1
|
Liu X, Cai F, Zhang Y, Luo X, Yuan L, Ma H, Yang M, Ge F. Interactome Analysis of ClpX Reveals Its Regulatory Role in Metabolism and Photosynthesis in Cyanobacteria. J Proteome Res 2024; 23:1174-1187. [PMID: 38427982 DOI: 10.1021/acs.jproteome.3c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Protein homeostasis is essential for cyanobacteria to maintain proper cellular function under adverse and fluctuating conditions. The AAA+ superfamily of proteolytic complexes in cyanobacteria plays a critical role in this process, including ClpXP, which comprises a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. Despite the physiological effects of ClpX on growth and photosynthesis, its potential substrates and underlying mechanisms in cyanobacteria remain unknown. In this study, we employed a streptavidin-biotin affinity pull-down assay coupled with label-free proteome quantitation to analyze the interactome of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We identified 503 proteins as potential ClpX-binding targets, many of which had novel interactions. These ClpX-binding targets were found to be involved in various biological processes, with particular enrichment in metabolic processes and photosynthesis. Using protein-protein docking, GST pull-down, and biolayer interferometry assays, we confirmed the direct association of ClpX with the photosynthetic proteins, ferredoxin-NADP+ oxidoreductase (FNR) and phycocyanin subunit (CpcA). Subsequent functional investigations revealed that ClpX participates in the maintenance of FNR homeostasis and functionality in Synechocystis grown under different light conditions. Overall, our study provides a comprehensive understanding of the extensive functions regulated by ClpX in cyanobacteria to maintain protein homeostasis and adapt to environmental challenges.
Collapse
Affiliation(s)
- Xin Liu
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fangfang Cai
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Department of Basic Research, Research-And-Development Center, Sinopharm Animal Health Corporation Ltd., Wuhan 430074, China
| | - Xuan Luo
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Li Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyan Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Overview of structurally homologous flavoprotein oxidoreductases containing the low M r thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021; 702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023]
Abstract
Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ββα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).
Collapse
|
3
|
Zhuang B, Seo D, Aleksandrov A, Vos MH. Characterization of Light-Induced, Short-Lived Interacting Radicals in the Active Site of Flavoprotein Ferredoxin-NADP + Oxidoreductase. J Am Chem Soc 2021; 143:2757-2768. [PMID: 33591179 DOI: 10.1021/jacs.0c09627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radicals of flavin adenine dinucleotide (FAD), as well as tyrosine and tryptophan, are widely involved as key reactive intermediates during electron-transfer (ET) reactions in flavoproteins. Due to the high reactivity of these species and their corresponding short lifetime, characterization of these intermediates in functional processes of flavoproteins is usually challenging but can be achieved by ultrafast spectroscopic studies of light-activatable flavoproteins. In ferredoxin-NADP+ oxidoreductase from Bacillus subtilis (BsFNR), fluorescence of the FAD cofactor that very closely interacts with a neighboring tyrosine residue (Tyr50) is strongly quenched. Here we study short-lived photoproducts of this enzyme and its variants, with Tyr50 replaced by tryptophan or glycine. Using time-resolved fluorescence and absorption spectroscopies, we show that, upon the excitation of WT BsFNR, ultrafast ET from Tyr50 to the excited FAD cofactor occurs in ∼260 fs, an order of magnitude faster than the decay by charge recombination, facilitating the characterization of the reaction intermediates in the charge-separated state with respect to other recently studied systems. These studies are corroborated by experiments on the Y50W mutant protein, which yield photoproducts qualitatively similar to those observed in other tryptophan-bearing flavoproteins. By combining the experimental results with molecular dynamics simulations and quantum mechanics calculations, we investigate in detail the effects of protein environment and relaxations on the spectral properties of those radical intermediates and demonstrate that the spectral features of radical anionic FAD are highly sensitive to its environment, and in particular to the dynamics and nature of the counterions formed in the photoproducts. Altogether, comprehensive characterizations are provided for important radical intermediates that are generally involved in functional processes of flavoproteins.
Collapse
Affiliation(s)
- Bo Zhuang
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Ishikawa, Japan
| | - Alexey Aleksandrov
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
4
|
Pramastya H, Song Y, Elfahmi EY, Sukrasno S, Quax WJ. Positioning Bacillus subtilis as terpenoid cell factory. J Appl Microbiol 2020; 130:1839-1856. [PMID: 33098223 PMCID: PMC8247319 DOI: 10.1111/jam.14904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022]
Abstract
Increasing demands for bioactive compounds have motivated researchers to employ micro‐organisms to produce complex natural products. Currently, Bacillus subtilis has been attracting lots of attention to be developed into terpenoids cell factories due to its generally recognized safe status and high isoprene precursor biosynthesis capacity by endogenous methylerythritol phosphate (MEP) pathway. In this review, we describe the up‐to‐date knowledge of each enzyme in MEP pathway and the subsequent steps of isomerization and condensation of C5 isoprene precursors. In addition, several representative terpene synthases expressed in B. subtilis and the engineering steps to improve corresponding terpenoids production are systematically discussed. Furthermore, the current available genetic tools are mentioned as along with promising strategies to improve terpenoids in B. subtilis, hoping to inspire future directions in metabolic engineering of B. subtilis for further terpenoid cell factory development.
