1
|
Lemoine L, Buckinx F, Aidoud A, Leroy V, Fougère B, Aubertin-Leheudre M. Relationships between obesity markers and bone parameters in community-dwelling older adults. Aging Clin Exp Res 2024; 36:49. [PMID: 38421551 PMCID: PMC10904426 DOI: 10.1007/s40520-023-02673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/21/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Osteoporosis is an age-related condition that can lead to fragility fractures and other serious consequences. The literature data on the impact of obesity on bone health are contradictory. The main reasons for this discrepancy could be the imperfect nature of the body mass index (BMI) as a marker of obesity, the metabolic status (inflammation and metabolically healthy obesity), and/or heterogeneity in bone variables and architecture or sex. AIMS To examine the relationship between bone variables and three validated obesity criteria. METHODS In this cross-sectional study, participants were classified as obese according to their BMI, waist circumference (WC), and fat mass (FM). Bone variables and architecture were assessed using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography, respectively. RESULTS One hundred sixty-eight adults aged 55 or over (men: 68%) were included. 48 (28%) participants were obese according to the BMI, with 108 (64%) according to the FM, and 146 (87%) according to the WC. Bone variables were positively correlated with WC and BMI (Pearson's r = 0.2-0.42). In men only, the obesity measures were negatively correlated with cortical bone density (Pearson's r = - 0.32 to - 0.19) and positively correlated with cortical bone area (Pearson's r = 0.22-0.39). CONCLUSION Our findings indicate that independent of sex and obesity criteria, when significant, being obese seems to lead to higher bone parameters than being non-obese, except for cortical bone density. Thus, in the obese population, assessing cortical density might help the physician to identify bone alteration. Further researches are needed to confirm our findings.
Collapse
Affiliation(s)
- L Lemoine
- Division of Geriatric Medicine, Tours University Medical Centre, Tours, France.
- CHRU Tours - Service de Médecine Aigue Gériatrique, Hôpital Bretonneau, 2 Boulevard Tonnellé, 37044, Tours Cedex 9, France.
| | - F Buckinx
- Département des Sciences de l'activité Physique, Faculté des Sciences, Groupe de recherche en Activité Physique Adaptée (GRAPA), Université du Québec À Montréal, Montreal, QC, Canada
- Centre de recherche de l'Institut, Université de Gériatrie de Montréal, Montreal, QC, Canada
| | - A Aidoud
- Division of Geriatric Medicine, Tours University Medical Centre, Tours, France
- EA4245 T2i, Université de Tours, Tours, France
| | - V Leroy
- Division of Geriatric Medicine, Tours University Medical Centre, Tours, France
| | - B Fougère
- Division of Geriatric Medicine, Tours University Medical Centre, Tours, France
- EA 7505 Education, Ethics, Health, Tours University, Tours, France
| | - M Aubertin-Leheudre
- Département des Sciences de l'activité Physique, Faculté des Sciences, Groupe de recherche en Activité Physique Adaptée (GRAPA), Université du Québec À Montréal, Montreal, QC, Canada
- Centre de recherche de l'Institut, Université de Gériatrie de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Dao T, Robinson DL, Doyle LW, Lee PVS, Olsen J, Kale A, Cheong JLY, Wark JD. Quantifying Bone Strength Deficits in Young Adults Born Extremely Preterm or Extremely Low Birth Weight. J Bone Miner Res 2023; 38:1800-1808. [PMID: 37850817 PMCID: PMC10946901 DOI: 10.1002/jbmr.4926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/28/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
The long-term bone health of young adults born extremely preterm (EP; <28 weeks' gestation) or extremely low birth weight (ELBW; <1000 g birth weight) in the post-surfactant era (since the early 1990s) is unclear. This study investigated their bone structure and estimated bone strength using peripheral quantitative computed tomography (pQCT)-based finite element modeling (pQCT-FEM). Results using this technique have been associated with bone fragility in several clinical settings. Participants comprised 161 EP/ELBW survivors (46.0% male) and 122 contemporaneous term-born (44.3% male), normal birth weight controls born in Victoria, Australia, during 1991-1992. At age 25 years, participants underwent pQCT at 4% and 66% of tibia and radius length, which was analyzed using pQCT-FEM. Groups were compared using linear regression and adjusted for height and weight. An interaction term between group and sex was added to assess group differences between sexes. Parameters measured included compressive stiffness (kcomp ), torsional stiffness (ktorsion ), and bending stiffness (kbend ). EP/ELBW survivors were shorter than the controls, but their weights were similar. Several unadjusted tibial pQCT-FEM parameters were lower in the EP/ELBW group. Height- and weight-adjusted ktorsion at 66% tibia remained lower in EP/ELBW (mean difference [95% confidence interval] -180 [-352, -8] Nm/deg). The evidence for group differences in ktorsion and kbend at 66% tibia was stronger among males than females (pinteractions <0.05). There was little evidence for group differences in adjusted radial models. Lower height- and weight-adjusted pQCT-FEM measures in EP/ELBW compared with controls suggest a clinically relevant increase in predicted long-term fracture risk in EP/ELBW survivors, particularly males. Future pQCT-FEM studies should utilize the tibial pQCT images because of the greater variability in the radius possibly related to lower measurement precision. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Thang Dao
- Melbourne Medical SchoolThe University of MelbourneMelbourneAustralia
| | - Dale Lee Robinson
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Lex W Doyle
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
- Department of PediatricsUniversity of MelbourneMelbourneAustralia
| | - Peter VS Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - Joy Olsen
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
| | - Ashwini Kale
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| | - Jeanie LY Cheong
- Clinical SciencesMurdoch Children's Research InstituteMelbourneAustralia
- Department of Obstetrics and GynecologyUniversity of MelbourneMelbourneAustralia
- Newborn ResearchRoyal Women's HospitalMelbourneAustralia
| | - John D Wark
- Department of Medicine, The Royal Melbourne HospitalThe University of MelbourneMelbourneAustralia
- Bone and Mineral Medicine, Department of Diabetes and EndocrinologyThe Royal Melbourne HospitalMelbourneAustralia
| |
Collapse
|
3
|
Minonzio JG, Ramiandrisoa D, Schneider J, Kohut E, Streichhahn M, Stervbo U, Wirth R, Westhoff TH, Raum K, Babel N. Bi-Directional Axial Transmission measurements applied in a clinical environment. PLoS One 2022; 17:e0277831. [PMID: 36584002 PMCID: PMC9803229 DOI: 10.1371/journal.pone.0277831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022] Open
Abstract
Accurate measurement of cortical bone parameters may improve fracture risk assessment and help clinicians on the best treatment strategy. Patients at risk of fracture are currently detected using the current X-Ray gold standard DXA (Dual XRay Absorptiometry). Different alternatives, such as 3D X-Rays, Magnetic Resonance Imaging or Quantitative Ultrasound (QUS) devices, have been proposed, the latter having advantages of being portable and sensitive to mechanical and geometrical properties. The objective of this cross-sectional study was to evaluate the performance of a Bi-Directional Axial Transmission (BDAT) device used by trained operators in a clinical environment with older subjects. The device, positioned at one-third distal radius, provides two velocities: VFAS (first arriving signal) and VA0 (first anti-symmetrical guided mode). Moreover, two parameters are obtained from an inverse approach: Ct.Th (cortical thickness) and Ct.Po (cortical porosity), along with their ratio Ct.Po/Ct.Th. The areal bone mineral density (aBMD) was obtained using DXA at the femur and spine. One hundred and six patients (81 women, 25 men) from Marien Hospital and St. Anna Hospital (Herne, Germany) were included in this study. Age ranged from 41 to 95 years, while body mass index (BMI) ranged from 16 to 47 kg.m-2. Three groups were considered: 79 non-fractured patients (NF, 75±13years), 27 with non-traumatic fractures (F, 80±9years) including 14 patients with non-vertebral fractures (NVF, 84±7years). Weak to moderate significant Spearman correlations (R ranging from 0.23 to 0.53, p < 0.05) were found between ultrasound parameters and age, BMI. Using multivariate Partial Least Square discrimination analyses with Leave-One-Out Cross-Validation (PLS-LOOCV), we found the combination of VFAS and the ratio Ct.Po/Ct.Th to be predictive for all non traumatic fractures (F) with the odds ratio (OR) equals to 2.5 [1.6-3.4] and the area under the ROC curve (AUC) equal to 0.63 [0.62-0.65]. For the group NVF, combination of four parameters VA0. Ct.Th, Ct.Po and Ct.Po/Ct.Po, along with age provides a discrimination model with OR and AUC equals to 7.5 [6.0-9.1] and 0.75 [0.73-0.76]. When restricted to a smaller population (87 patients) common to both BDAT and DXA, BDAT ORs and AUCs are comparable or slightly higher to values obtained with DXA. The fracture risk assessment by BDAT method in older patients, in a clinical setting, suggests the benefit of the affordable and transportable device for the routine use.
