1
|
Zhou Y, Zhou X, Zhang J, Zhao Y, Ye Z, Xu F, Li F. Confined Mechanical Microenvironment Regulated Antibiotic Resistance in 3D Biofilm Aggregates Probed by Scanning Electrochemical Microscopy. Anal Chem 2025; 97:5517-5526. [PMID: 40029802 DOI: 10.1021/acs.analchem.4c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Antibiotic resistance is a significant global concern. Clinical trials have highlighted discrepancies in antibiotic doses between in vivo three-dimensional (3D) biofilms and in vitro two-dimensional biofilm models. A critical factor often overlooked is the confined mechanical microenvironment (e.g., host extracellular matrix (ECM) stiffness) surrounding the in vivo biofilms, leading to inaccurate diagnosis and increased antibiotic resistance. Herein, we designed a 3D agarose-gel-based in vitro biofilm model and applied scanning electrochemical microscopy (SECM) to monitor the metabolic dynamics in situ, including cellular respiration and reactive oxygen species of an embedded single biofilm aggregate. We discovered distinct respiration patterns for biofilm aggregates embedded in stiff and soft gels at the single aggregate level, which was corroborated by transcriptional analysis. Our findings indicate that mechanical cues mediate antibiotic tolerance by reducing metabolic activity and increasing the production of extracellular polymeric substances (EPS). Additionally, we identified that metabolite glycine enhances the tricarboxylic acid cycle, suggesting its potential as an adjuvant to improve antibiotic efficacy. Knocking out the upregulated EPS-related gene (ΔyjbE) results in significantly reduced survival rates of ΔyjbE mutants in stiff agarose gels compared to the wild type, thereby enhancing antibiotic efficacy. Overall, our study demonstrates the versatility of the SECM-based strategy for investigating both metabolic dynamics and antibiotic resistance in biofilms and uncovers the role of ECM stiffness in mediating antibiotic resistance in 3D biofilms, paving the way for improved clinical strategies in antibiotic treatment.
Collapse
Affiliation(s)
- Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
2
|
Wightman T, Muszyński A, Kelly SJ, Sullivan JT, Smart CJ, Stougaard J, Ferguson S, Azadi P, Ronson CW. Rhizobial Secretion of Truncated Exopolysaccharides Severely Impairs the Mesorhizobium-Lotus Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:662-675. [PMID: 38904752 DOI: 10.1094/mpmi-03-24-0024-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The symbiosis between Mesorhizobium japonicum R7A and Lotus japonicus Gifu is an important model system for investigating the role of bacterial exopolysaccharides (EPS) in plant-microbe interactions. Previously, we showed that R7A exoB mutants that are affected at an early stage of EPS synthesis and in lipopolysaccharide (LPS) synthesis induce effective nodules on L. japonicus Gifu after a delay, whereas exoU mutants affected in the biosynthesis of the EPS side chain induce small uninfected nodule primordia and are impaired in infection. The presence of a halo around the exoU mutant when grown on Calcofluor-containing media suggested the mutant secreted a truncated version of R7A EPS. A nonpolar ΔexoA mutant defective in the addition of the first glucose residue to the EPS backbone was also severely impaired symbiotically. Here, we used a suppressor screen to show that the severe symbiotic phenotype of the exoU mutant was due to the secretion of an acetylated pentasaccharide, as both monomers and oligomers, by the same Wzx/Wzy system that transports wild-type exopolysaccharide. We also present evidence that the ΔexoA mutant secretes an oligosaccharide by the same transport system, contributing to its symbiotic phenotype. In contrast, ΔexoYF and polar exoA and exoL mutants have a similar phenotype to exoB mutants, forming effective nodules after a delay. These studies provide substantial evidence that secreted incompatible EPS is perceived by the plant, leading to abrogation of the infection process. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Todd Wightman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Simon J Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, U.S.A
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Exopolysaccharide Biosynthesis in Rhizobium leguminosarum bv. trifolii Requires a Complementary Function of Two Homologous Glycosyltransferases PssG and PssI. Int J Mol Sci 2023; 24:ijms24044248. [PMID: 36835659 PMCID: PMC9961541 DOI: 10.3390/ijms24044248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
The Pss-I region of Rhizobium leguminosarum bv. trifolii TA1 comprises more than 20 genes coding for glycosyltransferases, modifying enzymes, and polymerization/export proteins, altogether determining the biosynthesis of symbiotically relevant exopolysaccharides. In this study, the role of homologous PssG and PssI glycosyltransferases in exopolysaccharide subunit synthesis were analyzed. It was shown that the glycosyltransferase-encoding genes of the Pss-I region were part of a single large transcriptional unit with potential downstream promoters activated in specific conditions. The ΔpssG and ΔpssI mutants produced significantly lower amounts of the exopolysaccharide, while the double deletion mutant ΔpssIΔpssG produced no exopolysaccharide. Complementation of double mutation with individual genes restored exopolysaccharide synthesis, but only to the level similar to that observed for the single ΔpssI or ΔpssG mutants, indicating that PssG and PssI serve complementary functions in the process. PssG and PssI interacted with each other in vivo and in vitro. Moreover, PssI displayed an expanded in vivo interaction network comprising other GTs involved in subunit assembly and polymerization/export proteins. PssG and PssI proteins were shown to interact with the inner membrane through amphipathic helices at their C-termini, and PssG also required other proteins involved in exopolysaccharide synthesis to localize in the membrane protein fraction.