Collapse
Affiliation(s)
- H Pramastya
- University of Groningen, Groningen, The Netherlands.,Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Y Song
- University of Groningen, Groningen, The Netherlands
| | - E Y Elfahmi
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - S Sukrasno
- Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - W J Quax
- University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Rubredoxin from the green sulfur bacterium Chlorobaculum tepidum donates a redox equivalent to the flavodiiron protein in an NAD(P)H dependent manner via ferredoxin-NAD(P) + oxidoreductase. Arch Microbiol 2020; 203:799-808. [PMID: 33051772 DOI: 10.1007/s00203-020-02079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
The green sulfur bacterium, Chlorobaculum tepidum, is an anaerobic photoautotroph that performs anoxygenic photosynthesis. Although genes encoding rubredoxin (Rd) and a putative flavodiiron protein (FDP) were reported in the genome, a gene encoding putative NADH-Rd oxidoreductase is not identified. In this work, we expressed and purified the recombinant Rd and FDP and confirmed dioxygen reductase activity in the presence of ferredoxin-NAD(P)+ oxidoreductase (FNR). FNR from C. tepidum and Bacillus subtilis catalyzed the reduction of Rd at rates comparable to those reported for NADH-Rd oxidoreductases. Also, we observed substrate inhibition at high concentrations of NADPH similar to that observed with ferredoxins. In the presence of NADPH, B. subtilis FNR and Rd, FDP promoted dioxygen reduction at rates comparable to those reported for other bacterial FDPs. Taken together, our results suggest that Rd and FDP participate in the reduction of dioxygen in C. tepidum and that FNR can promote the reduction of Rd in this bacterium.
Collapse
|
6
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
7
|
Nye TM, van Gijtenbeek LA, Stevens AG, Schroeder JW, Randall JR, Matthews LA, Simmons LA. Methyltransferase DnmA is responsible for genome-wide N6-methyladenosine modifications at non-palindromic recognition sites in Bacillus subtilis. Nucleic Acids Res 2020; 48:5332-5348. [PMID: 32324221 PMCID: PMC7261158 DOI: 10.1093/nar/gkaa266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The genomes of organisms from all three domains of life harbor endogenous base modifications in the form of DNA methylation. In bacterial genomes, methylation occurs on adenosine and cytidine residues to include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N4-methylcytosine (m4C). Bacterial DNA methylation has been well characterized in the context of restriction-modification (RM) systems, where methylation regulates DNA incision by the cognate restriction endonuclease. Relative to RM systems less is known about how m6A contributes to the epigenetic regulation of cellular functions in Gram-positive bacteria. Here, we characterize site-specific m6A modifications in the non-palindromic sequence GACGmAG within the genomes of Bacillus subtilis strains. We demonstrate that the yeeA gene is a methyltransferase responsible for the presence of m6A modifications. We show that methylation from YeeA does not function to limit DNA uptake during natural transformation. Instead, we identify a subset of promoters that contain the methylation consensus sequence and show that loss of methylation within promoter regions causes a decrease in reporter expression. Further, we identify a transcriptional repressor that preferentially binds an unmethylated promoter used in the reporter assays. With these results we suggest that m6A modifications in B. subtilis function to promote gene expression.
Collapse
Affiliation(s)
- Taylor M Nye
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Lieke A van Gijtenbeek
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Amanda G Stevens
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jeremy W Schroeder
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Justin R Randall
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Lindsay A Matthews
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
8
|
Seo D, Muraki N, Kurisu G. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP + oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP +/NADPH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148140. [PMID: 31838096 DOI: 10.1016/j.bbabio.2019.148140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Among the thioredoxin reductase-type ferredoxin-NAD(P)+ oxidoreductase (FNR) family, FNR from photosynthetic purple non‑sulfur bacterium Rhodopseudomonas palustris (RpFNR) is distinctive because the predicted residue on the re-face of the isoalloxazine ring portion of the FAD prosthetic group is a tyrosine. Here, we report the crystal structure of wild type RpFNR and kinetic analyses of the reaction of wild type, and Y328F, Y328H and Y328S mutants with NADP+/NADPH using steady state and pre-steady state kinetic approaches. The obtained crystal structure of wild type RpFNR confirmed the presence of Tyr328 on the re-face of the isoalloxazine ring of the FAD prosthetic group through the unique hydrogen bonding of its hydroxyl group. In the steady state assays, the substitution results in the decrease of Kd for NADP+ and KM for NADPH in the diaphorase assay; however, the kcat values also decreased significantly. In the stopped-flow spectrophotometry, mixing oxidized RpFNRs with NADPH and reduced RpFNRs with NADP+ resulted in rapid charge transfer complex formation followed by hydride transfer. The observed rate constants for the hydride transfer in both directions were comparable (>400 s-1). The substitution did not drastically affect the rate of hydride transfer, but substantially slowed down the subsequent release and re-association of NADP+/NADPH in both directions. The obtained results suggest that Tyr328 stabilizes the stacking of C-terminal residues on the isoalloxazine ring portion of the FAD prosthetic group, which impedes the access of NADP+/NADPH on the isoalloxazine ring portions, in turn, enhancing the release of the NADP+/NADPH and/or reaction with electron transfer proteins.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Norifumi Muraki
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan; Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan; Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan; Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Gómez-Gómez B, Pérez-Corona T, Mozzi F, Pescuma M, Madrid Y. Silac-based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. J Proteomics 2019; 195:53-65. [DOI: 10.1016/j.jprot.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
