
| | | |
Collapse
|
6
|
Keeler JL, Robinson L, Keeler-Schäffeler R, Dalton B, Treasure J, Himmerich H. Growth factors in anorexia nervosa: a systematic review and meta-analysis of cross-sectional and longitudinal data. World J Biol Psychiatry 2022; 23:582-600. [PMID: 34875968 DOI: 10.1080/15622975.2021.2015432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Growth factors are signalling molecules that play roles in the survival, proliferation, migration, and differentiation of cells. Studies have found alterations in specific growth factors in anorexia nervosa (AN). METHODS This systematic review and meta-analysis examined articles from three databases, measuring growth factors in AN cross-sectionally and longitudinally, and in recovered AN (rec-AN) cross-sectionally. Random-effects meta-analyses were conducted for brain-derived neurotrophic factor (BDNF) and insulin growth factor-I (IGF-1) for cross-sectional and longitudinal studies. RESULTS A total of 82 studies were included: 56 cross-sectional (BDNF: n = 15; IGF-1: n = 41) and 24 longitudinal (BDNF: n = 5; IGF-1: n = 19) were meta-analysed and 20 studies were narratively synthesised. In cross-sectional analyses, BDNF and IGF-1 were lower in AN compared to controls, and BDNF was marginally greater in rec-AN compared to controls. In longitudinal meta-analyses, BDNF and IGF-1 increased from baseline to follow-up. Cross-sectional subgroup analyses revealed no differences in BDNF between controls and AN binge-eating/purging subtypes. CONCLUSIONS It is likely that the low BDNF and IGF-1 levels found in AN are consequences of starvation, which are reversible with weight restoration. The increase in BDNF and IGF-1 during therapeutic weight restoration might improve neuroplasticity, which is the basis of learning, and thus psychotherapeutic success.
Collapse
Affiliation(s)
- Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lauren Robinson
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Bethan Dalton
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Hubertus Himmerich
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18:353-365. [PMID: 35288658 DOI: 10.1038/s41574-022-00649-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are important regulators of bone remodelling and metabolism and have an essential role in the achievement and maintenance of bone mass throughout life. Evidence from animal models and human diseases shows that both GH deficiency (GHD) and excess are associated with changes in bone remodelling and cause profound alterations in bone microstructure. The consequence is an increased risk of fractures in individuals with GHD or acromegaly, a condition of GH excess. In addition, functional perturbations of the GH-IGF1 axis, encountered in individuals with anorexia nervosa and during ageing, result in skeletal fragility and osteoporosis. The effect of interventions used to treat GHD and acromegaly on the skeleton is variable and dependent on the duration of the disease, the pre-existing skeletal state, coexistent hormone alterations (such as those occurring in hypogonadism) and length of therapy. This variability could also reflect the irreversibility of the skeletal structural defect occurring during alterations of the GH-IGF1 axis. Moreover, the effects of the treatment of GHD and acromegaly on locally produced IGF1 and IGF binding proteins are uncertain and in need of further study. This Review highlights the pathophysiological, clinical and therapeutic aspects of skeletal fragility associated with perturbations in the GH-IGF1 axis.
Collapse
Affiliation(s)
- Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|