Collapse
|
4
|
Marczak M, Wójcik M, Żebracki K, Turska-Szewczuk A, Talarek K, Nowak D, Wawiórka L, Sieńczyk M, Łupicka-Słowik A, Bobrek K, Romańczuk M, Koper P, Mazur A. PssJ Is a Terminal Galactosyltransferase Involved in the Assembly of the Exopolysaccharide Subunit in Rhizobium Leguminosarum bv. Trifolii. Int J Mol Sci 2020; 21:ijms21207764. [PMID: 33092221 PMCID: PMC7589315 DOI: 10.3390/ijms21207764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii produces exopolysaccharide (EPS) composed of glucose, glucuronic acid, and galactose residues at a molar ratio 5:2:1. A majority of genes involved in the synthesis, modification, and export of exopolysaccharide are located in the chromosomal Pss-I region. In the present study, a ΔpssJ deletion mutant was constructed and shown to produce EPS lacking terminal galactose in the side chain of the octasaccharide subunit. The lack of galactose did not block EPS subunit translocation and polymerization. The in trans delivery of the pssJ gene restored the production of galactose-containing exopolysaccharide. The mutant was compromised in several physiological traits, e.g., motility and biofilm production. An impact of the pssJ mutation and changed EPS structure on the symbiotic performance was observed as improper signaling at the stage of molecular recognition, leading to formation of a significant number of non-infected empty nodules. Terminal galactosyltransferase PssJ was shown to display a structure typical for the GT-A class of glycosyltransferases and interact with other GTs and Wzx/Wzy system proteins. The latter, together with PssJ presence in soluble and membrane protein fractions indicated that the protein plays its role at the inner membrane interface and as a component of a larger complex.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
- Correspondence:
| | - Magdalena Wójcik
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Kamila Talarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Dominika Nowak
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Marcin Sieńczyk
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6 St., 50-373 Wrocław, Poland; (M.S.).; (A.Ł.-S.)
| | - Kamila Bobrek
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 St., 50-375 Wrocław, Poland;
| | - Marceli Romańczuk
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (K.Ż.); (A.T.-S.); (K.T.); (D.N.); (M.R.); (P.K.); (A.M.)
| |
Collapse
|
5
|
Marczak M, Żebracki K, Koper P, Turska-Szewczuk A, Mazur A, Wydrych J, Wójcik M, Skorupska A. Mgl2 Is a Hypothetical Methyltransferase Involved in Exopolysaccharide Production, Biofilm Formation, and Motility in Rhizobium leguminosarum bv. trifolii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:899-911. [PMID: 30681888 DOI: 10.1094/mpmi-01-19-0026-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, functional characterization of the mgl2 gene located near the Pss-I exopolysaccharide biosynthesis region in Rhizobium leguminosarum bv. trifolii TA1 is described. The hypothetical protein encoded by the mgl2 gene was found to be similar to methyltransferases (MTases). Protein homology and template-based modeling facilitated prediction of the Mgl2 structure, which greatly resembled class I MTases with a S-adenosyl-L-methionine-binding cleft. The Mgl2 protein was engaged in exopolysaccharide, but not lipopolysaccharide, synthesis. The mgl2 deletion mutant produced exopolysaccharide comprised of only low molecular weight fractions, while overexpression of mgl2 caused overproduction of exopolysaccharide with a normal low to high molecular weight ratio. The deletion of the mgl2 gene resulted in disturbances in biofilm formation and a slight increase in motility in minimal medium. Red clover (Trifolium pratense) inoculated with the mgl2 mutant formed effective nodules, and the appearance of the plants indicated active nitrogen fixation. The mgl2 gene was preceded by an active and strong promoter. Mgl2 was defined as an integral membrane protein and formed homodimers in vivo; however, it did not interact with Pss proteins encoded within the Pss-I region. The results are discussed in the context of the possible involvement of the newly described potential MTase in various metabolic traits, such as the exopolysaccharide synthesis and motility that are important for rhizobial saprophytic and symbiotic relationships.