10
|
Seo D, Asano T. C-terminal residues of ferredoxin-NAD(P) + reductase from Chlorobaculum tepidum are responsible for reaction dynamics in the hydride transfer and redox equilibria with NADP +/NADPH. PHOTOSYNTHESIS RESEARCH 2018; 136:275-290. [PMID: 29119426 DOI: 10.1007/s11120-017-0462-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Ferredoxin-NAD(P)+ reductase ([EC 1.18.1.2], [EC 1.18.1.3]) from Chlorobaculum tepidum (CtFNR) is structurally homologous to the bacterial NADPH-thioredoxin reductase (TrxR), but possesses a unique C-terminal extension relative to TrxR that interacts with the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group. In this study, we introduce truncations to the C-terminal residues to examine their role in the reactions of CtFNR with NADP+ and NADPH by spectroscopic and kinetic analyses. The truncation of the residues from Tyr326 to Glu360 (the whole C-terminal extension region), from Phe337 to Glu360 (omitting Phe337 on the re-face of the isoalloxazine ring) and from Ser338 to Glu360 (leaving Phe337 intact) resulted in a blue-shift of the flavin absorption bands. The truncations caused a slight increase in the dissociation constant toward NADP+ and a slight decrease in the Michaelis constant toward NADPH in steady-state assays. Pre-steady-state studies of the redox reaction with NADPH demonstrated that deletions of Tyr326-Glu360 decreased the hydride transfer rate, and the amount of reduced enzyme increased at equilibrium relative to wild-type CtFNR. In contrast, the deletions of Phe337-Glu360 and Ser338-Glu360 resulted in only slight changes in the reaction kinetics and redox equilibrium. These results suggest that the C-terminal region of CtFNR is responsible for the formation and stability of charge-transfer complexes, leading to changes in redox properties and reactivity toward NADP+/NADPH.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa, 920-0934, Japan
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan
| |
Collapse
|
11
|
Margalef-Català M, Stefanelli E, Araque I, Wagner K, Felis GE, Bordons A, Torriani S, Reguant C. Variability in gene content and expression of the thioredoxin system in Oenococcus oeni. Food Microbiol 2017; 61:23-32. [DOI: 10.1016/j.fm.2016.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/29/2016] [Accepted: 08/19/2016] [Indexed: 11/17/2022]
|
12
|
Seo D, Kitashima M, Sakurai T, Inoue K. Kinetics of NADP +/NADPH reduction-oxidation catalyzed by the ferredoxin-NAD(P) + reductase from the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2016; 130:479-489. [PMID: 27341807 DOI: 10.1007/s11120-016-0285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Ferredoxin-NAD(P)+ oxidoreductase (FNR, [EC 1.18.1.2], [EC 1.18.1.3]) from the green sulfur bacterium Chlorobaculum tepidum (CtFNR) is a homodimeric flavoprotein with significant structural homology to bacterial NADPH-thioredoxin reductases. CtFNR homologs have been found in many bacteria, but only in green sulfur bacteria among photoautotrophs. In this work, we examined the reactions of CtFNR with NADP+, NADPH, and (4S-2H)-NADPD by stopped-flow spectrophotometry. Mixing CtFNRox with NADPH yielded a rapid decrease of the absorbance in flavin band I centered at 460 nm within 1 ms, and then the absorbance further decreased gradually. The magnitude of the decrease increased with increasing NADPH concentration, but even with ~50-fold molar excess NADPH, the absorbance change was only ~45 % of that expected for fully reduced protein. The absorbance in the charge transfer (CT) band centered around 600 nm increased rapidly within 1 ms, then slowly decreased to about 70 % of the maximum. When CtFNRred was mixed with excess NADP+, the absorbance in the flavin band I increased to about 70 % of that of CtFNRox with an apparent rate of ~4 s-1, whereas almost no absorption changes were observed in the CT band. Obtained data suggest that the reaction between CtFNR and NADP+/NADPH is reversible, in accordance with its physiological function.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Masaharu Kitashima
- Department of Biological Sciences, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
| | - Kazuhito Inoue
- Department of Biological Sciences, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
- Research Institute for Integrated Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| |
Collapse
|
13
|
Seo D, Soeta T, Sakurai H, Sétif P, Sakurai T. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP(+) oxidoreductase with NADP(+)/NADPH and ferredoxin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:678-87. [PMID: 26965753 DOI: 10.1016/j.bbabio.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 11/30/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductase ([EC1.18.1.2], FNR) from Bacillus subtilis (BsFNR) is a homodimeric flavoprotein sharing structural homology with bacterial NADPH-thioredoxin reductase. Pre-steady-state kinetics of the reactions of BsFNR with NADP(+), NADPH, NADPD (deuterated form) and B. subtilis ferredoxin (BsFd) using stopped-flow spectrophotometry were studied. Mixing BsFNR with NADP(+) and NADPH yielded two types of charge-transfer (CT) complexes, oxidized FNR (FNR(ox))-NADPH and reduced FNR (FNR(red))-NADP(+), both having CT absorption bands centered at approximately 600n m. After mixing BsFNR(ox) with about a 10-fold molar excess of NADPH (forward reaction), BsFNR was almost completely reduced at equilibrium. When BsFNR(red) was mixed with NADP(+), the amount of BsFNR(ox) increased with increasing NADP(+) concentration, but BsFNR(red) remained as the major species at equilibrium even with about 50-fold molar excess NADP(+). In both directions, the hydride-transfer was the rate-determining step, where the forward direction rate constant (~500 s(-1)) was much higher than the reverse one (<10 s(-1)). Mixing BsFd(red) with BsFNR(ox) induced rapid formation of a neutral semiquinone form. This process was almost completed within 1 ms. Subsequently the neutral semiquinone form was reduced to the hydroquinone form with an apparent rate constant of 50 to 70 s(-1) at 10°C, which increased as BsFd(red) increased from 40 to 120 μM. The reduction rate of BsFNR(ox) by BsFd(red) was markedly decreased by premixing BsFNR(ox) with BsFd(ox), indicating that the dissociation of BsFd(ox) from BsFNR(sq) is rate-limiting in the reaction. The characteristics of the BsFNR reactions with NADP(+)/NADPH were compared with those of other types of FNRs.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takahiro Soeta