Collapse
Affiliation(s)
- Jean-Gabriel Minonzio
- Sorbonne Université, INSERM UMR S 1146, CNRS UMR 7371, Laboratoire d’Imagerie Biomédicale, Paris, France
- Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail:
| | | | - Johannes Schneider
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Eva Kohut
- Medical Clinic I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Melanie Streichhahn
- Medical Clinic I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Ulrik Stervbo
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Rainer Wirth
- Department for Geriatric Medicine, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Timm Henning Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| | - Kay Raum
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
| | - Nina Babel
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr University, Bochum, Herne, Germany
| |
Collapse
|
4
|
Osteoporosis Screening: Applied Methods and Technological Trends. Med Eng Phys 2022; 108:103887. [DOI: 10.1016/j.medengphy.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022]
|
5
|
Sornay-Rendu E, Duboeuf F, Ulivieri FM, Rinaudo L, Chapurlat R. The bone strain index predicts fragility fractures. The OFELY study. Bone 2022; 157:116348. [PMID: 35121211 DOI: 10.1016/j.bone.2022.116348] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Recently, the bone strain index (BSI), a new index of bone strength based on a finite element model (FEA) from dual X-ray absorptiometry (DXA), has been developed. BSI represents the average equivalent strain inside the bone, assuming that a higher strain level (high BSI) indicates a condition of higher risk. Our study aimed to analyze the relationship between BSI and age, BMI and areal BMD in pre- and postmenopausal women and to prospectively investigate fracture prediction (Fx) by BSI in postmenopausal women. Methods. At the 14th annual follow-up of the OFELY study, BSI was measured at spine (Spine BSI) and femoral scans (Neck and Total Hip BSI), in addition to areal BMD with DXA (Hologic QDR 4500) in 846 women, mean (SD) age 60 yr (15). The FRAX® (fracture risk assessment tool) for major osteoporotic fractures (MOF) was calculated with FN areal BMD (aBMD) at baseline; incident fragility fractures were annually registered until January 2016. Results. In premenopausal women (n = 261), Neck and Total Hip BSI were slightly negatively correlated with age (Spearman r = -0.13 and -0.15 respectively, p = 0.03), whereas all BSIs were positively correlated with BMI (r = +0.20 to 0.37, p < 0.01) and negatively with BMD (r = -0.69 to -0.37, p < 0.0001). In postmenopausal women (n = 585), Neck and Total Hip BSI were positively correlated with age (Spearman r = +0.26 and +0.31 respectively, p < 0.0001), whereas Spine BSI was positively correlated with BMI (r = +0.22, p < 0.0001) and all BSIs were negatively correlated with BMD (r = -0.81 to -0.60, p < 0.0001). During a median [IQ] 9.3 [1.0] years of follow-up, 133 postmenopausal women reported an incident fragility Fx, including 80 women with a major osteoporotic Fx (MOF) and 26 women with clinical vertebral Fx (VFx). Each SD increase of BSI value was associated with a significant increase of the risk of all fragility Fx with an age-adjusted HR of 1.23 for Neck BSI (p = 0.02); 1.27 for Total Hip BSI (p = 0.004) and 1.35 for Spine BSI (p < 0.0001). After adjustment for FRAX®, the association remained statistically significant for Total Hip BSI (HR 1.24, p = 0.02 for all fragility Fx; 1.31, p = 0.01 for MOF) and Spine BSI (HR 1.33, p < 0.0001 for all fragility Fx; 1.33, p = 0.005 for MOF; 1.67, p = 0.002 for clinical VFx). In conclusion, spine and femur BSI, an FEA DXA derived index, predict incident fragility fracture in postmenopausal women, regardless of FRAX®.
Collapse
Affiliation(s)
| | - François Duboeuf
- INSERM UMR 1033 and Université Claude Bernard-Lyon 1, Hôpital E Herriot, Lyon, France.
| | | | - Luca Rinaudo
- Technologic Srl, Lungo Dora Voghera 34/36A, 10153 Torino, Italy.
| | - Roland Chapurlat
- INSERM UMR 1033 and Université Claude Bernard-Lyon 1, Hôpital E Herriot, Lyon, France.