Collapse
Affiliation(s)
- Małgorzata Marczak
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Kamil Żebracki
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Piotr Koper
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Anna Turska-Szewczuk
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Andrzej Mazur
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Jerzy Wydrych
- 2 Department of Comparative Anatomy and Anthropology, Institute of Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University
| | - Magdalena Wójcik
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| | - Anna Skorupska
- 1 Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Lipa P, Vinardell JM, Janczarek M. Transcriptomic Studies Reveal that the Rhizobium leguminosarum Serine/Threonine Protein Phosphatase PssZ has a Role in the Synthesis of Cell-Surface Components, Nutrient Utilization, and Other Cellular Processes. Int J Mol Sci 2019; 20:ijms20122905. [PMID: 31197117 PMCID: PMC6628131 DOI: 10.3390/ijms20122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
7
|
Mutation in the pssZ Gene Negatively Impacts Exopolysaccharide Synthesis, Surface Properties, and Symbiosis of Rhizobium leguminosarum bv. trifolii with Clover. Genes (Basel) 2018; 9:genes9070369. [PMID: 30041474 PMCID: PMC6071215 DOI: 10.3390/genes9070369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a nitrogen-fixing symbiosis with clover plants (Trifolium spp.). This bacterium secretes large amounts of acidic exopolysaccharide (EPS), which plays an essential role in the symbiotic interaction with the host plant. This polymer is biosynthesized by a multi-enzymatic complex located in the bacterial inner membrane, whose components are encoded by a large chromosomal gene cluster, called Pss-I. In this study, we characterize R. leguminosarum bv. trifolii strain Rt297 that harbors a Tn5 transposon insertion located in the pssZ gene from the Pss-I region. This gene codes for a protein that shares high identity with bacterial serine/threonine protein phosphatases. We demonstrated that the pssZ mutation causes pleiotropic effects in rhizobial cells. Strain Rt297 exhibited several physiological and symbiotic defects, such as lack of EPS production, reduced growth kinetics and motility, altered cell-surface properties, and failure to infect the host plant. These data indicate that the protein encoded by the pssZ gene is indispensable for EPS synthesis, but also required for proper functioning of R. leguminosarum bv. trifolii cells.
Collapse
|
8
|
Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A. Synthesis of Rhizobial Exopolysaccharides and Their Importance for Symbiosis with Legume Plants. Genes (Basel) 2017; 8:E360. [PMID: 29194398 PMCID: PMC5748678 DOI: 10.3390/genes8120360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022] Open
Abstract
Rhizobia dwell and multiply in the soil and represent a unique group of bacteria able to enter into a symbiotic interaction with plants from the Fabaceae family and fix atmospheric nitrogen inside de novo created plant organs, called nodules. One of the key determinants of the successful interaction between these bacteria and plants are exopolysaccharides, which represent species-specific homo- and heteropolymers of different carbohydrate units frequently decorated by non-carbohydrate substituents. Exopolysaccharides are typically built from repeat units assembled by the Wzx/Wzy-dependent pathway, where individual subunits are synthesized in conjunction with the lipid anchor undecaprenylphosphate (und-PP), due to the activity of glycosyltransferases. Complete oligosaccharide repeat units are transferred to the periplasmic space by the activity of the Wzx flippase, and, while still being anchored in the membrane, they are joined by the polymerase Wzy. Here we have focused on the genetic control over the process of exopolysaccharides (EPS) biosynthesis in rhizobia, with emphasis put on the recent advancements in understanding the mode of action of the key proteins operating in the pathway. A role played by exopolysaccharide in Rhizobium-legume symbiosis, including recent data confirming the signaling function of EPS, is also discussed.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Anna Skorupska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
9
|