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Hidehiro Sakurai
- Research Institute for Photobiological Hydrogen Production, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Pierre Sétif
- CEA, iBiTecS, 91191 Gif sur Yvette, France; CNRS/Université Paris-Sud/CEA, I2BC, 91190 Gif sur Yvette, France
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
14
|
A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction. mBio 2015; 6:e01132-15. [PMID: 26507228 PMCID: PMC4626851 DOI: 10.1128/mbio.01132-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The trxB2 gene, which is annotated as a thioredoxin reductase, was found to be essential for growth of Lactococcus lactis in the presence of oxygen. The corresponding protein (TrxB2) showed a high similarity with Bacillus subtilis YumC (E value = 4.0E−88), and YumC was able to fully complement the ΔtrxB2 mutant phenotype. YumC represents a novel type of ferredoxin (flavodoxin) reductase (FdR) with hitherto-unknown biological function. We adaptively evolved the ΔtrxB2 mutant under aerobic conditions to find suppressor mutations that could help elucidate the involvement of TrxB2 in aerobic growth. Genome sequencing of two independent isolates, which were able to grow as well as the wild-type strain under aerated conditions, revealed the importance of mutations in nrdI, encoding a flavodoxin involved in aerobic ribonucleotide reduction. We suggest a role for TrxB2 in nucleotide metabolism, where the flavodoxin (NrdI) serves as its redox partner, and we support this hypothesis by showing the beneficial effect of deoxynucleosides on aerobic growth of the ΔtrxB2 mutant. Finally, we demonstrate, by heterologous expression, that the TrxB2 protein functionally can substitute for YumC in B. subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilisyumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently identified bacterial YumC-type FdR belongs to a novel type, the biological function of which still remains elusive. We found that the YumC-like FdR (TrxB2) is essential for aerobic growth of Lactococcus lactis. We suggest that the YumC-type FdR is involved in the ribonucleotide reduction by the class Ib ribonucleotide reductase, which represents the workhorse for the bioconversion of nucleotides to deoxynucleotides in many prokaryotes and eukaryotic pathogens under aerobic conditions. As the partner of the flavodoxin (NrdI), the key FdR is missing in the current model describing the class Ib system in Escherichia coli. With this study, we have established a role for this novel type of FdR and in addition found the missing link needed to explain how ribonucleotide reduction is carried out under aerobic conditions.
Collapse
|
15
|
Seo D, Naito H, Nishimura E, Sakurai T. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH. PHOTOSYNTHESIS RESEARCH 2015; 125:321-328. [PMID: 25698107 DOI: 10.1007/s11120-015-0099-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan,
| | | | | | | |
Collapse
|
16
|
Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM. NADPH-generating systems in bacteria and archaea. Front Microbiol 2015; 6:742. [PMID: 26284036 PMCID: PMC4518329 DOI: 10.3389/fmicb.2015.00742] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms. It provides the reducing power that drives numerous anabolic reactions, including those responsible for the biosynthesis of all major cell components and many products in biotechnology. The efficient synthesis of many of these products, however, is limited by the rate of NADPH regeneration. Hence, a thorough understanding of the reactions involved in the generation of NADPH is required to increase its turnover through rational strain improvement. Traditionally, the main engineering targets for increasing NADPH availability have included the dehydrogenase reactions of the oxidative pentose phosphate pathway and the isocitrate dehydrogenase step of the tricarboxylic acid (TCA) cycle. However, the importance of alternative NADPH-generating reactions has recently become evident. In the current review, the major canonical and non-canonical reactions involved in the production and regeneration of NADPH in prokaryotes are described, and their key enzymes are discussed. In addition, an overview of how different enzymes have been applied to increase NADPH availability and thereby enhance productivity is provided.
Collapse
Affiliation(s)
| | - Ruud A. Weusthuis
- Bioprocess Engineering, Wageningen UniversityWageningen, Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands
| |
Collapse
|
17
|
Holden JK, Lim N, Poulos TL. Identification of redox partners and development of a novel chimeric bacterial nitric oxide synthase for structure activity analyses. J Biol Chem 2014; 289:29437-45. [PMID: 25194416 DOI: 10.1074/jbc.m114.595165] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Production of nitric oxide (NO) by nitric oxide synthase (NOS) requires electrons to reduce the heme iron for substrate oxidation. Both FAD and FMN flavin groups mediate the transfer of NADPH derived electrons to NOS. Unlike mammalian NOS that contain both FAD and FMN binding domains within a single polypeptide chain, bacterial NOS is only composed of an oxygenase domain and must rely on separate redox partners for electron transfer and subsequent activity. Here, we report on the native redox partners for Bacillus subtilis NOS (bsNOS) and a novel chimera that promotes bsNOS activity. By identifying and characterizing native redox partners, we were also able to establish a robust enzyme assay for measuring bsNOS activity and inhibition. This assay was used to evaluate a series of established NOS inhibitors. Using the new assay for screening small molecules led to the identification of several potent inhibitors for which bsNOS-inhibitor crystal structures were determined. In addition to characterizing potent bsNOS inhibitors, substrate binding was also analyzed using isothermal titration calorimetry giving the first detailed thermodynamic analysis of substrate binding to NOS.