| |
Collapse
|
6
|
Jiang H, Robinson DL, Nankervis A, Garland SM, Callegari ET, Price S, Lee PVS, Wark JD. Bone Measures by Dual-Energy X-Ray Absorptiometry and Peripheral Quantitative Computed Tomography in Young Women With Type 1 Diabetes Mellitus. J Clin Densitom 2021; 24:259-267. [PMID: 32586681 DOI: 10.1016/j.jocd.2020.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Understanding bone fragility in young adult females with type 1 diabetes mellitus (T1DM) is of great clinical importance since the high fracture risk in this population remains unexplained. This study aimed to investigate bone health in young adult T1DM females by comparing relevant variables determined by dual-energy X-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT) at the tibia and pQCT-based finite element analysis (pQCT-FEA) between T1DM subjects (n = 21) and age-, height- and weight-matched controls (n = 63). Tibial trabecular density (lower by 7.1%; 228.8 ± 33.6 vs 246.4 ± 31.8 mg/cm3, p = 0.02) and cortical thickness (lower by 7.3%; 3.8 ± 0.5 vs 4.1 ± 0.5 cm, p = 0.03) by pQCT were significantly lower in T1DM subjects than in controls. Tibial shear stiffness by pQCT-FEA was also lower in T1DM subjects than in controls at both the 4% site (by 17.1%; 337.4 ± 75.5 vs 407.1 ± 75.4 kN/mm, p < 0.01) and 66% site (by 7.9%; 1113.0 ± 158.6 vs 1208.8 ± 161.8 kN/mm, p = 0.03). These differences remained statistically significant after adjustment for confounding factors. No difference between groups was observed in DXA-determined variables (all p ≥ 0.08), although there was a trend towards lower aBMD at the lumbar spine in T1DM subjects than in controls after adjustment for confounders (p = 0.053). These novel findings elicited using pQCT and pQCT-FEA suggest a clinically significant impact of T1DM on bone strength in young adult females with T1DM. Peripheral QCT and pQCT-FEA may provide more information than DXA alone on bone fragility in this population. Further longitudinal studies with a larger sample size are warranted to understand the evolution and causes of bone fragility in young T1DM females.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Dale L Robinson
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - Alison Nankervis
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Diabetes Service, Royal Women's Hospital, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
| | - Suzanne M Garland
- Centre for Women's Infectious Diseases Research, Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia; Infection & Immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | - Emma T Callegari
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Sarah Price
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Australia
| | - John D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Bone and Mineral Medicine, Royal Melbourne Hospital, Melbourne, Australia; Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Australia.
| |
Collapse
|
7
|
Jiang H, Robinson DL, Lee PVS, Krejany EO, Yates CJ, Hickey M, Wark JD. Loss of bone density and bone strength following premenopausal risk-reducing bilateral salpingo-oophorectomy: a prospective controlled study (WHAM Study). Osteoporos Int 2021; 32:101-112. [PMID: 32856124 DOI: 10.1007/s00198-020-05608-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
UNLABELLED Prophylactic oophorectomy is recommended for women at high risk for ovarian cancer, but the associated impact on bone health is of clinical concern. This prospective, controlled study demonstrated substantial loss of bone density and bone strength following surgical menopause. Postoperative hormone therapy alleviated, but not fully prevented, spinal bone loss. INTRODUCTION This prospective study investigated bone health in women following premenopausal oophorectomy. METHODS Dual-energy x-ray absorptiometry (DXA), peripheral quantitative computed tomography (pQCT), and pQCT-based finite element analysis (pQCT-FEA) were used to assess bone health between systemic hormone therapy (HT) users and non-users after premenopausal risk-reducing bilateral salpingo-oophorectomy (RRBSO) compared with premenopausal controls over 24-month follow-up. RESULTS Mean age was 42.4 ± 2.6 years (n = 30) for the surgery group and 40.2 ± 6.3 years for controls (n = 42), and baseline bone measures were similar between groups. Compromised bone variables were observed at 24 months after RRBSO, among which areal bone mineral density (aBMD) at the lumbar spine, tibial volumetric cortical density (Crt vBMD), and tibial bending stiffness (kbend) had decreased by 4.7%, 1.0%, and 12.1%, respectively (all p < 0.01). In non-HT users, significant losses in lumbar spine (5.8%), total hip (5.2%), femoral neck (6.0%) aBMD, tibial Crt vBMD (2.3%), and kbend (14.8%) were observed at 24 months (all p < 0.01). HT prevented losses in kbend, tibial Crt vBMD, and aBMD, except for modest 2.3% loss at the lumbar spine (p = 0.01). CONCLUSION This prospective, controlled study of bone health following RRBSO or premenopausal oophorectomy demonstrated substantial loss of bone density and bone strength following RRBSO. HT prevented loss of bone density and bone stiffness, although there was still a modest decrease in lumbar spine aBMD in HT users. These findings may inform decision-making about RRBSO and clinical management following premenopausal oophorectomy.
Collapse
Affiliation(s)
- H Jiang
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - D L Robinson
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - P V S Lee
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - E O Krejany
- Department of Obstetrics and Gynaecology, University of Melbourne and Royal Women's Hospital, Parkville, Australia
| | - C J Yates
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
- Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
| | - M Hickey
- Department of Obstetrics and Gynaecology, University of Melbourne and Royal Women's Hospital, Parkville, Australia
| | - J D Wark
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia.
- Bone and Mineral Medicine, Royal Melbourne Hospital, Parkville, Australia.
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia.
| |
Collapse
|