Becker A. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 2015. [PMID: 26217319 PMCID: PMC4496566 DOI: 10.3389/fmicb.2015.00687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Because of their rheological properties various microbial polysaccharides are applied as thickeners and viscosifiers both in food and non-food industries. A broad variety of microorganisms secrete structurally diverse exopolysaccharides (EPS) that contribute to their surface attachment, protection against abiotic or biotic stress factors, and nutrient gathering. Theoretically, a massive number of EPS structures are possible through variations in monosaccharide sequences, condensation linkages and non-sugar decorations. Given the already-high diversity of EPS structures, taken together with the principal of combinatorial biosynthetic pathways, microbial polysaccharides are an attractive class of macromolecules with which to generate novel structures via synthetic biology approaches. However, previous manipulations primarily focused on increasing polysaccharide yield, with structural modifications restricted to removal of side chains or non-sugar decorations. This article outlines the biosynthetic pathways of the bacterial heteroexopolysaccharides xanthan and succinoglycan, which are used as thickening and stabilizing agents in food and non-food industries. Challenges and perspectives of combining synthetic biology approaches with directed evolution to overcome obstacles in assembly of novel EPS biosynthesis pathways are discussed.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University of Marburg , Marburg, Germany
| |
Collapse
|
10
|
Islam ST, Lam JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 2014; 60:697-716. [DOI: 10.1139/cjm-2014-0595] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The surfaces of bacteria mediate a multitude of functions in the environment and in an infected host, including adhesion to both biotic and abiotic substrata, motility, immune system interaction and (or) activation, biofilm formation, and cell–cell communication, with many of these features directly influenced by cell-surface glycans. In both Gram-negative and Gram-positive bacteria, the majority of cell-surface polysaccharides are produced via the Wzx/Wzy-dependent assembly pathway; these glycans include heteropolymeric O-antigen, enterobacterial common antigen, exopolysaccharide, spore coat, and capsule in diverse bacteria. The key components of this assembly pathway are the integral inner membrane Wzx flippase, Wzy polymerase, and Wzz chain-length regulator proteins, which until recently have resisted detailed structural and functional characterization. In this review, we have provided a comprehensive synthesis of the latest structural and mechanistic data for each protein, as well as an examination of substrate specificity for each assembly step and complex formation between the constituent proteins. To complement the unprecedented explosion of genomic-sequencing data for bacteria, we have also highlighted both classical and state-of-the-art methods by which encoded Wzx, Wzy, and Wzz proteins can be reliably identified and annotated, using the model Gram-negative bacterium Pseudomonas aeruginosa as an example data set. Lastly, we outline future avenues of research, with the aim of stimulating researchers to take the next steps in investigating the function of, and interplay between, the constituents of this widespread assembly scheme.
Collapse
Affiliation(s)
- Salim T. Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joseph S. Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
PssP2 is a polysaccharide co-polymerase involved in exopolysaccharide chain-length determination in Rhizobium leguminosarum. PLoS One 2014; 9:e109106. [PMID: 25268738 PMCID: PMC4182512 DOI: 10.1371/journal.pone.0109106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 09/02/2014] [Indexed: 12/16/2022] Open
Abstract
Production of extracellular polysaccharides is a complex process engaging proteins localized in different subcellular compartments, yet communicating with each other or even directly interacting in multicomponent complexes. Proteins involved in polymerization and transport of exopolysaccharide (EPS) in Rhizobium leguminosarum are encoded within the chromosomal Pss-I cluster. However, genes implicated in polysaccharide synthesis are common in rhizobia, with several homologues of pss genes identified in other regions of the R. leguminosarum genome. One such region is chromosomally located Pss-II encoding proteins homologous to known components of the Wzx/Wzy-dependent polysaccharide synthesis and transport systems. The pssP2 gene encodes a protein similar to polysaccharide co-polymerases involved in determination of the length of polysaccharide chains in capsule and O-antigen biosynthesis. In this work, a mutant with a disrupted pssP2 gene was constructed and its capabilities to produce EPS and enter into a symbiotic relationship with clover were studied. The pssP2 mutant, while not altered in lipopolysaccharide (LPS), displayed changes in molecular mass distribution profile of EPS. Lack of the full-length PssP2 protein resulted in a reduction of high molecular weight EPS, yet polymerized to a longer length than in the RtTA1 wild type. The mutant strain was also more efficient in symbiotic performance. The functional interrelation between PssP2 and proteins encoded within the Pss-I region was further supported by data from bacterial two-hybrid assays providing evidence for PssP2 interactions with PssT polymerase, as well as glycosyltransferase PssC. A possible role for PssP2 in a complex involved in EPS chain-length determination is discussed.