Collapse
Affiliation(s)
| | | | - Thomas L Poulos
- From the Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900
| |
Collapse
|
18
|
Seo D, Asano T, Komori H, Sakurai T. Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:143-148. [PMID: 24529496 DOI: 10.1016/j.plaphy.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
Ferredoxin-NADP(+) oxidoreductase [EC 1.18.1.2] from Bacillus subtilis (BsFNR) is homologous to the bacterial NADPH-thioredoxin reductase, but possesses a unique C-terminal extension that covers the re-face of the isoalloxazine ring moiety of the flavin adenine dinucleotide (FAD) prosthetic group. In this report, we utilize BsFNR mutants depleted of their C-terminal residues to examine the importance of the C-terminal extension in reactions with NADPH and ferredoxin (Fd) from B. subtilis by spectroscopic and steady-state reaction analyses. The depletions of residues Y313 to K332 (whole C-terminal extension region) and S325 to K332 (His324 intact) resulted in significant increases in the catalytic efficiency with NADPH in diaphorase assay with ferricyanide, whereas Km values for ferricyanide were increased. In the cytochrome c reduction assay in the presence of B. subtilis ferredoxin, the S325-K332 depleted mutant displayed a significant decrease in the turnover rate with an Fd concentration range of 1-10 μM. The Y313-K332 depleted mutant demonstrated an increase in the rate of the direct reduction of horse heart cytochrome c in the absence of Fd. These data indicated that depletion of the C-terminal extension plays an important role in the reaction of BsFNR with ferredoxin.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa 920-0934, Japan
| | - Hirofumi Komori
- Faculty of Education, Kagawa University, 1-1 Saiwai, Takamatsu, Kagawa 760-8522, Japan
| | - Takeshi Sakurai
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
19
|
Yan Z, Nam YW, Fushinobu S, Wakagi T. Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 2013; 18:99-110. [DOI: 10.1007/s00792-013-0601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
20
|
Loutet SA, Kobylarz MJ, Chau CHT, Murphy MEP. IruO is a reductase for heme degradation by IsdI and IsdG proteins in Staphylococcus aureus. J Biol Chem 2013; 288:25749-25759. [PMID: 23893407 DOI: 10.1074/jbc.m113.470518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is a common hospital- and community-acquired bacterium that can cause devastating infections and is often multidrug-resistant. Iron acquisition is required by S. aureus during an infection, and iron acquisition pathways are potential targets for therapies. The gene NWMN2274 in S. aureus strain Newman is annotated as an oxidoreductase of the diverse pyridine nucleotide-disulfide oxidoreductase (PNDO) family. We show that NWMN2274 is an electron donor to IsdG and IsdI catalyzing the degradation of heme, and we have renamed this protein IruO. Recombinant IruO is a FAD-containing NADPH-dependent reductase. In the presence of NADPH and IruO, either IsdI or IsdG degraded bound heme 10-fold more rapidly than with the chemical reductant ascorbic acid. Varying IsdI-heme substrate and monitoring loss of the heme Soret band gave a K(m) of 15 ± 4 μM, a k(cat) of 5.2 ± 0.7 min(-1), and a k(cat)/K(m) of 5.8 × 10(3) M(-1) s(-1). From HPLC and electronic spectra, the major heme degradation products are 5-oxo-δ-bilirubin and 15-oxo-β-bilirubin (staphylobilins), as observed with ascorbic acid. Although heme degradation by IsdI or IsdG can occur in the presence of H2O2, the addition of catalase and superoxide dismutase did not disrupt NADPH/IruO heme degradation reactions. The degree of electron coupling between IruO and IsdI or IsdG remains to be determined. Homologs of IruO were identified by sequence similarity in the genomes of Gram-positive bacteria that possess IsdG-family heme oxygenases. A phylogeny of these homologs identifies a distinct clade of pyridine nucleotide-disulfide oxidoreductases likely involved in iron uptake systems. IruO is the likely in vivo reductant required for heme degradation by S. aureus.