Collapse
|
12
|
Islam ST, Lam JS. Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 2012; 15:1001-15. [PMID: 23016929 DOI: 10.1111/j.1462-2920.2012.02890.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/13/2012] [Accepted: 08/18/2012] [Indexed: 11/29/2022]
Abstract
Bacterial cell surface polysaccharides confer resistance to external stress and promote survival in biotic and abiotic environments. Glycan assembly often occurs at the periplasmic leaflet of the inner membrane (IM) from undecaprenyl pyrophosphate (UndPP)-linked polysaccharide units via the Wzx/Wzy-dependent pathway. Wzx is an integral IM protein found in Gram-negative and Gram-positive bacteria that mediates IM translocation of UndPP-linked sugar repeats from the cytoplasmic to the periplasmic leaflet; interaction of Wzx with other assembly proteins is indirectly supported by genetic evidence. Topological mapping has indicated 12 α-helical transmembrane segments (TMS), with the number of charged TMS residues fluctuating based on the mapping method used. A novel Wzx tertiary structure model has been built, allowing for substrate-binding or energy-coupling roles to be proposed for functionally important charged and aromatic TMS residues. It has also led to a proposed antiport-like mechanism of Wzx function. Exquisite substrate specificity of Wzx proteins was recently revealed in distinguishing between UndPP-linked substrates with identical main-chain sugar repeats, but differing in the chemical composition of a terminal sugar side-branch cap. The objective of this review is to synthesize the most up-to-date knowledge concerning Wzx flippases and to provide perspective for future investigations in this burgeoning field.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | |
Collapse
|
13
|
Islam ST, Fieldhouse RJ, Anderson EM, Taylor VL, Keates RAB, Ford RC, Lam JS. A cationic lumen in the Wzx flippase mediates anionic O-antigen subunit translocation in Pseudomonas aeruginosa PAO1. Mol Microbiol 2012; 84:1165-76. [PMID: 22554073 PMCID: PMC3412221 DOI: 10.1111/j.1365-2958.2012.08084.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heteropolymeric B-band O-antigen (O-Ag) biosynthesis in Pseudomonas aeruginosa PAO1 follows the Wzy-dependent pathway, beginning with translocation of undecaprenyl pyrophosphate-linked anionic O-Ag subunits (O units) from the inner to the outer leaflets of the inner membrane (IM). This translocation is mediated by the integral IM flippase Wzx. Through experimentally based and unbiased topological mapping, our group previously observed that Wzx possesses many charged and aromatic amino acid residues within its 12 transmembrane segments (TMS). Herein, site-directed mutagenesis targeting 102 residues was carried out on the TMS and loops of Wzx, followed by assessment of each construct's ability to restore B-band O-Ag production, identifying eight residues important for flippase function. The importance of various charged and aromatic residues was highlighted, predominantly within the TMS of the protein, revealing functional ‘hotspots’ within the flippase, particularly within TMS2 and TMS8. Construction of a tertiary structure homology model for Wzx indicated that TMS2 and TMS8 line a central cationic lumen. This is the first report to describe a charged flippase lumen for mediating anionic O-unit translocation across the hydrophobic IM.
Collapse
Affiliation(s)
- Salim T Islam
- Department of Molecular and Cellular Biology Biophysics Interdepartmental Group, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Valvano MA. Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. BIOCHEMISTRY (MOSCOW) 2011; 76:729-35. [DOI: 10.1134/s0006297911070029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Janczarek M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 2011; 12:7898-933. [PMID: 22174640 PMCID: PMC3233446 DOI: 10.3390/ijms12117898] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/16/2022] Open
Abstract
Rhizobia are Gram-negative bacteria that can exist either as free-living bacteria or as nitrogen-fixing symbionts inside root nodules of leguminous plants. The composition of the rhizobial outer surface, containing a variety of polysaccharides, plays a significant role in the adaptation of these bacteria in both habitats. Among rhizobial polymers, exopolysaccharide (EPS) is indispensable for the invasion of a great majority of host plants which form indeterminate-type nodules. Various functions are ascribed to this heteropolymer, including protection against environmental stress and host defense, attachment to abiotic and biotic surfaces, and in signaling. The synthesis of EPS in rhizobia is a multi-step process regulated by several proteins at both transcriptional and post-transcriptional levels. Also, some environmental factors (carbon source, nitrogen and phosphate starvation, flavonoids) and stress conditions (osmolarity, ionic strength) affect EPS production. This paper discusses the recent data concerning the function of the genes required for EPS synthesis and the regulation of this process by several environmental signals. Up till now, the synthesis of rhizobial EPS has been best studied in two species, Sinorhizobium meliloti and Rhizobium leguminosarum. The latest data indicate that EPS synthesis in rhizobia undergoes very complex hierarchical regulation, in which proteins engaged in quorum sensing and the regulation of motility genes also participate. This finding enables a better understanding of the complex processes occurring in the rhizosphere which are crucial for successful colonization and infection of host plant roots.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., Lublin 20-033, Poland; E-Mail: ; Tel.: +48-81-537-5974
| |
Collapse
|
16
|
Hug I, Feldman MF. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 2010; 21:138-51. [PMID: 20871101 DOI: 10.1093/glycob/cwq148] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacteria generate and attach countless glycan structures to diverse macromolecules. Despite this diversity, the mechanisms of glycoconjugate biosynthesis are often surprisingly similar. The focus of this review is on the commonalities between lipopolysaccharide (LPS) and glycoprotein assembly pathways and their evolutionary relationship. Three steps that are essential for both pathways are completed by membrane proteins. These include the initiation of glycan assembly through the attachment of a first sugar residue onto the lipid carrier undecaprenyl pyrophosphate, the translocation across the plasma membrane and the final transfer onto proteins or lipid A-core. Two families of initiating enzymes have been described: the polyprenyl-P N-acetylhexosamine-1-P transferases and the polyprenyl-P hexosamine-1-P transferases, represented by Escherichia coli WecA and Salmonella enterica WbaP, respectively. Translocases are either Wzx-like flippases or adenosine triphosphate (ATP)-binding cassette transporters (ABC transporters). The latter can consist either of two polypeptides, Wzt and Wzm, or of a single polypeptide homolog to the Campylobacter jejuni PglK. Finally, there are two families of conjugating enzymes, the N-oligosaccharyltransferases (N-OTase), best represented by C. jejuni PglB, and the O-OTases, including Neisseria meningitidis PglL and the O antigen ligases involved in LPS biosynthesis. With the exception of the N-OTases, probably restricted to glycoprotein synthesis, members of all these transmembrane protein families can be involved in the synthesis of both glycoproteins and LPS. Because many translocation and conjugation enzymes display relaxed substrate specificity, these bacterial enzymes could be exploited in engineered living bacteria for customized glycoconjugate production, generating potential vaccines and therapeutics.
Collapse
Affiliation(s)
- Isabelle Hug
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
17
|
Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from Escherichia coli O157:H4. J Bacteriol 2010; 192:6160-71. [PMID: 20870764 DOI: 10.1128/jb.00141-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Collapse
|
18
|
Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. mBio 2010; 1. [PMID: 20824106 PMCID: PMC2932511 DOI: 10.1128/mbio.00189-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of B-band lipopolysaccharide (LPS) in Pseudomonas aeruginosa follows the Wzy-dependent pathway, requiring the integral inner membrane proteins Wzx (O-antigen [O-Ag] flippase), Wzy (O-Ag polymerase), and WaaL (O-Ag ligase). For an important first step in deciphering the mechanisms of LPS assembly, we set out to map the membrane topology of these proteins. Random and targeted 3′wzx, wzy, and waaL truncations were fused to a phoA-lacZα dual reporter capable of displaying both alkaline phosphatase and β-galactosidase activity. The results from truncation fusion expression and the corresponding differential enzyme activity ratios allowed for the assignment of specific regions of the proteins to cytoplasmic, transmembrane (TM), or periplasmic loci. Protein orientation in the inner membrane was confirmed via C-terminal fusion to green fluorescent protein. Our data revealed unique TM domain properties in these proteins, particularly for Wzx, indicating the potential for a charged pore. Novel periplasmic and cytoplasmic loop domains were also uncovered, with the latter in Wzy and WaaL revealing tracts consistent with potential Walker A/B motifs. The opportunistic pathogen Pseudomonas aeruginosa synthesizes its virulence factor lipopolysaccharide via the Wzy-dependent pathway, requiring translocation, polymerization, and ligation of lipid-linked polysaccharide repeat units by the integral inner membrane proteins Wzx, Wzy, and WaaL, respectively. However, structural evidence to help explain the function of these proteins is lacking. Since membrane proteins are difficult to crystallize, topological mapping is an important first step in identifying exposed and membrane-embedded domains. We mapped the topologies of Wzx, Wzy, and WaaL from P. aeruginosa PAO1 by use of truncation libraries of a randomly fused C-terminal reporter capable of different enzyme activities in the periplasm and cytoplasm. Topology maps were created based directly on residue localization data, eliminating the bias associated with reliance on multiple topology prediction algorithms for initial generation of consensus transmembrane domain localizations. Consequently, we have identified novel periplasmic, cytoplasmic, and transmembrane domain properties that would help to explain the proposed functions of Wzx, Wzy, and WaaL.