Collapse
Affiliation(s)
- Slade A Loutet
- From the Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marek J Kobylarz
- From the Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Crystal H T Chau
- From the Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E P Murphy
- From the Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
21
|
Serata M, Iino T, Yasuda E, Sako T. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology (Reading) 2012; 158:953-962. [DOI: 10.1099/mic.0.053942-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Masaki Serata
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Tohru Iino
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Emi Yasuda
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| | - Tomoyuki Sako
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan
| |
Collapse
|
22
|
Oh YK, Raj SM, Jung GY, Park S. Current status of the metabolic engineering of microorganisms for biohydrogen production. BIORESOURCE TECHNOLOGY 2011; 102:8357-8367. [PMID: 21733680 DOI: 10.1016/j.biortech.2011.04.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/16/2011] [Accepted: 04/18/2011] [Indexed: 05/26/2023]
Abstract
The improvement of H2 production capabilities of hydrogen (H2)-producing microorganisms is a challenging issue. Microorganisms have evolved for fast growth and substrate utilization rather than H2 production. To develop good H2-producing biocatalysts, many studies have focused on the redirection and/or reconstruction of cellular metabolisms. These studies included the elimination of enzymes and carbon pathways interfering or competing with H2 production, the incorporation of non-native metabolic pathways leading to H2 production, the utilization of various carbon substrates, the rectification of H2-producting enzymes (nitrogenase and hydrogenase) and photophosphorylation systems, and in silico pathway flux analysis, among others. Owing to these studies, significant improvements in the yield and rate of H2 production, and in the stability of H2 production activity, were reached. This review presents and discusses the recent developments in biohydrogen production, with a focus on metabolic pathway engineering.
Collapse
Affiliation(s)
- You-Kwan Oh
- Bioenergy Center, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Pohl S, Tu WY, Aldridge PD, Gillespie C, Hahne H, Mäder U, Read TD, Harwood CR. Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis
to oxidative stress. Proteomics 2011; 11:3036-55. [DOI: 10.1002/pmic.201100085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 11/12/2022]
|
24
|
Komori H, Seo D, Sakurai T, Higuchi Y. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP(+) oxidoreductase and the structural basis for its substrate selectivity. Protein Sci 2010; 19:2279-90. [PMID: 20878669 DOI: 10.1002/pro.508] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 11/07/2022]
Abstract
Bacillus subtilis yumC encodes a novel type of ferredoxin-NADP+ oxidoreductase (FNR) with a primary sequence and oligomeric conformation distinct from those of previously known FNRs. In this study, the crystal structure of B. subtilis FNR (BsFNR) complexed with NADP+ has been determined. BsFNR features two distinct binding domains for FAD and NADPH in accordance with its structural similarity to Escherichia coli NADPH-thioredoxin reductase (TdR) and TdR-like protein from Thermus thermophilus HB8 (PDB code: 2ZBW). The deduced mode of NADP+ binding to the BsFNR molecule is nonproductive in that the nicotinamide and isoalloxazine rings are over 15 Å apart. A unique C-terminal extension, not found in E. coli TdR but in TdR-like protein from T. thermophilus HB8, covers the re-face of the isoalloxazine moiety of FAD. In particular, Tyr50 in the FAD-binding region and His324 in the C-terminal extension stack on the si- and re-faces of the isoalloxazine ring of FAD, respectively. Aromatic residues corresponding to Tyr50 and His324 are also found in the plastid-type FNR superfamily of enzymes, and the residue corresponding to His324 has been reported to be responsible for nucleotide specificity. In contrast to the plastid-type FNRs, replacement of His324 with Phe or Ser had little effect on the specificity or reactivity of BsFNR with NAD(P)H, whereas replacement of Arg190, which interacts with the 2'-phosphate of NADP+, drastically decreased its affinity toward NADPH. This implies that BsFNR adopts the same nucleotide binding mode as the TdR enzyme family and that aromatic residue on the re-face of FAD is hardly relevant to the nucleotide selectivity.
Collapse
Affiliation(s)
- Hirofumi Komori
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
25
|
Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G. Asymmetric dimeric structure of ferredoxin-NAD(P)+ oxidoreductase from the green sulfur bacterium Chlorobaculum tepidum: implications for binding ferredoxin and NADP+. J Mol Biol 2010; 401:403-14. [PMID: 20600130 DOI: 10.1016/j.jmb.2010.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Ferredoxin-NAD(P)(+) oxidoreductase (FNR) catalyzes the reduction of NAD(P)(+) to NAD(P)H with the reduced ferredoxin (Fd) during the final step of the photosynthetic electron transport chain. FNR from the green sulfur bacterium Chlorobaculum tepidum is functionally analogous to plant-type FNR but shares a structural homology to NADPH-dependent thioredoxin reductase (TrxR). Here, we report the crystal structure of C. tepidum FNR to 2.4 A resolution, which reveals a unique structure-function relationship. C. tepidum FNR consists of two functional domains for binding FAD and NAD(P)H that form a homodimer in which the domains are arranged asymmetrically. One NAD(P)H domain is present as the open form, the other with the equivalent NAD(P)H domain as the relatively closed form. We used site-directed mutagenesis on the hinge region connecting the two domains in order to investigate the importance of the flexible hinge. The asymmetry of the NAD(P)H domain and the comparison with TrxR suggested that the hinge motion might be involved in pyridine nucleotide binding and binding of Fd. Surprisingly, the crystal structure revealed an additional C-terminal sub-domain that tethers one protomer and interacts with the other protomer by pi-pi stacking of Phe337 and the isoalloxazine ring of FAD. The position of this stacking Phe337 is almost identical with both of the conserved C-terminal Tyr residues of plant-type FNR and the active site dithiol of TrxR, implying a unique structural basis for enzymatic reaction of C. tepidum FNR.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
26
|
Komori H, Seo D, Sakurai T, Higuchi Y. Crystallization and preliminary X-ray studies of ferredoxin-NADP+ oxidoreductase encoded by Bacillus subtilis yumC. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:301-3. [PMID: 20208166 PMCID: PMC2833042 DOI: 10.1107/s1744309110000151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 01/04/2010] [Indexed: 11/11/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductase encoded by Bacillus subtilis yumC has been purified and successfully crystallized in complex with NADP(+) in two forms. Diffraction data from crystals of these two forms were collected at resolutions of 1.8 and 1.9 A. The former belonged to space group P2(1)2(1)2, with unit-cell parameters a = 63.90, b = 135.72, c = 39.19 A, and the latter to space group C2, with unit-cell parameters a = 207.47, b = 64.85, c = 61.12 A, beta = 105.82 degrees. The initial structure was determined by the molecular-replacement method using a thioredoxin reductase-like protein as a search model.