Collapse
|
19
|
Vasudevan P, McElligott J, Attkisson C, Betteken M, Popham DL. Homologues of the Bacillus subtilis SpoVB protein are involved in cell wall metabolism. J Bacteriol 2009; 191:6012-9. [PMID: 19648239 PMCID: PMC2747891 DOI: 10.1128/jb.00604-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/24/2009] [Indexed: 11/20/2022] Open
Abstract
Members of the COG2244 protein family are integral membrane proteins involved in synthesis of a variety of extracellular polymers. In several cases, these proteins have been suggested to move lipid-linked oligomers across the membrane or, in the case of Escherichia coli MviN, to flip the lipid II peptidoglycan precursor. Bacillus subtilis SpoVB was the first member of this family implicated in peptidoglycan synthesis and is required for spore cortex polymerization. Three other COG2244 members with high similarity to SpoVB are encoded within the B. subtilis genome. Mutant strains lacking any or all of these genes (yabM, ykvU, and ytgP) in addition to spoVB are viable and produce apparently normal peptidoglycan, indicating that their function is not essential in B. subtilis. Phenotypic changes associated with loss of two of these genes suggest that they function in peptidoglycan synthesis. Mutants lacking YtgP produce long cells and chains of cells, suggesting a role in cell division. Mutants lacking YabM exhibit sensitivity to moenomycin, an antibiotic that blocks peptidoglycan polymerization by class A penicillin-binding proteins. This result suggests that YabM may function in a previously observed alternate pathway for peptidoglycan strand synthesis.
Collapse
Affiliation(s)
- Pradeep Vasudevan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
20
|
Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF. Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. MICROBIOLOGY-SGM 2009; 155:4170-4183. [PMID: 19744990 DOI: 10.1099/mic.0.029017-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Klebsiella pneumoniae is an enteric pathogen causing community-acquired and hospital-acquired infections in humans. Epidemiological studies have revealed significant diversity in capsular polysaccharide (CPS) type and clinical manifestation of K. pneumoniae infection in different geographical areas of the world. We have sequenced the capsular polysaccharide synthesis (cps) region of seven clinical isolates and compared the sequences with the publicly available cps sequence data of five strains: NTUH-K2044 (K1 serotype), Chedid (K2 serotype), MGH78578 (K52 serotype), A1142 (K57 serotype) and A1517. Among all strains, six genes at the 5' end of the cps clusters that encode proteins for CPS transportation and processing at the bacterial surface are highly similar to each other. The central region of the cps gene clusters, which encodes proteins for polymerization and assembly of the CPS subunits, is highly divergent. Based on the collected sequence, we found that either the wbaP gene or the wcaJ gene exists in a given K. pneumoniae strain, suggesting that there is a major difference in the CPS biosynthesis pathway and that the K. pneumoniae strains can be classified into at least two distinct groups. All isolates contain gnd, encoding gluconate-6-phosphate dehydrogenase, at the 3' end of the cps gene clusters. The rmlBADC genes were found in CPS K9-positive, K14-positive and K52-positive strains, while manC and manB were found in K1, K2, K5, K14, K62 and two undefined strains. Our data indicate that, while overall genomic organization is similar between different pathogenic K. pneumoniae strains, the genetic variation of the sugar moiety and polysaccharide linkage generate the diversity in CPS molecules that could help evade host immune attack.