Collapse
Affiliation(s)
- Hirofumi Komori
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5248, Japan
| | - Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Takeshi Sakurai
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5248, Japan
| |
Collapse
|
27
|
Ikeda T, Nakamura M, Arai H, Ishii M, Igarashi Y. Ferredoxin-NADP reductase from the thermophilic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6. FEMS Microbiol Lett 2009; 297:124-30. [PMID: 19552713 DOI: 10.1111/j.1574-6968.2009.01667.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. Small iron-sulfur proteins, ferredoxins, play a central role as low-potential electron donors for this cycle. The fpr gene of this bacterium, encoding a putative ferredoxin-NADP(+) reductase (FNR, EC 1.18.1.2), was expressed in Escherichia coli, and the recombinant protein was purified to homogeneity. Unexpectedly, the monomeric Fpr protein contained one molecule of FMN as a prosthetic group, although FNRs from other organisms are known to contain FAD. The FMN-containing Fpr was shown to be a bona fide FNR that catalyzes a reversible redox reaction between NADP(+)/NADPH and ferredoxins.
Collapse
Affiliation(s)
- Takeshi Ikeda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Mandai T, Fujiwara S, Imaoka S. A novel electron transport system for thermostable CYP175A1 fromThermus thermophilusHB27. FEBS J 2009; 276:2416-29. [DOI: 10.1111/j.1742-4658.2009.06974.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Seo D, Okabe S, Yanase M, Kataoka K, Sakurai T. Studies of interaction of homo-dimeric ferredoxin-NAD(P)+ oxidoreductases of Bacillus subtilis and Rhodopseudomonas palustris, that are closely related to thioredoxin reductases in amino acid sequence, with ferredoxins and pyridine nucleotide coenzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:594-601. [PMID: 19162251 DOI: 10.1016/j.bbapap.2008.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
Ferredoxin-NADP(+) oxidoreductases (FNRs) of Bacillus subtilis (YumC) and Rhodopseudomonas palustris CGA009 (RPA3954) belong to a novel homo-dimeric type of FNR with high amino acid sequence homology to NADPH-thioredoxin reductases. These FNRs were purified from expression constructs in Escherichia coli cells, and their steady-state reactions with [2Fe-2S] type ferredoxins (Fds) from spinach and R. palustris, [4Fe-4S] type Fd from B. subtilis, NAD(P)(+)/NAD(P)H and ferricyanide were studied. From the K(m) and k(cat) values for the diaphorase activity with ferricyanide, it is demonstrated that both FNRs are far more specific for NADPH than for NADH. The UV-visible spectral changes induced by NADP(+) and B. subtilis Fd indicated that both FNRs form a ternary complex with NADP(+) and Fd, and that each of the two ligands decreases the affinities of the others. The steady-state kinetics of NADPH-cytochrome c reduction activity of YumC is consistent with formation of a ternary complex of NADPH and Fd during catalysis. These results indicate that despite their low sequence homology to other FNRs, these enzymes possess high FNR activity but with measurable differences in affinity for different types of Fds as compared to other more conventional FNRs.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | |
Collapse
|
30
|
Bortolotti A, Pérez-Dorado I, Goñi G, Medina M, Hermoso JA, Carrillo N, Cortez N. Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:199-210. [PMID: 18973834 DOI: 10.1016/j.bbapap.2008.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
Ferredoxin-NADP(H) reductases catalyse the reversible hydride/electron exchange between NADP(H) and ferredoxin/flavodoxin, comprising a structurally defined family of flavoenzymes with two distinct subclasses. Those present in Gram-negative bacteria (FPRs) display turnover numbers of 1-5 s(-1) while the homologues of cyanobacteria and plants (FNRs) developed a 100-fold activity increase. We investigated nucleotide interactions and hydride transfer in Rhodobacter capsulatus FPR comparing them to those reported for FNRs. NADP(H) binding proceeds as in FNRs with stacking of the nicotinamide on the flavin, which resulted in formation of charge-transfer complexes prior to hydride exchange. The affinity of FPR for both NADP(H) and 2'-P-AMP was 100-fold lower than that of FNRs. The crystal structure of FPR in complex with 2'-P-AMP and NADP(+) allowed modelling of the adenosine ring system bound to the protein, whereas the nicotinamide portion was either not visible or protruding toward solvent in different obtained crystals. Stabilising contacts with the active site residues are different in the two reductase classes. We conclude that evolution to higher activities in FNRs was partially favoured by modification of NADP(H) binding in the initial complexes through changes in the active site residues involved in stabilisation of the adenosine portion of the nucleotide and in the mobile C-terminus of FPR.
Collapse
Affiliation(s)
- Ana Bortolotti
- Instituto de Biología Molecular y Celular de Rosario, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Veit A, Akhtar MK, Mizutani T, Jones PR. Constructing and testing the thermodynamic limits of synthetic NAD(P)H:H2 pathways. Microb Biotechnol 2008; 1:382-94. [PMID: 21261858 PMCID: PMC3815245 DOI: 10.1111/j.1751-7915.2008.00033.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
NAD(P)H:H2 pathways are theoretically predicted to reach equilibrium at very low partial headspace H2 pressure. An evaluation of the directionality of such near‐equilibrium pathways in vivo, using a defined experimental system, is therefore important in order to determine its potential for application. Many anaerobic microorganisms have evolved NAD(P)H:H2 pathways; however, they are either not genetically tractable, and/or contain multiple H2 synthesis/consumption pathways linked with other more thermodynamically favourable substrates, such as pyruvate. We therefore constructed a synthetic ferredoxin‐dependent NAD(P)H:H2 pathway model system in Escherichia coli BL21(DE3) and experimentally evaluated the thermodynamic limitations of nucleotide pyridine‐dependent H2 synthesis under closed batch conditions. NADPH‐dependent H2 accumulation was observed with a maximum partial H2 pressure equivalent to a biochemically effective intracellular NADPH/NADP+ ratio of 13:1. The molar yield of the NADPH:H2 pathway was restricted by thermodynamic limitations as it was strongly dependent on the headspace : liquid ratio of the culture vessels. When the substrate specificity was extended to NADH, only the reverse pathway directionality, H2 consumption, was observed above a partial H2 pressure of 40 Pa. Substitution of NADH with NADPH or other intermediates, as the main electron acceptor/donor of glucose catabolism and precursor of H2, is more likely to be applicable for H2 production.
Collapse
Affiliation(s)
- Andrea Veit
- Fujirebio Inc., Frontier Research Department, 51 Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | | | | | | |
Collapse
|
32
|
Muraki N, Seo D, Shiba T, Sakurai T, Kurisu G. Crystallization and preliminary X-ray studies of ferredoxin-NAD(P)+ reductase from Chlorobium tepidum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:186-9. [PMID: 18323604 PMCID: PMC2374157 DOI: 10.1107/s1744309108003667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/02/2008] [Indexed: 11/11/2022]
Abstract
Ferredoxin-NAD(P)(+) reductase (FNR) is a key enzyme that catalyzes the photoreduction of NAD(P)(+) to generate NAD(P)H during the final step of the photosynthetic electron-transport chain. FNR from the green sulfur bacterium Chlorobium tepidum is a homodimeric enzyme with a molecular weight of 90 kDa; it shares a high level of amino-acid sequence identity to thioredoxin reductase rather than to conventional plant-type FNRs. In order to understand the structural basis of the ferredoxin-dependency of this unique photosynthetic FNR, C. tepidum FNR has been heterologously expressed, purified and crystallized in two forms. Form I crystals belong to space group C222(1) and contain one dimer in the asymmetric unit, while form II crystals belong to space group P4(1)22 or P4(3)22. Diffraction data were collected from a form I crystal to 2.4 A resolution on the synchrotron-radiation beamline NW12 at the Photon Factory.
Collapse
Affiliation(s)
- Norifumi Muraki
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Daisuke Seo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Tomoo Shiba
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takeshi Sakurai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Genji Kurisu
- Department of Life Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
33
|
Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 2007; 6:29. [PMID: 17725816 PMCID: PMC2174512 DOI: 10.1186/1475-2859-6-29] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/28/2007] [Indexed: 12/02/2022] Open
Abstract
Background Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results We have identified the trxB1-encoded thioredoxin reductase (TR) as a key enzyme in the oxidative stress response of Lactobacillus plantarum WCFS1. Overexpression of the trxB1 gene resulted in a 3-fold higher TR activity in comparison to the wild-type strain. Subsequently, higher TR activity was associated with an increased resistance towards oxidative stress. We further determined the global transcriptional response to hydrogen peroxide stress in the trxB1-overexpression and wild-type strains grown in continuous cultures. Hydrogen peroxide stress and overproduction of TR collectively resulted in the up-regulation of 267 genes. Additionally, gene expression profiling showed significant differential expression of 27 genes in the trxB1-overexpression strain. Over expression of trxB1 was found to activate genes associated with DNA repair and stress mechanisms as well as genes associated with the activity of biosynthetic pathways for purine and sulfur-containing amino acids. A total of 16 genes showed a response to both TR overproduction and hydrogen peroxide stress. These genes are involved in the purine metabolism, energy metabolism (gapB) as well as in stress-response (groEL, npr2), and manganese transport (mntH2). Conclusion Based on our findings we propose that overproduction of the trxB1-encoded TR in L. plantarum improves tolerance towards oxidative stress. This response coincides with simultaneous induction of a group of 16 transcripts of genes. Within this group of genes, most are associated with oxidative stress response. The obtained crossover between datasets may explain the phenotype of the trxB1-overexpression strain, which appears to be prepared for encountering oxidative stress. This latter property can be used for engineering robustness towards oxidative stress in industrial strains of L. plantarum.
Collapse
Affiliation(s)
- L Mariela Serrano
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
- Wageningen UR, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Douwe Molenaar
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Michiel Wels
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
| | - Bas Teusink
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Peter A Bron
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
| | - Willem M de Vos
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- Wageningen UR, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Eddy J Smid
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| |
Collapse
|