Collapse
Affiliation(s)
- Hung-Yu Shu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Department of Bioscience Technology, Chang Jung Christian University, Tainan County, Taiwan, ROC
| | - Chang-Phone Fung
- Institute of Tropical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yen-Ming Liu
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Keh-Ming Wu
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ying-Tsong Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Ling-Hui Li
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Tze-Tze Liu
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ralph Kirby
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Feng Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC.,Genome Research Center, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Cunneen MM, Reeves PR. Membrane topology of theSalmonella entericaserovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol Lett 2008; 287:76-84. [DOI: 10.1111/j.1574-6968.2008.01295.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
Marczak M, Mazur A, Król JE, Gruszecki WI, Skorupska A. Lipoprotein PssN of Rhizobium leguminosarum bv. trifolii: subcellular localization and possible involvement in exopolysaccharide export. J Bacteriol 2006; 188:6943-52. [PMID: 16980497 PMCID: PMC1595502 DOI: 10.1128/jb.00651-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface expression of exopolysaccharides (EPS) in gram-negative bacteria depends on the activity of proteins found in the cytoplasmic membrane, the periplasmic space, and the outer membrane. pssTNOP genes identified in Rhizobium leguminosarum bv. trifolii strain TA1 encode proteins that might be components of the EPS polymerization and secretion system. In this study, we have characterized PssN protein. Employing pssN-phoA and pssN-lacZ gene fusions and in vivo acylation with [3H]palmitate, we demonstrated that PssN is a 43-kDa lipoprotein directed to the periplasm by an N-terminal signal sequence. Membrane detergent fractionation followed by sucrose gradient centrifugation showed that PssN is an outer membrane-associated protein. Indirect immunofluorescence with anti-PssN and fluorescein isothiocyanate-conjugated antibodies and protease digestion of spheroplasts and intact cells of TA1 provided evidence that PssN is oriented towards the periplasmic space. Chemical cross-linking of TA1 and E. coli cells overproducing PssN-His6 protein showed that PssN might exist as a homo-oligomer of at least two monomers. Investigation of the secondary structure of purified PssN-His6 protein by Fourier transform infrared spectroscopy revealed the predominant presence of beta-structure; however, alpha-helices were also detected. Influence of an increased amount of PssN protein on the TA1 phenotype was assessed and correlated with a moderate enhancement of EPS production.
Collapse
Affiliation(s)
- Małgorzata Marczak
- Department of General Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | | | |
Collapse
|
23
|
Staehelin C, Forsberg LS, D'Haeze W, Gao MY, Carlson RW, Xie ZP, Pellock BJ, Jones KM, Walker GC, Streit WR, Broughton WJ. Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. J Bacteriol 2006; 188:6168-78. [PMID: 16923883 PMCID: PMC1595362 DOI: 10.1128/jb.00365-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia are nitrogen-fixing bacteria that establish endosymbiotic associations with legumes. Nodule formation depends on various bacterial carbohydrates, including lipopolysaccharides, K-antigens, and exopolysaccharides (EPS). An acidic EPS from Rhizobium sp. strain NGR234 consists of glucosyl (Glc), galactosyl (Gal), glucuronosyl (GlcA), and 4,6-pyruvylated galactosyl (PvGal) residues with beta-1,3, beta-1,4, beta-1,6, alpha-1,3, and alpha-1,4 glycoside linkages. Here we examined the role of NGR234 genes in the synthesis of EPS. Deletions within the exoF, exoL, exoP, exoQ, and exoY genes suppressed accumulation of EPS in bacterial supernatants, a finding that was confirmed by chemical analyses. The data suggest that the repeating subunits of EPS are assembled by an ExoQ/ExoP/ExoF-dependent mechanism, which is related to the Wzy polymerization system of group 1 capsular polysaccharides in Escherichia coli. Mutation of exoK (NGROmegaexoK), which encodes a putative glycanase, resulted in the absence of low-molecular-weight forms of EPS. Analysis of the extracellular carbohydrates revealed that NGROmegaexoK is unable to accumulate exo-oligosaccharides (EOSs), which are O-acetylated nonasaccharide subunits of EPS having the formula Gal(Glc)5(GlcA)2PvGal. When used as inoculants, both the exo-deficient mutants and NGROmegaexoK were unable to form nitrogen-fixing nodules on some hosts (e.g., Albizia lebbeck and Leucaena leucocephala), but they were able to form nitrogen-fixing nodules on other hosts (e.g., Vigna unguiculata). EOSs of the parent strain were biologically active at very low levels (yield in culture supernatants, approximately 50 microg per liter). Thus, NGR234 produces symbiotically active EOSs by enzymatic degradation of EPS, using the extracellular endo-beta-1,4-glycanase encoded by exoK (glycoside hydrolase family 16). We propose that the derived EOSs (and not EPS) are bacterial components that play a crucial role in nodule formation in various legumes.
Collapse
Affiliation(s)
- Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-Sen (Zhongshan) University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|